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Risk bounds in linear regression through PAC-Bayesian truncation

JEAN-YVES AUDIBERT1,2, OLIVIER CATONI 3

July 3, 2010

ABSTRACT : We consider the problem of predicting as well as the best linear combi-
nation ofd given functions in least squares regression, and variants of this problem includ-
ing constraints on the parameters of the linear combination. When the input distribution
is known, there already exists an algorithm having an expected excess risk of orderd/n,
wheren is the size of the training data. Without this strong assumption, standard results
often contain a multiplicativelog n factor, and require some additional assumptions like
uniform boundedness of thed-dimensional input representation and exponential moments
of the output.

This work provides new risk bounds for the ridge estimator and the ordinary least
squares estimator, and their variants. It also provides shrinkage procedures with conver-
gence rated/n (i.e., without the logarithmic factor) in expectation and in deviations, un-
der various assumptions. The key common surprising factor of these results is the absence
of exponential moment condition on the output distributionwhile achieving exponential
deviations. All risk bounds are obtained through a PAC-Bayesian analysis on truncated
differences of losses. Finally, we show that some of these results are not particular to the
least squares loss, but can be generalized to similar strongly convex loss functions.
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INTRODUCTION

OUR STATISTICAL TASK. Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be n ≥ 2
pairs of input-output and assume that each pair has been independently drawn
from the same unknown distributionP . Let X denote the input space and let the
output space be the set of real numbersR, so thatP is a probability distribution
on the product spaceZ , X × R. The target of learning algorithms is to predict
the outputY associated with an inputX for pairsZ = (X, Y ) drawn from the
distributionP . The quality of a (prediction) functionf : X → R is measured by
the least squaresrisk:

R(f) , EZ∼P

{
[Y − f(X)]2

}
.

Through the paper, we assume that the output and all the prediction functions we
consider are square integrable. LetΘ be a closed convex set ofRd, andϕ1, . . . , ϕd

bed prediction functions. Consider the regression model

F =

{
fθ =

d∑

j=1

θjϕj; (θ1, . . . , θd) ∈ Θ

}
.
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The best functionf ∗ in F is defined by

f ∗ =

d∑

j=1

θ∗jϕj ∈ argmin
f∈F

R(f).

Such a function always exists but is not necessarily unique.Besides it is unknown
since the probability generating the data is unknown.

We will study the problem of predicting (at least) as well as functionf ∗. In
other words, we want to deduce from the observationsZ1, . . . , Zn a functionf̂
having with high probability a risk bounded by the minimal riskR(f ∗) onF plus a
small remainder term, which is typically of orderd/n up to a possible logarithmic
factor. Except in particular settings (e.g.,Θ is a simplex andd ≥ √

n), it is known
that the convergence rated/n cannot be improved in a minimax sense (see [20],
and [21] for related results).

More formally, the target of the paper is to develop estimators f̂ for which the
excess risk is controlledin deviations, i.e., such that for an appropriate constant
κ > 0, for anyε > 0, with probability at least1− ε,

R(f̂)− R(f ∗) ≤ κ
d+ log(ε−1)

n
. (0.1)

Note that by integrating the deviations (using the identityEW =
∫ +∞
0

P(W >
t)dt which holds true for any nonnegative random variableW ), Inequality (0.1)
implies

ER(f̂)− R(f ∗) ≤ κ
d+ 1

n
. (0.2)

In this work, we do not assume that the function

f (reg) : x 7→ E[Y |X = x],

which minimizes the riskR among all possible measurable functions, belongs to
the modelF. So we might havef ∗ 6= f (reg) and in this case, bounds of the form

ER(f̂)− R(f (reg)) ≤ C[R(f ∗)−R(f (reg))] + κ
d

n
, (0.3)

with a constantC larger than1 do not even ensure thatER(f̂) tends toR(f ∗)
whenn goes to infinity. This kind of bounds withC > 1 have been developed
to analyze nonparametric estimators using linear approximation spaces, in which
case the dimensiond is a function ofn chosen so that the bias termR(f ∗) −
R(f (reg)) has the orderd/n of the estimation term (see [11] and references within).
Here we intend to assess the generalization ability of the estimator even when the
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model is misspecified (namely whenR(f ∗) > R(f (reg))). Moreover we do not
assume either thatY − f (reg)(X) andX are independent.

Notation. WhenΘ = R
d, the functionf ∗ and the spaceF will be written

f ∗
lin andFlin to emphasize thatF is the whole linear space spanned byϕ1, . . . , ϕd:

Flin = span{ϕ1, . . . , ϕd} and f ∗
lin ∈ argmin

f∈Flin

R(f).

The Euclidean norm will simply be written as‖ · ‖, and〈·, ·〉 will be its associated
inner product. We will consider the vector valued functionϕ : X → R

d defined
by ϕ(X) =

[
ϕk(X)

]d
k=1

, so that for anyθ ∈ Θ, we have

fθ(X) = 〈θ, ϕ(X)〉.

The Gram matrix is thed × d-matrixQ = E
[
ϕ(X)ϕ(X)T

]
, and its smallest and

largest eigenvalues will respectively be written asqmin andqmax. The empirical
risk of a functionf is

r(f) =
1

n

n∑

i=1

[
f(Xi)− Yi

]2

and forλ ≥ 0, the ridge regression estimator onF is defined byf̂ (ridge) = fθ̂(ridge)

with
θ̂(ridge) ∈ argmin

θ∈Θ
r(fθ) + λ‖θ‖2,

whereλ is some nonnegative real parameter. In the case whenλ = 0, the ridge
regressionf̂ (ridge) is nothing but the empirical risk minimizer̂f (erm). In the same
way, we introduce the optimal ridge function optimizing theexpected ridge risk:
f̃ = fθ̃ with

θ̃ ∈ argmin
θ∈Θ

{
R(fθ) + λ‖θ‖2

}
. (0.4)

Finally, letQλ = Q+ λI be the ridge regularization ofQ, whereI is the identity
matrix.

WHY SHOULD WE BE INTERESTED IN THIS TASK. There are three main rea-
sons. First we aim at a better understanding of the parametric linear least squares
method (classical textbooks can be misleading on this subject as we will point out
later), and intend to provide a non-asymptotic analysis of it.

Secondly, the task is central in nonparametric estimation for linear approxima-
tion spaces (piecewise polynomials based on a regular partition, wavelet expan-
sions, trigonometric polynomials. . . )

Thirdly, it naturally arises in two-stage model selection.Precisely, when fac-
ing the data, the statistician has often to choose several models which are likely to
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be relevant for the task. These models can be of similar structures (like embedded
balls of functional spaces) or on the contrary of very different nature (e.g., based
on kernels, splines, wavelets or on parametric approaches). For each of these
models, we assume that we have a learning scheme which produces a ’good’ pre-
diction function in the sense that it predicts as well as the best function of the
model up to some small additive term. Then the question is to decide on how
we use or combine/aggregate these schemes. One possible answer is to split the
data into two groups, use the first group to train the prediction function associated
with each model, and finally use the second group to build a prediction function
which is as good as (i) the best of the previously learnt prediction functions, (ii)
the best convex combination of these functions or (iii) the best linear combination
of these functions. This point of view has been introduced byNemirovski in [17]
and optimal rates of aggregation are given in [20] and references within. This pa-
per focuses more on the linear aggregation task (even if (ii)enters in our setting),
assuming implicitly here that the models are given in advance and are beyond our
control and that the goal is to combine them appropriately.

OUTLINE AND CONTRIBUTIONS. The paper is organized as follows. Section 1
is a survey on risk bounds in linear least squares. Theorems 1.3 and 1.5 are the
results which come closer to our target. Section 2 provides anew analysis of
the ridge estimator and the ordinary least squares estimator, and their variants.
Theorem 2.1 provides an asymptotic result for the ridge estimator while Theorem
2.2 gives a non asymptotic risk bound of the empirical risk minimizer, which is
complementary to the theorems put in the survey section. In particular, the result
has the benefit to hold for the ordinary least squares estimator and for heavy-
tailed outputs. We show quantitatively that the ridge penalty leads to an implicit
reduction of the input space dimension. Section 3 shows a nonasymptoticd/n
exponential deviation risk bound under weak moment conditions on the outputY
and on thed-dimensional input representationϕ(X). Section 4 presents stronger
results under boundedness assumption ofϕ(X). However the latter results are
concerned with a not easily computable estimator. Section 5gives risk bounds for
general loss functions from which the results of Section 4 are derived.

The main contribution of this paper is to show through a PAC-Bayesian anal-
ysis on truncated differences of losses that the output distribution does not need
to have bounded conditional exponential moments in order for the excess risk of
appropriate estimators to concentrate exponentially. Ourresults tend to say that
truncation leads to more robust algorithms. Local robustness to contamination
is usually invoked to advocate the removal of outliers, claiming that estimators
should be made insensitive to small amounts of spurious data. Our work leads
to a different theoretical explanation. The observed points having unusually large
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outputs when compared with the (empirical) variance shouldbe down-weighted
in the estimation of the mean, since they contain less information than noise. In
short, huge outputs should be truncated because of their lowsignal to noise ratio.

1. VARIANTS OF KNOWN RESULTS

1.1. ORDINARY LEAST SQUARES AND EMPIRICAL RISK MINIMIZATION. The
ordinary least squares estimator is the most standard method in this case. It mini-
mizes the empirical risk

r(f) =
1

n

n∑

i=1

[Yi − f(Xi)]
2,

among functions inFlin and produces

f̂ (ols) =

d∑

j=1

θ̂(ols)
j ϕj,

with θ̂(ols) = [θ̂(ols)
j ]dj=1 a column vector satisfying

XT X θ̂(ols) = XT Y, (1.1)

whereY = [Yj ]
n
j=1 andX = (ϕj(Xi))1≤i≤n,1≤j≤d. It is well-known that

• the linear system (1.1) has at least one solution, and in fact, the set of so-
lutions is exactly{X+ Y+u; u ∈ ker X}; whereX+ is the Moore-Penrose
pseudoinverse ofX and kerX is the kernel of the linear operatorX.

• X θ̂(ols) is the (unique) orthogonal projection of the vectorY ∈ R
n on the

image of the linear mapX;

• if supx∈XVar(Y |X = x) = σ2 < +∞, we have (see [11, Theorem 11.1])
for anyX1, . . . , Xn in X,

E

{
1

n

n∑

i=1

[
f̂ (ols)(Xi)− f (reg)(Xi)

]2
∣∣∣∣X1, . . . , Xn

}

− min
f∈Flin

1

n

n∑

i=1

[
f(Xi)− f (reg)(Xi)

]2 ≤ σ2 rank(X)
n

≤ σ2 d

n
, (1.2)

where we recall thatf (reg) : x 7→ E[Y |X = x] is the optimal regression
function, and that when this function belongs toFlin (i.e., f (reg) = f ∗

lin), the
minimum term in (1.2) vanishes;
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• from Pythagoras’ theorem for the (semi)normW 7→
√
EW 2 on the space

of the square integrable random variables,

R(f̂ (ols))− R(f ∗
lin)

= E
[
f̂ (ols)(X)− f (reg)(X)

∣∣Z1, . . . , Zn

]2 − E
[
f ∗

lin(X)− f (reg)(X)
]2
.

(1.3)

The analysis of the ordinary least squares often stops at this point in classical
statistical textbooks. (Besides, to simplify, the strong assumptionf (reg) = f ∗

lin

is often made.) This can be misleading since Inequality (1.2) does not imply a
d/n upper bound on the risk of̂f (ols). Nevertheless the following result holds [11,
Theorem 11.3].

THEOREM 1.1 If supx∈XVar(Y |X = x) = σ2 < +∞ and

‖f (reg)‖∞ = sup
x∈X

|f (reg)(x)| ≤ H

for someH > 0, then the truncated estimator̂f (ols)
H = (f̂ (ols) ∧H) ∨ −H satisfies

ER(f̂ (ols)
H ) − R(f (reg)) ≤ 8[R(f ∗

lin) − R(f (reg))] + κ
(σ2 ∨H2)d logn

n
(1.4)

for some numerical constantκ.

Using PAC-Bayesian inequalities, Catoni [8, Proposition 5.9.1] has proved a
different type of results on the generalization ability off̂ (ols).

THEOREM 1.2 LetF′ ⊂ Flin satisfying for some positive constantsa,M,M ′:

• there existsf0 ∈ F′ s.t. for anyx ∈ X,

E

{
exp
[
a
∣∣Y − f0(X)

∣∣
] ∣∣∣X = x

}
≤M.

• for anyf1, f2 ∈ F′, supx∈X |f1(x)− f2(x)| ≤ M ′.

LetQ = E
[
ϕ(X)ϕ(X)T

]
and Q̂ =

[
1
n

∑n
i=1 ϕ(Xi)ϕ(Xi)

T
]

be respectively the
expected and empirical Gram matrices. IfdetQ 6= 0, then there exist positive
constantsC1 andC2 (depending only ona,M andM ′) such that with probability
at least1− ε, as soon as

{
f ∈ Flin : r(f) ≤ r(f̂ (ols)) + C1

d

n

}
⊂ F′, (1.5)

we have

R(f̂ (ols))− R(f ∗
lin) ≤ C2

d+ log(ε−1) + log(det Q̂
detQ

)

n
.
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This result can be understood as follows. Let us assume we have some prior
knowledge suggesting thatf ∗

lin belongs to the interior of a setF′ ⊂ Flin (e.g.,
a bound on the coefficients of the expansion off ∗

lin as a linear combination of
ϕ1, . . . , ϕd). It is likely that (1.5) holds, and it is indeed proved in Catoni [8,
section 5.11] that the probability that it does not hold goesto zero exponentially
fast withn in the case whenF′ is a Euclidean ball. If it is the case, then we know
that the excess risk is of orderd/n up to the unpleasant ratio of determinants,
which, fortunately, almost surely tends to1 asn goes to infinity.

By usinglocalizedPAC-Bayes inequalities introduced in Catoni [7, 9], one can
derive from Inequality (6.9) and Lemma 4.1 of Alquier [1] thefollowing result.

THEOREM 1.3 Let qmin be the smallest eigenvalue of the Gram matrixQ =
E
[
ϕ(X)ϕ(X)T

]
. Assume that there exist a functionf0 ∈ Flin and positive con-

stantsH andC such that
‖f ∗

lin − f0‖∞ ≤ H.

and |Y | ≤ C almost surely.
Then for an appropriate randomized estimator requiring theknowledge off0,

H andC, for any ε > 0 with probability at least1 − ε w.r.t. the distribution
generating the observationsZ1, . . . , Zn and the randomized prediction function
f̂ , we have

R(f̂)− R(f ∗
lin) ≤ κ(H2 + C2)

d log(3q−1
min) + log((logn)ε−1)

n
, (1.6)

for someκ not depending ond andn.

Using the result of [8, Section 5.11], one can prove that Alquier’s result still
holds for f̂ = f̂ (ols), but with κ also depending on the determinant of the prod-
uct matrixQ. The log[log(n)] factor is unimportant and could be removed in
the special case quoted here (it comes from a union bound on a grid of pos-
sible temperature parameters, whereas the temperature could be set here to a
fixed value). The result differs from Theorem 1.2 essentially by the fact that
the ratio of the determinants of the empirical and expected product matrices has
been replaced by the inverse of the smallest eigenvalue of the quadratic form
θ 7→ R(

∑d
j=1 θjϕj) − R(f ∗

lin). In the case when the expected Gram matrix is
known, (e.g., in the case of a fixed design, and also in the slightly different context
of transductive inference), this smallest eigenvalue can be set to one by choosing
the quadratic formθ 7→ R(fθ) − R(f ∗

lin) to define the Euclidean metric on the
parameter space.

Localized Rademacher complexities [13, 4] allow to prove the following prop-
erty of the empirical risk minimizer.
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THEOREM 1.4 Assume that the input representationϕ(X), the set of parameters
and the outputY are almost surely bounded, i.e., for some positive constantsH
andC,

sup
θ∈Θ

‖θ‖ ≤ 1

ess sup ‖ϕ(X)‖ ≤ H,

and
|Y | ≤ C a.s..

Let ν1 ≥ · · · ≥ νd be the eigenvalues of the Gram matrixQ = E
[
ϕ(X)ϕ(X)T

]
.

The empirical risk minimizer satisfies for anyε > 0, with probability at least1−ε:

R(f̂ (erm))− R(f ∗) ≤ κ(H + C)2
min
0≤h≤d

(
h+

√
n

(H+C)2

∑
i>h νi

)
+ log(ε−1)

n

≤ κ(H + C)2
rank(Q) + log(ε−1)

n
,

whereκ is a numerical constant.

PROOF. The result is a modified version of Theorem 6.7 in [4] appliedto the linear
kernelk(u, v) = 〈u, v〉/(H+C)2. Its proof follows the same lines as in Theorem
6.7mutatis mutandi: Corollary 5.3 and Lemma 6.5 should be used as intermediate
steps instead of Theorem 5.4 and Lemma 6.6, the nonzero eigenvalues of the
integral operator induced by the kernel being the nonzero eigenvalues ofQ. �

When we know that the target functionf ∗
lin is inside someL∞ ball, it is natural

to consider the empirical risk minimizer on this ball. This allows to compare
Theorem 1.4 to excess risk bounds with respect tof ∗

lin .
Finally, from the work of Birgé and Massart [5], we may derive the following

risk bound for the empirical risk minimizer on aL∞ ball (see Appendix B).

THEOREM 1.5 Assume thatF has a diameterH for L∞-norm, i.e., for anyf1, f2
in F, supx∈X |f1(x) − f2(x)| ≤ H and there exists a functionf0 ∈ F satisfying
the exponential moment condition:

for anyx ∈ X, E

{
exp
[
A−1

∣∣Y − f0(X)
∣∣
] ∣∣∣X = x

}
≤M, (1.7)

for some positive constantsA andM . Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖∑d
j=1 θjφj‖2∞
‖θ‖2∞

where the infimum is taken with respect to all possible orthonormal basis ofF for
the dot product〈f1, f2〉 = Ef1(X)f2(X) (when the setF admits no basis with
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exactlyd functions, we set̃B = +∞). Then the empirical risk minimizer satisfies
for anyε > 0, with probability at least1− ε:

R(f̂ (erm))− R(f ∗) ≤ κ(A2 +H2)
d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

whereκ is a positive constant depending only onM .

This result comes closer to what we are looking for: it gives exponential devi-
ation inequalities of order at worsed log(n/d)/n. It shows that, even if the Gram
matrixQ has a very small eigenvalue, there is an algorithm satisfying a conver-
gence rate of orderd log(n/d)/n. With this respect, this result is stronger than
Theorem 1.3. However there are cases in which the smallest eigenvalue ofQ is
of order1, while B̃ is large (i.e.,B̃ ≫ n). In these cases, Theorem 1.3 does not
contain the logarithmic factor which appears in Theorem 1.5.

1.2. PROJECTION ESTIMATOR. When the input distribution is known, an alter-
native to the ordinary least squares estimator is the following projection estima-
tor. One first finds an orthonormal basis ofFlin for the dot product〈f1, f2〉 =
Ef1(X)f2(X), and then uses the projection estimator on this basis. Specifically,
if φ1, . . . , φd form an orthonormal basis ofFlin , then the projection estimator on
this basis is:

f̂ (proj) =
d∑

j=1

θ̂(proj)
j φj ,

with

θ̂(proj) =
1

n

n∑

i=1

Yiφj(Xi).

Theorem 4 in [20] gives a simple bound of orderd/n on the expected excess risk
ER(f̂ (proj))− R(f ∗

lin).

1.3. PENALIZED LEAST SQUARES ESTIMATOR. It is well established that pa-
rameters of the ordinary least squares estimator are numerically unstable, and that
the phenomenon can be corrected by adding anL2 penalty ([15, 18]). This solu-
tion has been labeled ridge regression in statistics ([12]), and consists in replacing
f̂ (ols) by f̂ (ridge) = fθ̂(ridge) with

θ̂(ridge) ∈ argmin
θ∈Rd

{
r(fθ) + λ

d∑

j=1

θ2j

}
,

whereλ is a positive parameter. The typical value ofλ should be small to avoid
excessive shrinkage of the coefficients, but not too small inorder to make the
optimization task numerically more stable.
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Risk bounds for this estimator can be derived from general results concerning
penalized least squares on reproducing kernel Hilbert spaces ([6]), but as it is
shown in Appendix C, this ends up with complicated results having the desired
d/n rate only under strong assumptions.

Another popular regularizer is theL1 norm. This procedure is known as Lasso
[19] and is defined by

θ̂(lasso)∈ argmin
θ∈Rd

{
r(fθ) + λ

d∑

j=1

|θj|
}
.

As theL2 penalty, theL1 penalty shrinks the coefficients. The difference is that
for coefficients which tend to be close to zero, the shrinkagemakes them equal to
zero. This allows to select relevant variables (i.e., find the j’s such thatθ∗j 6= 0).
If we assume that the regression functionf (reg) is a linear combination of only
d∗ ≪ d variables/functionsϕj ’s, the typical result is to prove that the risk of the
Lasso estimator forλ of order

√
(log d)/n is of order(d∗ log d)/n. Since this

quantity is much smaller thand/n, this makes a huge improvement (provided
that the sparsity assumption is true). This kind of results usually requires strong
conditions on the eigenvalues of submatrices ofQ, essentially assuming that the
functionsϕj are near orthogonal. We do not know to which extent these conditions
are required. However, if we do not consider the specific algorithm of Lasso, but
the model selection approach developed in [1], one can change these conditions
into a single condition concerning only the minimal eigenvalue of the submatrix of
Q corresponding to relevant variables. In fact, we will see that even this condition
can be removed.

1.4. CONCLUSION OF THE SURVEY. Previous results clearly leave room to im-
provements. The projection estimator requires the unrealistic assumption that the
input distribution is known, and the result holds only in expectation. Results using
L1 orL2 regularizations require strong assumptions, in particular on the eigenval-
ues of (submatrices of)Q. Theorem 1.1 provides a(d logn)/n convergence rate
only when theR(f ∗

lin) − R(f (reg)) is at most of order(d logn)/n. Theorem 1.2
gives a different type of guarantee: thed/n is indeed achieved, but the random
ratio of determinants appearing in the bound may raise some eyebrows and forbid
an explicit computation of the bound and comparison with other bounds. Theorem
1.3 seems to indicate that the rate of convergence will be degraded when the Gram
matrixQ is unknown and ill-conditioned. Theorem 1.4 does not put anyassump-
tion onQ to reach thed/n rate, but requires particular boundedness constraints
on the parameter set, the input vectorϕ(X) and the output. Finally, Theorem
1.5 comes closer to what we are looking for. Yet there is stillan unwanted loga-

12



rithmic factor, and the result holds only when the output hasuniformly bounded
conditional exponential moments, which as we will show is not necessary.

2. RIDGE REGRESSION AND EMPIRICAL RISK MINIMIZATION

We recall the definition

F =
{
fθ =

d∑

j=1

θjϕj; (θ1, . . . , θd) ∈ Θ
}
,

whereΘ is a closed convex set, not necessarily bounded (so thatΘ = R
d is

allowed). In this section, we provide exponential deviation inequalities for the
empirical risk minimizer and the ridge regression estimator onF under weak con-
ditions on the tail of the output distribution.

The most general theorem which can be obtained from the routefollowed in
this section is Theorem 6.5 (page 46) stated along with the proof. It is expressed
in terms of a series of empirical bounds. The first deduction we can make from
this technical result is of asymptotic nature. It is stated under weak hypotheses,
taking advantage of the weak law of large numbers.

THEOREM 2.1 For λ ≥ 0, let f̃ be its associated optimal ridge function (see
(0.4)). Let us assume that

E
[
‖ϕ(X)‖4

]
< +∞, (2.1)

and E

{
‖ϕ(X)‖2

[
f̃(X)− Y

]2}
< +∞. (2.2)

Let ν1, . . . , νd be the eigenvalues of the Gram matrixQ = E
[
ϕ(X)ϕ(X)T

]
, and

letQλ = Q+λI be the ridge regularization ofQ. Let us define theeffective ridge
dimension

D =

d∑

i=1

νi
νi + λ

1(νi > 0) = Tr
[
(Q+ λI)−1Q

]
= E

[
‖Q−1/2

λ ϕ(X)‖2
]
.

Whenλ = 0,D is equal to the rank ofQ and is otherwise smaller. For anyε > 0,
there isnε, such that for anyn ≥ nε, with probability at least1− ε,

R(f̂ (ridge)) + λ‖θ̂(ridge)‖2

≤ min
θ∈Θ

{
R(fθ) + λ‖θ‖2

}

+
30E

{
‖Q−1/2

λ ϕ(X)‖2
[
f̃(X)− Y

]2}

E
{
‖Q−1/2

λ ϕ(X)‖2
}

D

n

13



+ 1000 sup
v∈Rd

E

[
〈v, ϕ(X)〉2

[
f̃(X)− Y

]2]

E(〈v, ϕ(X)〉2) + λ‖v‖2
log(3ε−1)

n

≤ min
θ∈Θ

{
R(fθ) + λ‖θ‖2

}

+ ess supE
{
[Y − f̃(X)]2

∣∣X
} 30D + 1000 log(3ε−1)

n

PROOF. See Section 6.2 (page 40).�
This theorem shows that the ordinary least squares estimator (obtained when

Θ = R
d andλ = 0), as well as the empirical risk minimizer on any closed

convex set, asymptotically reaches ad/n speed of convergence under very weak
hypotheses. It shows also the regularization effect of the ridge regression. There
emerges aneffective dimensionD, where the ridge penalty has a threshold effect
on the eigenvalues of the Gram matrix.

On the other hand, the weakness of this result is its asymptotic nature :nε

may be arbitrarily large under such weak hypotheses, and this shows even in the
simplest case of the estimation of the mean of a real valued random variable by its
empirical mean (which is the case whend = 1 andϕ(X) ≡ 1).

Let us now give some non asymptotic rate under stronger hypotheses and for
the empirical risk minimizer (i.e.,λ = 0).

THEOREM 2.2 Letd′ = rank(Q). Assume that

E
{
[Y − f ∗(X)]4

}
< +∞

and
B = sup

f∈span{ϕ1,...,ϕd}−{0}
‖f‖2∞/E[f(X)2] < +∞.

Consider the (unique) empirical risk minimizerf̂ (erm) = fθ̂(erm) : x 7→ 〈θ̂(erm), ϕ(x)〉
onF for whichθ̂(erm) ∈ span{ϕ(X1), . . . , ϕ(Xn)}4. For any values ofε andn such
that2/n ≤ ε ≤ 1 and

n > 1280B2

[
3Bd′ + log(2/ε) +

16B2d′2

n

]
,

with probability at least1− ε,

R(f̂ (erm))−R(f ∗)

≤ 1920B
√
E[Y − f ∗(X)]4

[
3Bd′ + log(2ε−1)

n
+

(
4Bd′

n

)2
]
.

4WhenF = Flin , we haveθ̂(erm) = X+ Y, with X = (ϕj(Xi))1≤i≤n,1≤j≤d, Y = [Yj ]
n
j=1 and

X+ is the Moore-Penrose pseudoinverse ofX.
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PROOF. See Section 6.2 (page 40).�
It is quite surprising that the traditional assumption of uniform boundedness

of the conditional exponential moments of the output can be replaced by a simple
moment condition for reasonable confidence levels (i.e.,ε ≥ 2/n). For high-
est confidence levels, things are more tricky since we need tocontrol with high
probability a term of order[r(f ∗) − R(f ∗)]d/n (see Theorem 6.6). The cost to
pay to get the exponential deviations under only a fourth-order moment condition
on the output is the appearance of the geometrical quantityB as a multiplicative
factor, as opposed to Theorems 1.3 and 1.5. More precisely, from [5, Inequality
(3.2)], we haveB ≤ B̃ ≤ Bd, but the quantityB̃ appears inside a logarithm in
Theorem 1.5. However, Theorem 1.5 is restricted to the empirical risk minimizer
on aL∞ ball, while the result here is valid for any closed convex setΘ, and in
particular applies to the ordinary least squares estimator.

Theorem 2.2 is still limited in at least three ways: it applies only to uniformly
boundedϕ(X), the output needs to have a fourth moment, and the confidence
level should be as great asε ≥ 2/n. These limitations will be addressed in the
next sections by considering more involved algorithms.

3. A MIN -MAX ESTIMATOR FOR ROBUST ESTIMATION

3.1. THE MIN-MAX ESTIMATOR AND ITS THEORETICAL GUARANTEE. This
section provides an alternative to the empirical risk minimizer with non asymp-
totic exponential risk deviations of orderd/n for any confidence level. Moreover,
we will assume only a second order moment condition on the output and cover
the case of unbounded inputs, the requirement onϕ(X) being only a finite fourth
order moment. On the other hand, we assume that the setΘ of the vectors of co-
efficients is bounded. The computability of the proposed estimator and numerical
experiments are discussed at the end of the section.

Let α > 0, λ ≥ 0, and consider the truncation function:

ψ(x) =





− log
(
1− x+ x2/2

)
0 ≤ x ≤ 1,

log(2) x ≥ 1,

−ψ(−x) x ≤ 0,

For anyθ, θ′ ∈ Θ, introduce

D(θ, θ′) = nαλ(‖θ‖2 − ‖θ′‖2) +
n∑

i=1

ψ
(
α
[
Yi − fθ(Xi)

]2 − α
[
Yi − fθ′(Xi)

]2)
.

We recallf̃ = fθ̃ with θ̃ ∈ argminθ∈Θ
{
R(fθ) + λ‖θ‖2

}
, and the effective ridge
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dimension

D =
d∑

i=1

νi
νi + λ

1(νi > 0) = Tr
[
(Q+ λI)−1Q

]
= E

[
‖Q−1/2

λ ϕ(X)‖2
]
.

Let us assume in this section that for anyj ∈ {1, . . . , d},

E
{
ϕj(X)2[Y − f̃(X)]2

}
< +∞, (3.1)

and
E
[
ϕ4
j (X)

]
< +∞. (3.2)

Define

S = {f ∈ Flin : E[f(X)2] = 1}, (3.3)

σ =
√
E
{
[Y − f̃(X)]2

}
=

√
R(f̃), (3.4)

χ = max
f∈S

√
E[f(X)4], (3.5)

κ =

√
E
{
[ϕ(X)TQ−1

λ ϕ(X)]2
}

E
[
ϕ(X)TQ−1

λ ϕ(X)
] , (3.6)

κ′ =

√
E
{
[Y − f̃(X)]4

}

E
{
[Y − f̃(X)]2

} =

√
E
{
[Y − f̃(X)]4

}

σ2
, (3.7)

T = max
θ∈Θ,θ′∈Θ

√
λ‖θ − θ′‖2 + E[fθ(X)− fθ′(X)]2. (3.8)

THEOREM 3.1 Let us assume that(3.1)and(3.2)hold. For some numerical con-
stantsc andc′, for

n > cκχD,

by taking

α =
1

2χ
[
2
√
κ′σ +

√
χT
]2
(
1− cκχD

n

)
, (3.9)

for any estimatorfθ̂ satisfyingθ̂ ∈ Θ a.s., for anyε > 0 and anyλ ≥ 0, with
probability at least1− ε, we have

R(fθ̂) + λ‖θ̂‖2 ≤ min
θ∈Θ

{
R(fθ) + λ‖θ‖2

}

+
1

nα

(
max
θ1∈Θ

D(θ̂, θ1)− inf
θ∈Θ

max
θ1∈Θ

D(θ, θ1)

)

+
cκκ′Dσ2

n
+

8χ
( log(ε−1)

n
+ c′κ2D2

n2

)[
2
√
κ′σ +

√
χT
]2

1− cκχD
n

.
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PROOF. See Section 6.3 (page 50).�
By choosing an estimator such that

max
θ1∈Θ

D(θ̂, θ1) < inf
θ∈Θ

max
θ1∈Θ

D(θ, θ1) + σ2D

n
,

Theorem 3.1 provides a non asymptotic bound for the excess (ridge) risk with a
D/n convergence rate and an exponential tail even when neither the outputY nor
the input vectorϕ(X) has exponential moments. This stronger non asymptotic
bound compared to the bounds of the previous section comes atthe price of re-
placing the empirical risk minimizer by a more involved estimator. Section 3.3
provides a way of computing it approximately.

3.2. THE VALUE OF THE UNCENTERED KURTOSIS COEFFICIENTχ. Let us
discuss here the value of constantχ, which plays a critical role in the speed of
convergence of our bound. With the convention0

0
= 0, we have

χ = sup
u∈Rd

E
(
〈u, ϕ(X)〉4

)1/2

E
(
〈u, ϕ(X)〉2

) .

Let us first examine the case whenϕ1(X) ≡ 1 and
[
ϕj(X), j = 2, . . . , d

]
are

independent. To computeχ, we can assume without loss of generality that they
are centered and of unit variance, which will be the case after Q−1/2 is applied to
them. In this situation, introducing

χ∗ = max
j=1,...,d

E
[
ϕj(X)4

]1/2

E
[
ϕj(X)2

] ,

we see that for anyu ∈ R
d with ‖u‖ = 1, we have

E
(
〈u, ϕ(X)〉4

)
=

d∑

i=1

u4iE(ϕi(X)4) + 6
∑

1≤i<j≤d

u2iu
2
jE
[
ϕi(X)2

]
E
[
ϕj(X)2

]

+ 4
d∑

i=2

u1u
3
iE
[
ϕi(X)3

]

≤ χ2
∗

d∑

i=1

u4i + 6
∑

i<j

u2iu
2
j + 4χ3/2

∗

d∑

i=2

|u1ui|3

≤ sup
u∈Rd

+
,‖u‖=1

(
χ2
∗ − 3

) d∑

i=1

u4i + 3

(
d∑

i=1

u2i

)2

+ 4χ3/2
∗ u1

d∑

i=2

u3i
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≤ 33/2

4
χ3/2
∗ +

{
χ2
∗, χ2

∗ ≥ 3,

3 + χ2
∗
−3
d
, 1 ≤ χ2

∗ < 3.

Thus in this case

χ ≤




χ∗

(
1 + 33/2

4
√
χ∗

)1/2
, χ∗ ≥

√
3,

(
3 + 33/2

4
χ
3/2
∗ + χ2

∗
−3
d

)1/2
, 1 ≤ χ∗ <

√
3.

If moreover the random variablesϕj(X) are not skewed, in the sense that
E
[
ϕj(X)3

]
= 0, j = 2, . . . , d, then




χ = χ∗, χ∗ ≥

√
3,

χ ≤
(
3 + χ2

∗
−3
d

)1/2
, 1 ≤ χ∗ <

√
3.

In particular in the case whenϕj(X) are Gaussian variables,χ = χ∗ =
√
3 (as

could be seen in a more straightforward way, since in this case 〈u, ϕ(X)〉 is also
Gaussian !).

In particular, this situation arises in compress sensing using random projec-
tions on Gaussian vectors. Specifically, assume that we wantto recover a signal
f ∈ R

M that we know to be well approximated by a linear combination of d
basis vectorsf1, . . . , fd. We measuren ≪ M projections of the signalf on
i.i.d. M-dimensional standard normal random vectorsX1, . . . , Xn: Yi = 〈f,Xi〉,
i = 1, . . . , n. Then, recovering the coefficientθ1, . . . , θd such thatf =

∑d
j=1 θjfj

is associated to the least squares regression problemY ≈ ∑d
j=1 θjϕj(X), with

ϕj(x) = 〈fj , x〉, andX having aM-dimensional standard normal distribution.
Let us discuss now a bound which is suited to the case when we are using a

partial basis of regression functions. The functionsϕj are usually bounded (think
of the Fourier basis, wavelet bases, histograms, splines ...).

Let us assume that for some positive constantA and anyu ∈ R
d,

‖u‖ ≤ AE
[
〈u, ϕ(X)〉2

]1/2
.

This appears as some stability property of the partial basisϕj with respect to the
L2-norm, since it can also be written as

d∑

j=1

u2j ≤ A2
E

[( d∑

j=1

ujϕj(X)

)2
]
, u ∈ R

d.

This will be the case ifϕj is nearly orthogonal in the sense that

E
[
ϕj(X)2

]
≥ 1, and

∣∣∣E
[
ϕj(X)ϕk(X)

]∣∣∣ ≤ 1− A2

d− 1
.
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In this situation, by using

E
[
〈u, ϕ(X)〉4

]
≤ ‖u‖2 ess sup‖ϕ(X)‖2E

[
〈u, ϕ(X)〉2

]
,

one can check that

χ ≤ A

∥∥∥∥∥

( d∑

j=1

ϕ2
j

)1/2
∥∥∥∥∥
∞

.

Therefore, ifX is the uniform random variable on the unit interval andϕj, j =
1, . . . , d are any functions from the Fourier basis (meaning that they are of the
form

√
2 cos(2kπX) or

√
2 sin(2kπX)), thenχ ≤

√
2d (because they form an

orthogonal system, so thatA = 1).
On the other hand, a localized basis like the evenly spaced histogram basis of

the unit interval
ϕj(x) =

√
d1
(
x ∈

[
(j − 1)/d, j/d

[)
,

will also be such thatχ ≤
√
d. Similar computations could be made for other

local bases, like wavelet bases. Note that whenχ is of order
√
d, Theorem 3.1

means that the excess risk of the min-max truncated estimator f̂ is upper bounded
byC d

n
provided thatn ≥ Cd

√
d for a large enough constantC.

Let us discuss the case whenX is some observed random variable whose
distribution is only approximately known. Namely let us assume that(ϕj)

d
j=1 is

some basis of functions inL2

[
P̃
]

with some known coefficient̃χ, whereP̃ is an
approximation of the true distribution ofX in the sense that the density of the true
distributionP of X with respect to the distributioñP is in the range(η−1/2, η). In
this situation, the coefficientχ satisfies the inequalityχ ≤ ηχ̃. Indeed

EX∼P

[
〈u, ϕ(X)〉4

]
≤ ηEX∼P̃

[
〈u, ϕ(X)〉4

]

≤ ηχ̃2
EX∼P̃

[
〈u, ϕ(X)〉2

]2 ≤ η2χ̃2
EX∼P

[
〈u, ϕ(X)〉2

]2
.

Let us conclude this section with some scenario for the case whenX is a
real-valued random variable. Let us consider the distribution function ofP̃

F̃ (x) = P̃(X ≤ x).

Then, if P̃ has no atoms, the distribution of̃F (X) is uniform in (0, 1). Starting
from some suitable partial basis(ϕj)

d
j=1 of L2

[
(0, 1),U

]
whereU is the uniform

distribution, like the ones discussed above, we can build a basis for our problem
as

ϕ̃j(X) = ϕj

[
F̃ (X)

]
.

Moreover, ifP is absolutely continuous with respect tõP with densityg, then
P◦F̃−1 is absolutely continuous with respect toP̃◦F̃−1, with densityg◦F̃−1, and

19



of course, the fact thatg takes values in(η−1/2, η) implies the same property for
g◦F̃−1. Thus, ifχ̃ is the coefficient corresponding toϕj(U) whenU is the uniform
random variable on the unit interval, then the true coefficient χ (corresponding to
ϕ̃j(X)) will be such thatχ ≤ ηχ̃.

3.3. COMPUTATION OF THE ESTIMATOR. For ease of description of the algo-
rithm, we will writeX for ϕ(X), which is equivalent to considering without loss
of generality that the input space isRd and that the functionsϕ1, . . . ,ϕd are the
coordinate functions. Therefore, the functionfθ maps an inputx to 〈θ, x〉.

Let us introduce
Li(θ) = α

(
〈θ,Xi〉 − Yi

)2
.

For any subset of indicesI ⊂ {1, . . . , n}, let us define

rI(θ) = λ‖θ‖2 + 1

α|I|
∑

i∈I
Li(θ).

We suggest the following heuristics to compute an approximation of

argmin
θ∈Θ

sup
θ′∈Θ

D(θ, θ′).

• Start fromI1 = {1, . . . , n} with the empirical risk minimizer

θ̂1 = argmin
Rd

rI1 = θ̂(erm).

• At step numberk, compute

Q̂k =
1

|Ik|
∑

i∈Ik

XiX
T
i .

• Consider the sets

Jk,1(η) =

{
i ∈ Ik : Li(θ̂k)X

T
i Q̂

−1
k Xi

(
1 +

√
1 +

[
Li(θ̂k)

]−1
)2

< η

}
,

whereQ̂−1
k is the (pseudo-)inverse of the matrix̂Qk.

• Let us define

θk,1(η) = argmin
Rd

rJk,1(η),

Jk,2(η) =
{
i ∈ Ik :

∣∣Li

(
θk,1(η)

)
− Li

(
θ̂k
)∣∣ ≤ 1

}
,
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θk,2(η) = argmin
Rd

rJk,2(η),

(ηk, ℓk) = arg min
η∈R+,ℓ∈{1,2}

max
j=1,...,k

D
(
θk,ℓ(η), θ̂j

)
,

Ik+1 = Jk,ℓk(ηk),

θ̂k+1 = θk,ℓk(ηk).

• Stop when
max

j=1,...,k
D(θ̂k+1, θ̂j) ≥ 0,

and set̂θ = θ̂k as the final estimator of̃θ.

Note that there will be at mostn steps, sinceIk+1  Ik and in practice much less
in this iterative scheme. Let us give some justification for this proposal. Let us
notice first that

D(θ + h, θ) = nαλ(‖θ + h‖2 − ‖θ‖2)

+

n∑

i=1

ψ
(
α
[
2〈h,Xi〉

(
〈θ,Xi〉 − Yi

)
+ 〈h,Xi〉2

])
.

Hopefully, θ̃ = argminθ∈Rd

(
R(fθ) + λ‖θ‖2

)
is in some small neighbourhood of

θ̂k already, according to the distance defined byQ ≃ Q̂k. So we may try to look
for improvements of̂θk by exploring neighbourhoods of̂θk of increasing sizes
with respect to some approximation of the relevant norm‖θ‖2Q = E

[
〈θ,X〉2

]
.

Since the truncation functionψ is constant on(−∞,−1] and [1,+∞), the
map θ 7→ D(θ, θ̂k) induces a decomposition of the parameter space into cells
corresponding to different setsI of examples. Indeed, such a setI is associated
to the setCI of θ such thatLi(θ) − Li(θ̂k) < 1 if and only if i ∈ I. Although
this may not be the case, we will do as if the mapθ 7→ D(θ, θ̂k) restricted to the
cell CI reached its minimum at some interior point ofCI , and approximates this
minimizer by the minimizer ofrI .

The idea is to remove first the examples which will become inactive in the
closest cells to the current estimateθ̂k. The cells for which the contribution of
example numberi is constant are delimited by at most four parallel hyperplanes.

It is easy to see that the square of the inverse of the distanceof θ̂k to the closest
of these hyperplanes is equal to

1

α
XT

i Q̂
−1
k XiLi(θ̂k)

(
1 +

√
1 +

1

Li(θ̂k)

)2

.
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Indeed, this distance is the infimum of‖Q̂1/2
k h‖, whereh is a solution of

〈h,Xi〉2 + 2〈h,Xi〉
(
〈θ̂k, Xi〉 − Yi

)
=

1

α
.

It is computed by consideringh of the formh = ξ‖Q̂−1/2
k Xi‖−1Q̂−1

k Xi and solv-
ing an equation of order two inξ.

This explains the proposed choice ofJk,1(η). Then a first estimateθk,1(η) is
computed on the basis of this reduced sample, and the sample is readjusted to
Jk,2(η) by checking which constraints are really activated in the computation of
D(θk,1(η), θ̂k). The estimated parameter is then readjusted taking into account
the readjusted sample (this could as a variant be iterated more than once). Now
that we have some new candidatesθk,ℓ(η), we check the minimax property against
them to electIk+1 andθ̂k+1. Since we did not check the minimax property against
the whole parameter setΘ = R

d, we have no theoretical warranty for this simpli-
fied algorithm. Nonetheless, similar computations to what we did could prove that
we are close to solvingminj=1,...,k R(fθ̂j), since we checked the minimax property

on the reduced parameter set{θ̂j , j = 1, . . . , k}. Thus the proposed heuristics is
capable of improving on the performance of the ordinary least squares estimator,
while being guaranteed not to degrade its performance significantly.

3.4. SYNTHETIC EXPERIMENTS. In Section 3.4.1, we detail the three kinds of
noises we work with. Then, Sections 3.4.2, 3.4.3 and 3.4.4 describe the three types
of functional relationships between the input, the output and the noise involved in
our experiments. A motivation for choosing these input-output distributions was
the ability to compute exactly the excess risk, and thus to compare easily estima-
tors. Section 3.4.5 provides details about the implementation, its computational
efficiency and the main conclusions of the numerical experiments. Figures and
tables are postponed to Appendix E.

3.4.1. Noise distributions.In our experiments, we consider three types of noise
that are centered and with unit variance:

• the standard Gaussian noise:W ∼ N(0, 1),

• a heavy-tailed noise defined by:W = sign(V )/|V |1/q, with V ∼ N(0, 1) a
standard Gaussian random variable andq = 2.01 (the real numberq is taken
strictly larger than2 as forq = 2, the random variableW would not admit
a finite second moment).

• a mixture of a Dirac random variable with a low-variance Gaussian ran-
dom variable defined by: with probabilityp, W =

√
(1− ρ)/p, and with
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probability1− p,W is drawn from

N

(
−
√
p(1− ρ)

1− p
,

ρ

1− p
− p(1− ρ)

(1− p)2

)
.

The parameterρ ∈ [p, 1] characterizes the part of the variance ofW ex-
plained by the Gaussian part of the mixture. Note that this noise admits
exponential moments, but forn of order1/p, the Dirac part of the mixture
generates low signal to noise points.

3.4.2. Independent normalized covariates (INC(n, d)). In INC(n, d), the input-
output pair is such that

Y = 〈θ∗, X〉+ σW,

where the components ofX are independent standard normal distributions,θ∗ =
(10, . . . , 10)T ∈ R

d, andσ = 10.

3.4.3. Highly correlated covariates (HCC(n, d)). In HCC(n, d), the input-output
pair is such that

Y = 〈θ∗, X〉+ σW,

whereX is a multivariate centered normal Gaussian with covariancematrix Q
obtained by drawing a(d, d)-matrixA of uniform random variables in[0, 1] and
by computingQ = AAT , θ∗ = (10, . . . , 10)T ∈ R

d, andσ = 10. So the only dif-
ference with the setting of Section 3.4.2 is the correlationbetween the covariates.

3.4.4. Trigonometric series (TS(n, d)). LetX be a uniform random variable on
[0, 1]. Let d be an even number. Let

ϕ(X) =
(
cos(2πX), . . . , cos(dπX), sin(2πX), . . . , sin(dπX)

)T
.

In TS(n, d), the input-output pair is such that

Y = 20X2 − 10X − 5

3
+ σW,

with σ = 10. One can check that this implies

θ∗ =

(
20

π2
, . . . ,

20

π2(d
2
)2
,−10

π
, . . . ,− 10

π(d
2
)

)T

∈ R
d.

3.4.5. Experiments.

23



Choice of the parameters and implementation details. Our min-max trun-
cated algorithm has two parametersα andλ. In the subsequent experiments, we
set the ridge parameterλ to the natural default choice for it:λ = 0. For the trun-
cation parameterα, according to our analysis (see (3.9)), it roughly should beof
order1/σ2 up to kurtosis coefficients. By using the ordinary least squares estima-
tor, we roughly estimate this value, and test values ofα in a geometric grid (of8
points) around it (with ratio3). Cross-validation can be used to select the finalα.
Nevertheless, it is computationally expensive and is significantly outperformed in
our experiments by the following simple procedure: start with the smallestα in
the geometric grid and increase it as long asθ̂ = θ1, that is as long as we stop at
the end of the first iteration and output the empirical risk minimizer.

To computeθk,1(η) or θk,2(η), one needs to determine a least squares estimate
(for a modified sample). To reduce the computational burden,we do not want to
test all possible values ofη (note that there are at mostn values leading to different
estimates). Our experiments show that testing only three levels ofη is sufficient.
Precisely, we sort the quantity

Li(θ̂k)X
T
i Q̂

−1
k Xi

(
1 +

√
1 +

[
Li(θ̂k)

]−1
)2

by decreasing order and considerη being the first,5-th and25-th value of the
ordered list. Overall, in our experiments, the computational complexity is approx-
imately fifty times larger than the one of computing the ordinary least squares
estimator.

Results. The tables and figures have been gathered in Appendix E. Tables 1 and
2 give the results for the mixture noise. Tables 3, 4 and 5 provide the results for
the heavy-tailed noise and the standard Gaussian noise. Each line of the tables has
been obtained after1000 generations of the training set. These results show that
the min-max truncated estimator is often equal tof̂ (erm), while it ensures impres-
sive consistent improvements when it differs from̂f (erm). In this latter case, the
number of points that are not considered inf̂ , i.e. the number of points with low
signal to noise ratio, varies a lot from1 to 150 and is often of order30. Note that
not only the points that we expect to be considered as outliers (i.e. very large out-
put points) are erased, and that these points seem to be takenout by local groups:
see Figures1 and2 in which the erased points are marked by surrounding circles.

Besides, the heavier the noise tail is (and also the larger the variance of the
noise is), the more often the truncation modifies the initialordinary least squares
estimator, and the more improvements we get from the min-maxtruncated es-
timator, which also becomes much more robust than the ordinary least squares
estimator (see the confidence intervals in the tables).
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4. A SIMPLE TIGHT RISK BOUND FOR A SOPHISTICATEDPAC-BAYES

ALGORITHM

A disadvantage of the min-max estimator proposed in the previous section is
that its theoretical guarantee depends on kurtosis like coefficients. In this section,
we provide a more sophisticated estimator, having a simple theoretical excess risk
bound, which is independent of these kurtosis like quantities when we assume
L∞-boundedness of the setF.

We consider that the setΘ is bounded so that we can define the “prior” distri-
butionπ as the uniform distribution onF (i.e., the one induced by the Lebesgue
distribution onΘ ⊂ R

d renormalized to getπ(F) = 1). Letλ > 0 and

Wi(f, f
′) = λ

{[
Yi − f(Xi)

]2 −
[
Yi − f ′(Xi)

]2}
.

Introduce

Ê(f) = log

∫
π(df ′)∏n

i=1[1−Wi(f, f ′) + 1
2
Wi(f, f ′)2]

. (4.1)

We consider the “posterior” distribution̂π on the setF with density:

dπ̂

dπ
(f) =

exp[−Ê(f)]∫
exp[−Ê(f ′)]π(df ′)

. (4.2)

To understand intuitively why this distribution concentrates on functions with low
risk, one should think that whenλ is small enough,1 −Wi(f, f

′) + 1
2
Wi(f, f

′)2

is close toe−Wi(f,f ′), and consequently

Ê(f) ≈ λ
n∑

i=1

[Yi − f(Xi)]
2 + log

∫
π(df ′) exp

{
−λ

n∑

i=1

[
Yi − f ′(Xi)

]2}
,

and
dπ̂

dπ
(f) ≈ exp{−λ∑n

i=1[Yi − f(Xi)]
2}∫

exp{−λ∑n
i=1[Yi − f ′(Xi)]2}π(df ′)

.

The following theorem gives ad/n convergence rate for the randomized algorithm
which draws the prediction function fromF according to the distribution̂π.

THEOREM 4.1 Assume thatF has a diameterH for L∞-norm:

sup
f1,f2∈F,x∈X

|f1(x)− f2(x)| = H (4.3)

and that, for someσ > 0,

sup
x∈X

E
{
[Y − f ∗(X)]2

∣∣X = x
}
≤ σ2 < +∞. (4.4)
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Let f̂ be a prediction function drawn from the distributionπ̂ defined in(4.2, page
25)and depending on the parameterλ > 0. Then for any0 < η′ < 1−λ(2σ+H)2

andε > 0, with probability (with respect to the distributionP⊗nπ̂ generating the
observationsZ1, . . . , Zn and the randomized prediction function̂f ) at least1− ε,
we have

R(f̂)− R(f ∗) ≤ (2σ +H)2
C1d+ C2 log(2ε

−1)

n

with

C1 =
log( (1+η)2

η′(1−η)
)

η(1− η − η′)
and C2 =

2

η(1− η − η′)
and η = λ(2σ +H)2.

In particular for λ = 0.32(2σ +H)−2 andη′ = 0.18, we get

R(f̂)− R(f ∗) ≤ (2σ +H)2
16.6 d+ 12.5 log(2ε−1)

n
.

Besides iff ∗ ∈ argminf∈Flin
R(f), then with probability at least1− ε, we have

R(f̂)− R(f ∗) ≤ (2σ +H)2
8.3 d+ 12.5 log(2ε−1)

n
.

PROOF. This is a direct consequence of Theorem 5.5 (page 33), Lemma5.3
(page 31) and Lemma 5.6 (page 35).�

If we know thatf ∗
lin belongs to some bounded ball inFlin , then one can define a

boundedF as this ball, use the previous theorem and obtain an excess risk bound
with respect tof ∗

lin .

REMARK 4.1 Let us discuss this result. On the positive side, we have ad/n con-
vergence rate in expectation and in deviations. It has no extra logarithmic factor.
It does not require any particular assumption on the smallest eigenvalue of the
covariance matrix. To achieve exponential deviations, a uniformly bounded sec-
ond moment of the output knowing the input is surprisingly sufficient: we do not
require the traditional exponential moment condition on the output. Appendix A
(page 64) argues that the uniformly bounded conditional second moment assump-
tion cannot be replaced with just a bounded second moment condition.

On the negative side, the estimator is rather complicated. When the target is
to predict as well as the best linear combinationf ∗

lin up to a small additive term,
it requires the knowledge of aL∞-bounded ball in whichf ∗

lin lies and an upper
bound onsupx∈XE

{
[Y − f ∗

lin(X)]2
∣∣X = x

}
. The looser this knowledge is, the

bigger the constant in front ofd/n is.
Finally, we propose a randomized algorithm consisting in drawing the pre-

diction function according tôπ. As usual, by convexity of the loss function,
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the risk of the deterministic estimator̂fdeterm =
∫
fπ̂(df) satisfiesR(f̂determ) ≤∫

R(f)π̂(df), so that, after some pretty standard computations, one can prove that
for anyε > 0, with probability at least1− ε:

R(f̂determ)− R(f ∗
lin) ≤ κ(2σ +H)2

d+ log(ε−1)

n
,

for some appropriate numerical constantκ > 0.

REMARK 4.2 The previous result was expressing boundedness in termsof the
L∞ diameter of the set of functionsF. By using Lemma 5.7 (page 35) instead of
Lemma 5.6 (page 35), Theorem 4.1 still holds without assuming (4.3) and (4.4),
but by replacing(2σ +H)2 by

V =

[
2
√

sup
f∈Flin :E[f(X)2]=1

E
(
f 2(X)[Y − f ∗(X)]2

)

+
√

sup
f ′,f ′′∈F

E
(
[f ′(X)− f ′′(X)]2

)√
sup

f∈Flin :E[f(X)2]=1

E
[
f 4(X)

]]2
.

The quantityV is finite when simultaneously,Θ is bounded, and for anyj in
{1, . . . , d}, the quantitiesE

[
ϕ4
j(X)

]
andE

{
ϕj(X)2[Y − f ∗(X)]2

}
are finite.

5. A GENERIC LOCALIZED PAC-BAYES APPROACH

5.1. NOTATION AND SETTING. In this section, we drop the restrictions of the
linear least squares setting considered in the other sections in order to focus on the
ideas underlying the estimator and the results presented inSection 4. To do this,
we consider that the loss incurred by predictingy′ while the correct output isy is
ℓ̃(y, y′) (and is not necessarily equal to(y − y′)2). The quality of a (prediction)
functionf : X → R is measured by its risk

R(f) = E
{
ℓ̃
[
Y, f(X)

]}
.

We still consider the problem of predicting (at least) as well as the best function in
a given set of functionsF (butF is not necessarily a subset of a finite dimensional
linear space). Letf ∗ still denote a function minimizing the risk among functions
in F: f ∗ ∈ argminf∈F R(f). For simplicity, we assume that it exists. The excess
risk is defined by

R̄(f) = R(f)−R(f ∗).
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Let ℓ : Z × F × F → R be a function such thatℓ(Z, f, f ′) represents5 how
worsef predicts thanf ′ on the dataZ. Let us introduce the real-valued ran-
dom processesL : (f, f ′) 7→ ℓ(Z, f, f ′) andLi : (f, f ′) 7→ ℓ(Zi, f, f

′), where
Z,Z1, . . . , Zn denote i.i.d. random variables with distributionP .

Let π andπ∗ be two (prior) probability distributions onF. We assume the
following integrability condition.

Condition I. For anyf ∈ F, we have
∫

E
{
exp[L(f, f ′)]

}n
π∗(df ′) < +∞, (5.1)

and
∫

π(df)∫
E
{
exp[L(f, f ′)]

}n
π∗(df ′)

< +∞. (5.2)

We consider the real-valued processes

L̂(f, f ′) =

n∑

i=1

Li(f, f
′), (5.3)

Ê(f) = log

∫
exp[L̂(f, f ′)]π∗(df ′), (5.4)

L♭(f, f ′) = −n log
{
E
[
exp[−L(f, f ′)]

]}
, (5.5)

L♯(f, f ′) = n log
{
E
[
exp[L(f, f ′)]

]}
, (5.6)

and E♯(f) = log
{∫

exp
[
L♯(f, f ′)

]
π∗(df ′)

}
. (5.7)

Essentially, the quantitieŝL(f, f ′), L♭(f, f ′) andL♯(f, f ′) represent how worse is
the prediction fromf than fromf ′ with respect to the training data or in expecta-
tion. By Jensen’s inequality, we have

L♭ ≤ nE(L) = E(L̂) ≤ L♯. (5.8)

The quantitieŝE(f) andE♯(f) should be understood as some kind of (empirical
or expected) excess risk of the prediction functionf with respect to an implicit
reference induced by the integral overF.

For a distributionρ on F absolutely continuous w.r.t.π, let
dρ

dπ
denote the

density ofρ w.r.t. π. For any real-valued (measurable) functionh defined onF

5While the natural choice in the least squares setting isℓ((X,Y ), f, f ′) = [Y − f(X)]2 −
[Y − f ′(X)]2, we will see that for heavy-tailed outputs, it is preferableto consider the following
soft-truncated version of it, up to a scaling factorλ > 0: ℓ((X,Y ), f, f ′) = T

(
λ
[
(Y − f(X))2 −

(Y − f ′(X))2
])

, with T (x) = − log(1− x+ x2/2). Equality (5.4, page 28) corresponds to (4.1,
page 25) with this choice of functionℓ and for the choiceπ∗ = π.
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such that
∫
exp[h(f)]π(df) < +∞, we define the distributionπh on F by its

density:
dπh
dπ

(f) =
exp[h(f)]∫

exp[h(f ′)]π(df ′)
. (5.9)

We will use the posterior distribution:

dπ̂

dπ
(f) =

dπ−Ê

dπ
(f) =

exp[−Ê(f)]∫
exp[−Ê(f ′)]π(df ′)

. (5.10)

Finally, for anyβ ≥ 0, we will use the following measures of the size (or com-
plexity) ofF around the target function:

I
∗(β) = − log

{∫
exp
[
−βR̄(f)

]
π∗(df)

}

and
I(β) = − log

{∫
exp
[
−βR̄(f)

]
π(df)

}
.

5.2. THE LOCALIZED PAC-BAYES BOUND. With the notation introduced in
the previous section, we have the following risk bound for any randomized esti-
mator.

THEOREM 5.1 Assume thatπ, π∗, F and ℓ satisfy the integrability conditions
(5.1) and (5.2, page 28). Let ρ be a (posterior) probability distribution onF ad-
mitting a density with respect toπ depending onZ1, . . . , Zn. Let f̂ be a prediction
function drawn from the distributionρ. Then for anyγ ≥ 0, γ∗ ≥ 0 andε > 0,
with probability (with respect to the distributionP⊗nρ generating the observa-
tionsZ1, . . . , Zn and the randomized prediction function̂f ) at least1− ε:

∫ [
L♭(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df)− γR̄

(
f̂
)

≤ I∗(γ∗)− I(γ)− log
{∫

exp
[
−E♯(f)

]
π(df)

}

+ log
[dρ
dπ̂

(
f̂
)]

+ 2 log(2ε−1). (5.11)

PROOF. See Section 6.4 (page 57).�
Some extra work will be needed to prove that Inequality (5.11) provides an

upper bound on the excess riskR̄(f̂) of the estimator̂f . As we will see in the next
sections, despite the−γR̄(f̂) term and provided thatγ is sufficiently small, the
lefthand-side will be essentially lower bounded byλR̄(f̂) with λ > 0, while, by
choosingρ = π̂, the estimator does not appear in the righthand-side.
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5.3. APPLICATION UNDER AN EXPONENTIAL MOMENT CONDITION. The es-
timator proposed in Section 4 and Theorem 5.1 seems rather unnatural (or at least
complicated) at first sight. The goal of this section is twofold. First it shows that
under exponential moment conditions (i.e., stronger assumptions than the ones in
Theorem 4.1 when the linear least square setting is considered), one can have a
much simpler estimator than the one consisting in drawing a function according to
the distribution (4.2) witĥE given by (4.1) and yet still obtain ad/n convergence
rate. Secondly it illustrates Theorem 5.1 in a different andsimpler way than the
one we will use to prove Theorem 4.1.

In this section, we consider the following variance and complexity assump-
tions.

Condition V1. There existλ > 0 and0 < η < 1 such that for any function

f ∈ F, we haveE
{
exp
{
λ ℓ̃
[
Y, f(X)

]}}
< +∞,

log
{
E

{
exp
{
λ
[
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ∗(X)

]]}}}

≤ λ(1 + η)[R(f)− R(f ∗)],

and log
{
E

{
exp
{
−λ
[
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ∗(X)

]]}}}

≤ −λ(1− η)[R(f)− R(f ∗)].

Condition C. There exist a probability distributionπ, and constantsD > 0
andG > 0 such that for any0 < α < β,

log

(∫
exp{−α[R(f)−R(f ∗)]}π(df)∫
exp{−β[R(f)−R(f ∗)]}π(df)

)
≤ D log

(
Gβ

α

)
.

THEOREM 5.2 Assume thatV1 andC are satisfied. Let̂π(Gibbs) be the probability
distribution onF defined by its density

dπ̂(Gibbs)

dπ
(f) =

exp{−λ∑n
i=1 ℓ̃[Yi, f(Xi)]}∫

exp{−λ∑n
i=1 ℓ̃[Yi, f

′(Xi)]}π(df ′)
,

whereλ > 0 and the distributionπ are those appearing respectively inV1 andC.
Let f̂ ∈ F be a function drawn according to this Gibbs distribution. Then for any
η′ such that0 < η′ < 1 − η (whereη is the constant appearing inV1) and any
ε > 0, with probability at least1− ε, we have

R(f̂)−R(f ∗) ≤ C ′
1D + C ′

2 log(2ε
−1)

n

with

C ′
1 =

log(G(1+η)
η′

)

λ(1− η − η′)
and C ′

2 =
2

λ(1− η − η′)
.

30



PROOF. We considerℓ
[
(X, Y ), f, f ′] = λ

{
ℓ̃
[
Y, f(X)

]
−ℓ̃
[
Y, f ′(X)

]}
, where

λ is the constant appearing in the variance assumption. Let ustakeγ∗ = 0 and
let π∗ be the Dirac distribution atf ∗: π∗({f ∗}) = 1. Then Condition V1 implies
Condition I (page 28) and we can apply Theorem 5.1. We have

L(f, f ′) = λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
,

Ê(f) = λ

n∑

i=1

ℓ̃
[
Yi, f(Xi)

]
− λ

n∑

i=1

ℓ̃
[
Yi, f

∗(Xi)
]
,

π̂ = π̂(Gibbs),

L♭(f) = −n log
{
E

[
exp
[
−L(f, f ∗)

]]}
,

E♯(f) = n log
{
E

[
exp
[
L(f, f ∗)

]]}

and Assumption V1 leads to:

log
{
E

[
exp
[
L(f, f ∗)

]]}
≤ λ(1 + η)[R(f)− R(f ∗)]

and log
{
E

[
exp
[
−L(f, f ∗)

]]}
≤ −λ(1− η)[R(f)− R(f ∗)].

Thus choosingρ = π̂, (5.11) gives

[λn(1− η)− γ]R̄(f̂) ≤ −I(γ) + I
[
λn(1 + η)

]
+ 2 log(2ε−1).

Accordingly by the complexity assumption, forγ ≤ λn(1 + η), we get

[λn(1− η)− γ]R̄(f̂) ≤ D log

(
Gλn(1 + η)

γ

)
+ 2 log(2ε−1),

which implies the announced result.�
Let us conclude this section by mentioning settings in whichassumptions V1

and C are satisfied.

LEMMA 5.3 Let Θ be a bounded convex set ofR
d, andϕ1, . . . , ϕd bed square

integrable prediction functions. Assume that

F =
{
fθ =

d∑

j=1

θjϕj; (θ1, . . . , θd) ∈ Θ
}
,

π is the uniform distribution onF (i.e., the one coming from the uniform distribu-
tion onΘ), and that there exist0 < b1 ≤ b2 such that for anyy ∈ R, the function
ℓ̃y : y

′ 7→ ℓ̃(y, y′) admits a second derivative satisfying: for anyy′ ∈ R,

b1 ≤ ℓ̃′′y(y
′) ≤ b2.
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Then ConditionC holds for the above uniformπ,G =
√
b2/b1 andD = d.

Besides whenf ∗ = f ∗
lin (i.e.,minF R = minθ∈Rd R(fθ)), ConditionC holds

for the above uniformπ,G = b2/b1 andD = d/2.

PROOF. See Section 6.5 (page 61).�

REMARK 5.1 In particular, for the least squares lossℓ̃(y, y′) = (y−y′)2, we have
b1 = b2 = 2 so that condition C holds withπ the uniform distribution onF,D = d
andG = 1, and withD = d/2 andG = 1 whenf ∗ = f ∗

lin .

LEMMA 5.4 Assume that there exist0 < b1 ≤ b2, A > 0 andM > 0 such that
for anyy ∈ R, the functions̃ℓy : y′ 7→ ℓ̃(y, y′) are twice differentiable and satisfy:

for anyy′ ∈ R, b1 ≤ ℓ̃′′y(y
′) ≤ b2, (5.12)

and for anyx ∈ X, E

{
exp
[
A−1

∣∣ℓ̃′Y [f ∗(X)]
∣∣
] ∣∣∣X = x

}
≤M. (5.13)

Assume thatF is convex and has a diameterH for L∞-norm:

sup
f1,f2∈F,x∈X

|f1(x)− f2(x)| = H.

In this case ConditionV1 holds for any(λ, η) such that

η ≥ λA2

2b1
exp
[
M2 exp

(
Hb2/A

)]
.

and0 < λ ≤ (2AH)−1 is small enough to ensureη < 1.

PROOF. See Section 6.6 (page 62).�

5.4. APPLICATION WITHOUT EXPONENTIAL MOMENT CONDITION. When we
do not have finite exponential moments as assumed by Condition V1 (page 30),
e.g., whenE

{
exp
{
λ
{
ℓ̃[Y, f(X)] − ℓ̃[Y, f ∗(X)]

}}}
= +∞ for anyλ > 0 and

some functionf in F, we cannot apply Theorem 5.1 withℓ
[
(X, Y ), f, f ′] =

λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
(because of theE♯ term). However, we can ap-

ply it to the soft truncated excess loss

ℓ
[
(X, Y ), f, f ′] = T

(
λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]})
,

with T (x) = − log(1−x+x2/2).This section provides a result similar to Theorem
5.2 in which condition V1 is replaced by the following condition.

Condition V2. For any functionf , the random variablẽℓ
[
Y, f(X)

]
−ℓ̃
[
Y, f ∗(X)

]

is square integrable and there existsV > 0 such that for any functionf ,

E

{[
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ∗(X)

]]2}
≤ V [R(f)−R(f ∗)].
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THEOREM 5.5 Assume that ConditionsV2 above andC (page 30) are satisfied.
Let 0 < λ < V −1 and

ℓ
[
(X, Y ), f, f ′] = T

(
λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]})
, (5.14)

with
T (x) = − log(1− x+ x2/2). (5.15)

Let f̂ ∈ F be a function drawn according to the distribution̂π defined in(5.10,
page 29)with Ê defined in(5.4, page 28)andπ∗ = π the distribution appearing
in ConditionC. Then for any0 < η′ < 1 − λV and ε > 0, with probability at
least1− ε, we have

R(f̂)− R(f ∗) ≤ V
C ′

1D + C ′
2 log(2ε

−1)

n

with

C ′
1 =

log(G(1+η)2

η′(1−η)
)

η(1− η − η′)
and C ′

2 =
2

η(1− η − η′)
and η = λV.

In particular, forλ = 0.32V −1 andη′ = 0.18, we get

R(f̂)−R(f ∗) ≤ V
16.6D + 12.5 log(2

√
Gε−1)

n
.

PROOF. We apply Theorem 5.1 forℓ given by (5.14) andπ∗ = π. Let

W (f, f ′) = λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
for anyf, f ′ ∈ F.

Sincelog u ≤ u− 1 for anyu > 0, we have

L♭ = −n logE(1−W +W 2/2) ≥ n(EW − EW 2/2).

Moreover, from Assumption V2,

EW (f, f ′)2

2
≤ EW (f, f ∗)2 + EW (f ′, f ∗)2 ≤ λ2V R̄(f) + λ2V R̄(f ′), (5.16)

hence, by introducingη = λV ,

L♭(f, f ′) ≥ λn
[
R̄(f)− R̄(f ′)− λV R̄(f)− λV R̄(f ′)

]

= λn
[
(1− η)R̄(f)− (1 + η)R̄(f ′)

]
. (5.17)
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Noting that

exp
[
T (u)

]
=

1

1− u+ u2/2
=

1 + u+ u2

2(
1 + u2

2

)2 − u2
=

1 + u+ u2

2

1 + u4

4

≤ 1 + u+
u2

2
,

we see that

L♯ = n log
{
E

[
exp
[
T (W )

]]}
≤ n

[
E
(
W
)
+ E

(
W 2
)
/2
]
.

Using (5.16) and stillη = λV , we get

L♯(f, f ′) ≤ λn
[
R̄(f)− R̄(f ′) + ηR̄(f) + ηR̄(f ′)

]

= λn(1 + η)R̄(f)− λn(1− η)R̄(f ′),

and
E♯(f) ≤ λn(1 + η)R̄(f)− I(λn(1− η)). (5.18)

Plugging (5.17) and (5.18) in (5.11) forρ = π̂, we obtain

[λn(1− η)− γ]R̄(f̂) + [γ∗ − λn(1 + η)]
∫
R̄(f)π−γ∗R̄(df)

≤ I(γ∗)− I(γ) + I(λn(1 + η))− I(λn(1− η)) + 2 log(2ε−1).

By the complexity assumption, choosingγ∗ = λn(1 + η) andγ < λn(1− η), we
get

[λn(1− η)− γ]R̄(f̂) ≤ D log

(
G
λn(1 + η)2

γ(1− η)

)
+ 2 log(2ε−1),

hence the desired result by consideringγ = λnη′ with η′ < 1− η. �

REMARK 5.2 The estimator seems abnormally complicated at first sight. This
remark aims at explaining why we were not able to consider a simpler estimator.

In Section 5.3, in which we consider the exponential moment condition V1,
we tookℓ

[
(X, Y ), f, f ′] = λ

{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
andπ∗ as the Dirac

distribution atf ∗. For these choices, one can easily check thatπ̂ does not depend
onf ∗.

In the absence of an exponential moment condition, we cannotconsider the
functionℓ

[
(X, Y ), f, f ′] = λ

{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
but a truncated version

of it. The truncation functionT we use in Theorem 5.5 can be replaced by the
simpler functionu 7→ (u ∨ −M) ∧ M for some appropriate constantM > 0
but this would lead to a bound with worse constants, without really simplifying
the algorithm. The precise choiceT (x) = − log(1 − x + x2/2) comes from the
remarkable property: there exist second order polynomialP ♭ andP ♯ such that

1
P ♭(u)

≤ exp
[
T (u)

]
≤ P ♯(u) andP ♭(u)P ♯(u) ≤ 1 + O(u4) for u → 0, which are
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reasonable properties to ask in order to ensure that (5.8), and consequently (5.11),
are tight.

Besides, if we takeℓ as in (5.14) withT a truncation function andπ∗ as the
Dirac distribution atf ∗, then π̂ would depend onf ∗, and is consequently not
observable. This is the reason why we do not considerπ∗ as the Dirac distribution
atf ∗, butπ∗ = π. This lead to the estimator considered in Theorems 5.5 and 4.1.

REMARK 5.3 Theorem 5.5 still holds for the same randomized estimator in which
(5.15, page 33) is replaced with

T (x) = log(1 + x+ x2/2).

Condition V2 holds under weak assumptions as illustrated bythe following
lemma.

LEMMA 5.6 Consider the least squares setting:ℓ̃(y, y′) = (y−y′)2. Assume that
F is convex and has a diameterH for L∞-norm:

sup
f1,f2∈F,x∈X

|f1(x)− f2(x)| = H

and that for someσ > 0, we have

sup
x∈X

E
{
[Y − f ∗(X)]2

∣∣X = x
}
≤ σ2 < +∞. (5.19)

Then ConditionV2 holds forV = (2σ +H)2.

PROOF. See Section 6.7 (page 63).�

LEMMA 5.7 Consider the least squares setting:ℓ̃(y, y′) = (y−y′)2. Assume that
F (i.e.,Θ) is bounded, and that for anyj ∈ {1, . . . , d}, we haveE

[
ϕ4
j (X)

]
< +∞

andE
{
ϕj(X)2[Y − f ∗(X)]2

}
< +∞. Then ConditionV2 holds for

V =

[
2
√

sup
f∈Flin :E[f(X)2]=1

E
(
f 2(X)[Y − f ∗(X)]2

)

+
√

sup
f ′,f ′′∈F

E
(
[f ′(X)− f ′′(X)]2

)√
sup

f∈Flin :E[f(X)2]=1

E
[
f 4(X)

]]2
.

PROOF. See Section 6.8 (page 64).�

6. PROOFS

6.1. MAIN IDEAS OF THE PROOFS. The goal of this section is to explain the key
ingredients appearing in the proofs which both allows to obtain sub-exponential
tails for the excess risk under a non-exponential moment assumption and get rid
of the logarithmic factor in the excess risk bound.
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6.1.1. Sub-exponential tails under a non-exponential moment assumption via trun-
cation. Let us start with the idea allowing us to prove exponential inequalities
under just a moment assumption (instead of the traditional exponential moment
assumption). To understand it, we can consider the (apparently) simplistic 1-
dimensional situation in which we haveΘ = R and the marginal distribution of
ϕ1(X) is the Dirac distribution at1. In this case, the risk of the prediction function
fθ isR(fθ) = E(Y − θ)2 = E(Y − θ∗)2+(EY − θ)2, so that the least squares re-
gression problem boils down to the estimation of the mean of the output variable.
If we only assume thatY admits a finite second moment, sayEY 2 ≤ 1, it is not
clear whether for anyε > 0, it is possible to find̂θ such that with probability at
least1− 2ε,

R(fθ̂)− R(f ∗) = (E(Y )− θ̂)2 ≤ c
log(ε−1)

n
, (6.1)

for some numerical constantc. Indeed, from Chebyshev’s inequality, the trivial
choiceθ̂ =

∑n
i=1

Yi

n
just satisfies: with probability at least1− 2ε,

R(fθ̂)− R(f ∗) ≤ 1

nε
,

which is far from the objective (6.1) for small confidence levels (considerε =
exp(−√

n) for instance). The key idea is thus to average (soft)truncatedvalues
of the outputs. This is performed by taking

θ̂ =
1

nλ

n∑

i=1

log

(
1 + λYi +

λ2Y 2
i

2

)
,

with λ =
√

2 log(ε−1)
n

. Since we have

logE exp(nλθ̂) = n log

(
1 + λE(Y ) +

λ2

2
E(Y 2)

)
≤ nλE(Y ) + n

λ2

2
,

the exponential Chebyshev’s inequality (see Lemma 6.10) guarantees that with
probability at least1− ε, we havenλ(θ̂ − E(Y )) ≤ nλ2

2
+ log(ε−1), hence

θ̂ − E(Y ) ≤
√

2 log(ε−1)

n
.

ReplacingY by −Y in the previous argument, we obtain that with probability at
least1− ε, we have

nλ

{
E(Y ) +

1

nλ

n∑

i=1

log

(
1− λYi +

λ2Y 2
i

2

)}
≤ n

λ2

2
+ log(ε−1).
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Since− log(1+x+x2/2) ≤ log(1−x+x2/2), this impliesE(Y )−θ̂ ≤
√

2 log(ε−1)
n

.

The two previous inequalities imply Inequality (6.1) (forc = 2), showing that
sub-exponential tails are achievable even when we only assume that the random
variable admits a finite second moment (see [10] for more details on the robust
estimation of the mean of a random variable).

6.1.2. Localized PAC-Bayesian inequalities to eliminate alogarithm factor.

High level description of the PAC-Bayesian approach and the localization ar-
gument. The analysis of statistical inference generally relies on upper bounding
the supremum of an empirical processχ indexed by the functions in a modelF.
One central tool to obtain these bounds is the concentrationinequalities. An al-
ternative approach, called the PAC-Bayesian one, consistsin using the entropic
equality

E exp

(
sup
ρ∈M

{∫
ρ(df)χ(f)−K(ρ, π′)

})
=

∫
π′(df)E exp

(
χ(f)

)
. (6.2)

whereM is the set of probability distributions onF andK(ρ, π′) is the Kullback-
Leibler divergence (whose definition is recalled in (6.29))betweenρ and some
fixed distributionπ′.

Let ř : F → R be an observable process such that for anyf ∈ F, we have

E exp
(
χ(f)

)
≤ 1

for χ(f) = λ[R(f)− ř(f)] and someλ > 0. Then (6.2) leads to: for anyε > 0,
with probability at least1− ε, for any distributionρ onF, we have

∫
ρ(df)R(f) ≤

∫
ρ(df)ř(f) +

K(ρ, π′) + log(ε−1)

λ
. (6.3)

The lefthand-side quantity represents the expected risk with respect to the distri-
butionρ. To get the smallest upper bound on this quantity, a natural choice of the
(posterior) distributionρ is obtained by minimizing the righthand-side, that is by
taking ρ = π′

−λř (with the notation introduced in (5.9)). This distributioncon-
centrates on functionsf ∈ F for which ř(f) is small. Without prior knowledge,
one may want to choose a prior distributionπ′ = π which is rather “flat” (e.g.,
the one induced by the Lebesgue measure in the case of a modelF defined by
a bounded parameter set in some Euclidean space). Consequently the Kullback-
Leibler divergenceK(ρ, π′), which should be seen as the complexity term, might
be excessively large.
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To overcome the lack of prior information and the resulting high complexity
term, one can alternatively use a more “localized” prior distribution π′ = π−βR

for someβ > 0. Since the righthand-side of (6.3) is then no longer observable, an
empirical upper bound onK(ρ, π−βR) is required. It is obtained by writing

K(ρ, π−βR) = K(ρ, π) + log

(∫
π(df) exp[−βR(f)]

)
+ β

∫
ρ(df)R(f),

and by controlling the two non-observable terms by their empirical versions, call-
ing for additional PAC-Bayesian inequalities.

Low level description of localization. To simplify a more detailed presentation
of the PAC-Bayesian localization argument, we will consider a setting in which
F, ϕ1, . . . , ϕd and the outputs are bounded almost surely, specifically assume
P(for anyf ∈ F, |Y − f(X)| ≤ 1) = 1.

IntroduceΨ(u) = [exp(u)− 1− u]/u2 for anyu > 0, R̄(f) = R(f)−R(f ∗)
and r̄(f) = r(f) − r(f ∗) for any f ∈ F. Let π be a distribution onF and
∆(f, f ′) = E

{
[Y −f(X)]2− [Y −f ∗(X)]2

}2
. The starting point is the following

PAC-Bayesian inequality: for anyε > 0 andλ > 0, with probability at least1−ε,
for any distributionρ onF, we have
∫
ρ(df)R̄(f) ≤

∫
ρ(df)r̄(f) +

λ

n
Ψ
(2λ
n

)∫
ρ(df)∆(f, f ∗)

+
K(ρ, π) + log(ε−1)

λ
. (6.4)

This inequality derives from the duality formula given in (6.30), the inequality

E exp
(

λ
n

{
[Y−f ∗(X)]2−[Y −f(X)]2+R(f)−R(f ∗)

}
−λ2

n2Ψ
(
2λ
n

)
∆(f, f ∗)

)
≤ 1,

and Lemma 6.10 (see [2, Theorem 8.1]). Since

∆(f, f ∗) = E
{
[f(X)− f ∗(X)]2[2Y − f(X)− f ∗(X)]2

}

≤ 4E
{
[f(X)− f ∗(X)]2

}
≤ 4R̄(f),

by takingλ = n/6, Inequality (6.4) implies
∫
ρ(df)R̄(f) ≤ 2

∫
ρ(df)r̄(f) + 10

K(ρ, π) + log(ε−1)

n
. (6.5)

The distribution̂π(df) = exp[−nr̄(f)/5]∫
exp[−nr̄(f ′)/5]π(df ′)

·π(df) minimizes the righthand-side,

and we have
∫
π̂(df)R̄(f) ≤ 10

− log
(∫
π(df) exp[−nr̄(f)/5]

)
+ log(ε−1)

n
.
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Let πU be the uniform distribution onF (i.e., the one coming from the uniform
distribution onΘ). For π = πU , using similar arguments to the ones developed
in Section 6.5, it can be shown that− log

(∫
π(df) exp[−nr̄(f)/5] ≤ cd log(n)

for some constantc depending only onsupf,f ′∈F ‖f − f ′‖∞. This implies ad logn
n

convergence rate of the excess risk of the randomized algorithm associated witĥπ.
The localization idea from [7] allows to prove

∫
ρ(df)R̄(f) ≤ 2

∫
ρ(df)r̄(f) + 10

K(ρ, π̂′) + log(ε−1)

n
, (6.6)

with π̂′(df) = exp[−ζnr̄(f)]∫
exp[−ζnr̄(f ′)]π(df ′)

· π(df) for some0 < ζ < 1/5. The key dif-

ference with (6.5) is that the Kullback-Leibler term is now much smaller for the
distributionsρ which concentrates on low empirical risk functions, likeπ̂. Since
− log

(∫
π̂′(df) exp[−nr̄(f)/5] ≤ cd for some constantc depending only onζ (see

Lemma 5.3), this allows to get rid of thelogn factor and obtain a convergence rate
of orderd/n.

The proof of (6.6) is rather intricate but the central idea isto use (6.5) for
π(df) = exp[−nR̄(f)/5]∫

exp[−nR̄(f ′)/5]π(df ′)
· πU(df), and control the non-observable Kullback-

Leibler term byc
∫
ρ(df)R̄(f) plusK(ρ, π̂′) up to minor additive terms.

Let us conclude this section by pointing out some difficulties and possibili-
ties when considering unboundedY − fθ(X). The sketches of proof presented
hereafter are far from being actual proofs as some technicalproblems are hidden.
Full proofs will be given in the later sections. For unbounded Y − fθ(X), In-
equality (6.4) no longer holds, but by using the soft truncation argument of the
previous section, one can prove a similar inequality in which

∫
ρ(df)r̄(f) is re-

placed with1
λ

∫
ρ(df)

∑n
i=1 log

(
1 +Wi(f, f

∗) +W 2
i (f, f

∗)/2
)

for Wi(f, f
∗) =

λ
n

{
[Y − f(Xi)]

2 − [Y − f ∗(Xi)]
2
}

for λ > 0 a parameter of the bound. One
significant difficulty is that the minimizer of this quantityis no longer observable
(sincef ∗ is unknown). Nevertheless the quantity can be upper boundedby the
observable one:

max
f ′∈F

1

λ

∫
ρ(df)

n∑

i=1

log

(
1 +Wi(f, f

′) +
W 2

i (f, f
′)

2

)
.

This explains why the procedures in Section 3 make appear a min-max.
Another interesting idea is to use Gaussian distributions for π andρ, which

are respectively centered atθ∗ and θ̂ and with covariance matrix proportional to
the identity matrix. The interest of these choices comes essentially from the co-
existence of the two following properties: the distribution π concentrates on a
neighbourhood of the best prediction function so the complexity term K(ρ, π)
can be much smaller than the one obtained forπ the uniform distribution onF
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(this is again the localization idea), andK(ρ, π) and, whenΘ = R
d, the integrals

with respect toρ can be explicitly computed in terms of̄R(θ̂) and other rather
simple quantities, which implies that the modified inequality (6.4) gets a tractable
form for further computations, provided nevertheless someassumptions on the
eigenvalues of the matrixQ. The idea of using PAC-Bayesian inequalities with
Gaussian prior and posterior distributions has first been proposed by Langford and
Shawe-Taylor [14] in the context of linear classification.

6.2. PROOFS OFTHEOREMS 2.1 AND 2.2. To shorten the formulae, we will
write X for ϕ(X), which is equivalent to considering without loss of generality
that the input space isRd and that the functionsϕ1, . . . ,ϕd are the coordinate
functions. Therefore, the functionfθ maps an inputx to 〈θ, x〉. With a slight
abuse of notation,R(θ) will denote the risk of this prediction function.

Let us first assume that the matrixQλ = Q + λI is positive definite. This
indeed does not restrict the generality of our study, even inthe case whenλ = 0,
as we will discuss later (Remark 6.1). Consider the change ofcoordinates

X = Q
−1/2
λ X.

Let us introduce
R(θ) = E

[
(〈θ,X〉 − Y )2

]
,

so that
R(Q

1/2
λ θ) = R(θ) = E

[
(〈θ,X〉 − Y )2

]
.

Let
Θ =

{
Q

1/2
λ θ; θ ∈ Θ

}
.

Consider

r(θ) =
1

n

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
, (6.7)

r(θ) =
1

n

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
, (6.8)

θ0 = argmin
θ∈Θ

R(θ) + λ‖Q−1/2
λ θ‖2, (6.9)

θ̂ ∈ argmin
θ∈Θ

r(θ) + λ‖θ‖2, (6.10)

θ1 = Q
1/2
λ θ̂ ∈ argmin

θ∈Θ
r(θ) + λ‖Q−1/2

λ θ‖2. (6.11)

Forα > 0, let us introduce the notation

Wi(θ) = α
{(

〈θ,Xi〉 − Yi
)2 −

(
〈θ0, Xi〉 − Yi

)2}
,
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W (θ) = α
{(

〈θ,X〉 − Y
)2 −

(
〈θ0, X〉 − Y

)2}
.

For anyθ2 ∈ R
d andβ > 0, let us consider the Gaussian distribution centered

at θ2

ρθ2(dθ) =

(
β

2π

)d/2

exp

(
−β
2
‖θ − θ2‖2

)
dθ.

LEMMA 6.1 For anyη > 0 andα > 0, with probability at least1− exp(−η), for
anyθ2 ∈ R

d,

− n
∫
ρθ2(dθ) log

{
1− E

[
W (θ)

]
+ E

[
W (θ)2

]
/2
}

≤ −
n∑

i=1

(∫
ρθ2(dθ) log

{
1−Wi(θ) +Wi(θ)

2/2
})

+K(ρθ2 , ρθ0) + η,

whereK(ρθ2 , ρθ0) is the Kullback-Leibler divergence function :

K(ρθ2 , ρθ0) =

∫
ρθ2(dθ) log

[
dρθ2
dρθ0

(θ)

]
.

PROOF.

E

(
∫
ρθ0(dθ)

n∏

i=1

1−Wi(θ) +Wi(θ)
2/2

1− E
[
W (θ)

]
+ E

[
W (θ)2

]
/2

)
≤ 1,

thus with probability at least1− exp(−η)

log

(
∫
ρθ0(dθ)

n∏

i=1

1−Wi(θ) +Wi(θ)
2/2

1− E
[
W (θ)

]
+ E

[
W (θ)2

]
/2

)
≤ η.

We conclude from the convex inequality (see [8, page 159])

log
(∫
ρθ0(dθ) exp

[
h(θ)

])
≥
∫
ρθ2(dθ)h(θ)−K(ρθ2 , ρθ0).

�

Let us compute some useful quantities

K(ρθ2, ρθ0) =
β

2
‖θ2 − θ0‖2, (6.12)

∫
ρθ2(dθ)

[
W (θ)

]
= α

∫
ρθ2(dθ)〈θ − θ2, X〉2 +W (θ2)

=W (θ2) + α
‖X‖2
β

, (6.13)
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∫
ρθ2(dθ)〈θ − θ2, X〉4 = 3‖X‖4

β2
, (6.14)

∫
ρθ2(dθ)

[
W (θ)2

]
= α2

∫
ρθ2(dθ)〈θ − θ0, X〉2

(
〈θ + θ0, X〉 − 2Y

)2

= α2
∫
ρθ2(dθ)

[
〈θ − θ2 + θ2 − θ0, X〉

(
〈θ − θ2 + θ2 + θ0, X〉 − 2Y

)]2

=
∫
ρθ2(dθ)

[
α〈θ − θ2, X〉2 + 2α〈θ − θ2, X〉

(
〈θ2, X〉 − Y

)
+W (θ2)

]2

=
∫
ρθ2(dθ)

[
α2〈θ − θ2, X〉4 + 4α2〈θ − θ2, X〉2

(
〈θ2, X〉 − Y

)2
+W (θ2)

2

+ 2α〈θ − θ2, X〉2W (θ2)
]

=
3α2‖X‖4

β2
+

2α‖X‖2
β

[
2α
(
〈θ2, X〉 − Y

)2
+W (θ2)

]
+W (θ2)

2. (6.15)

Using the fact that

2α
(
〈θ2, X〉 − Y

)2
+W (θ2) = 2α

(
〈θ0, X〉 − Y

)2
+ 3W (θ2),

and that for any real numbersa andb, 6ab ≤ 9a2 + b2, we get

LEMMA 6.2

∫
ρθ2(dθ)

[
W (θ)

]
= W (θ2) + α

‖X‖2
β

, (6.16)

∫
ρθ2(dθ)

[
W (θ)2

]
= W (θ2)

2 +
2α‖X‖2

β

[
2α
(
〈θ0, X〉 − Y

)2
+ 3W (θ2)

]

+
3α2‖X‖4

β2
(6.17)

≤ 10W (θ2)
2 +

4α2‖X‖2
β

(
〈θ0, X〉 − Y

)2
+

4α2‖X‖4
β2

,

(6.18)

and the same holds true whenW is replaced withWi and(X, Y ) with (X i, Yi).

Another important thing to realize is that

E
[
‖X‖2

]
= E

[
Tr
(
XX

T )]
= E

[
Tr
(
Q

−1/2
λ XXTQ

−1/2
λ

)]

= E
[
Tr
(
Q−1

λ XXT
)]

= Tr
[
Q−1

λ E(XXT )
]

= Tr
(
Q−1

λ (Qλ − λI)
)

= d− λTr(Q−1
λ ) = D . (6.19)
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We can weaken Lemma 6.1 (page 41) noticing that for any real numberx,
x ≤ − log(1− x) and

− log

(
1− x+

x2

2

)
= log

(
1 + x+ x2/2

1 + x4/4

)

≤ log

(
1 + x+

x2

2

)
≤ x+

x2

2
.

We obtain with probability at least1− exp(−η)

nE
[
W (θ2)

]
+
nα

β
E
[
‖X‖2

]
− 5nE

[
W (θ2)

2
]

− E

{
2nα2‖X‖2

β

(
〈θ0, X〉 − Y

)2
+

2nα2‖X‖4
β2

}

≤
n∑

i=1

{
Wi(θ2) + 5Wi(θ2)

2

+
α‖Xi‖2

β
+

2α2‖Xi‖2
β

(
〈θ0, Xi〉 − Y

)2
+

2α2‖X i‖4
β2

}

+
β

2
‖θ2 − θ0‖2 + η.

Noticing that for any real numbersa andb, 4ab ≤ a2+4b2, we can then bound

α−2W (θ2)
2 = 〈θ2 − θ0, X〉2

(
〈θ2 + θ0, X〉 − 2Y

)2

= 〈θ2 − θ0, X〉2
[
〈θ2 − θ0, X〉+ 2

(
〈θ0, X〉 − Y

)]2

= 〈θ2 − θ0, X〉4 + 4〈θ2 − θ0, X〉3
(
〈θ0, X〉 − Y

)

+ 4〈θ2 − θ0, X〉2
(
〈θ0, X〉 − Y

)2

≤ 2〈θ2 − θ0, X〉4 + 8〈θ2 − θ0, X〉2
(
〈θ0, X〉 − Y

)2
.

THEOREM 6.3 Let us put

D̂ =
1

n

n∑

i=1

‖Xi‖2 (let us remind thatD = E
[
‖X‖2

]
from (6.19)),

B1 = 2E
[
‖X‖2

(
〈θ0, X〉 − Y

)2]
,

B̂1 =
2

n

n∑

i=1

[
‖Xi‖2

(
〈θ0, X i〉 − Yi

)2]
,
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B2 = 2E
[
‖X‖4

]
,

B̂2 =
2

n

n∑

i=1

‖Xi‖4,

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ0, X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
,

B̂3 = sup

{
40

n

n∑

i=1

〈u,Xi〉2
(
〈θ0, Xi〉 − Yi

)2
: u ∈ R

d, ‖u‖ = 1
}
,

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}
,

B̂4 = sup

{
10

n

n∑

i=1

〈u,Xi〉4 : u ∈ R
d, ‖u‖ = 1

}
.

With probability at least1− exp(−η), for anyθ2 ∈ R
d,

nE
[
W (θ2)

]
−
[
nα2(B3 + B̂3) +

β

2

]
‖θ2 − θ0‖2

− nα2(B4 + B̂4)‖θ2 − θ0‖4

≤
n∑

i=1

Wi(θ2) +
nα

β
(D̂ −D) +

nα2

β
(B1 + B̂1) +

nα2

β2
(B2 + B̂2) + η.

Let us now assume thatθ2 ∈ Θ and let us use the fact thatΘ is a convex set and
thatθ0 = argminθ∈ΘR(θ) + λ‖Q−1/2

λ θ‖2. Introduceθ∗ = argminθ∈Rd R(θ) +

λ‖Q−1/2
λ θ‖2. As we have

R(θ) + λ‖Q−1/2
λ θ‖2 = ‖θ − θ∗‖2 +R(θ∗) + λ‖Q−1/2

λ θ∗‖2,
the vectorθ0 is uniquely defined as the projection ofθ∗ on Θ for the Euclidean
distance, and for anyθ2 ∈ Θ

α−1
E
[
W (θ2)

]
+ λ‖Q−1/2

λ θ2‖2 − λ‖Q−1/2
λ θ0‖2

= R(θ2)− R(θ0) + λ‖Q−1/2
λ θ2‖2 − λ‖Q−1/2

λ θ0‖2
= ‖θ2 − θ∗‖2 − ‖θ0 − θ∗‖2

= ‖θ2 − θ0‖2 + 2〈θ2 − θ0, θ0 − θ∗〉 ≥ ‖θ2 − θ0‖2. (6.20)

This and the inequality

α−1
n∑

i=1

Wi(θ1) + nλ‖Q−1/2
λ θ1‖2 − nλ‖Q−1/2

λ θ0‖2 ≤ 0

leads to the following result.

44



THEOREM 6.4 With probability at least1− exp(−η),

R(θ̂) + λ‖θ̂‖2 − inf
θ∈Θ

[
R(θ) + λ‖θ‖2

]

= α−1
E
[
W (θ1)

]
+ λ‖Q−1/2

λ θ1‖2 − λ‖Q−1/2
λ θ0‖2

is not greater than the smallest positive non degenerate root of the following poly-
nomial equation as soon as it has one

{
1−

[
α(B3 + B̂3) +

β
2nα

]}
x− α(B4 + B̂4)x

2

=
1

β
max(D̂ −D, 0) +

α

β
(B1 + B̂1) +

α

β2
(B2 + B̂2) +

η

nα
.

PROOF. Let us remark first that when the polynomial appearing in thetheorem
has two distinct roots, they are of the same sign, due to the sign of its constant
coefficient. LetΩ̂ be the event of probability at least1 − exp(−η) described in
Theorem 6.3 (page 43). For any realization of this event for which the polynomial
described in Theorem 6.4 does not have two distinct positiveroots, the statement
of Theorem 6.4 is void, and therefore fulfilled. Let us consider now the case when
the polynomial in question has two distinct positive rootsx1 < x2. Consider in
this case the random (trivially nonempty) closed convex set

Θ̂ =
{
θ ∈ Θ : R(θ) + λ‖θ‖2 ≤ inf

θ′∈Θ

[
R(θ′) + λ‖θ′‖2

]
+ x1+x2

2

}
.

Let θ3 ∈ argminθ∈Θ̂ r(θ)+ λ‖θ‖2 andθ4 ∈ argminθ∈Θ r(θ)+ λ‖θ‖2. We see
from Theorem 6.3 that

R(θ3) + λ‖θ3‖2 < R(θ0) + λ‖θ0‖2 +
x1 + x2

2
, (6.21)

because it cannot be larger from the construction ofΘ̂. On the other hand, since
Θ̂ ⊂ Θ, the line segment[θ3, θ4] is such that[θ3, θ4] ∩ Θ̂ ⊂ argminθ∈Θ̂ r(θ) +

λ‖θ‖2. We can therefore apply equation (6.21) to any point of[θ3, θ4] ∩ Θ̂, which
proves that[θ3, θ4]∩Θ̂ is an open subset of[θ3, θ4]. But it is also a closed subset by
construction, and therefore, as it is non empty and[θ3, θ4] is connected, it proves
that[θ3, θ4]∩ Θ̂ = [θ3, θ4], and thus thatθ4 ∈ Θ̂. This can be applied to any choice
of θ3 ∈ argminθ∈Θ̂ r(θ) + λ‖θ‖2 andθ4 ∈ argminθ∈Θ r(θ) + λ‖θ‖2, proving
thatargminθ∈Θ r(θ) + λ‖θ‖2 ⊂ argminθ∈Θ̂ r(θ) + λ‖θ‖2 and therefore that any
θ4 ∈ argminθ∈Θ r(θ) + λ‖θ‖2 is such that

R(θ4) + λ‖θ4‖2 ≤ inf
θ∈Θ

[
R(θ) + λ‖θ‖2

]
+ x1.
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because the values betweenx1 andx2 are excluded by Theorem 6.3.�
The actual convergence speed of the least squares estimatorθ̂ onΘwill depend

on the speed of convergence of the “empirical bounds”B̂k towards their expecta-
tions. We can rephrase the previous theorem in the followingmore practical way:

THEOREM 6.5 Let η0, η1, . . . , η5 be positive real numbers. With probability at
least

1− P(D̂ > D + η0)−
4∑

k=1

P(B̂k − Bk > ηk)− exp(−η5),

R(θ̂)+λ‖θ̂‖2− infθ∈Θ
[
R(θ)+λ‖θ‖2

]
is smaller than the smallest non degenerate

positive root of
{
1−

[
α(2B3 + η3) +

β
2nα

]}
x− α(2B4 + η4)x

2

=
η0
β

+
α

β
(2B1 + η1) +

α

β2
(2B2 + η2) +

η5
nα

, (6.22)

where we can optimize the values ofα > 0 andβ > 0, since this equation has
non random coefficients. For example, taking for simplicity

α =
1

8B3 + 4η3
,

β =
nα

2
,

we obtain

x− 2B4 + η4
4B3 + 2η3

x2 =
16η0(2B3 + η3)

n
+

8B1 + 4η1
n

+
32(2B3 + η3)(2B2 + η2)

n2
+

8η5(2B3 + η3)

n
.

6.2.1. Proof of Theorem 2.1.Let us now deduce Theorem 2.1 (page 13) from
Theorem 6.5. Let us first remark that with probability at least 1− ε/2

D̂ ≤ D +

√
B2

εn
,

because the variance of̂D is less thanB2

2n
. For a givenε > 0, let us takeη0 =

√
B2

εn
,

η1 = B1, η2 = B2, η3 = B3 andη4 = B4. We get thatRλ(θ̂) − infθ∈ΘRλ(θ) is
smaller than the smallest positive non degenerate root of

x− B4

2B3
x2 =

48B3

n

√
B2

nε
+

12B1

n
+

288B2B3

n2
+

24 log(3/ε)B3

n
,
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with probability at least

1− 5 ε

6
−

4∑

k=1

P(B̂k > Bk + ηk).

According to the weak law of large numbers, there isnε such that for anyn ≥ nε,

4∑

k=1

P(B̂k > Bk + ηk) ≤ ε/6.

Thus, increasingnε and the constants to absorb the second order terms, we see
that for somenε and anyn ≥ nε, with probability at least1− ε, the excess risk is
less than the smallest positive root of

x− B4

2B3
x2 =

13B1

n
+

24 log(3/ε)B3

n
.

Now, as soon asac < 1/4, the smallest positive root ofx − ax2 = c is 2c
1+

√
1−4ac

.
This means that forn large enough, with probability at least1− ε,

Rλ(θ̂)− inf
θ
Rλ(θ) ≤

15B1

n
+

25 log(3/ε)B3

n
,

which is precisely the statement of Theorem 2.1 (page 13), upto some change of
notation.

6.2.2. Proof of Theorem 2.2.Let us now weaken Theorem 6.4 in order to make
a more explicit non asymptotic result and obtain Theorem 2.2. From now on, we
will assume thatλ = 0. We start by giving bounds on the quantity defined in
Theorem 6.3 in terms of

B = sup
f∈span{ϕ1,...,ϕd}−{0}

‖f‖2∞/E[f(X)]2.

Since we have
‖X‖2 = ‖Q−1/2

λ X‖2 ≤ dB,

we get

d̂ =
1

n

n∑

i=1

‖Xi‖2 ≤ dB,

B1 = 2E
[
‖X‖2

(
〈θ0, X〉 − Y

)2] ≤ 2dB R(f ∗),
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B̂1 =
2

n

n∑

i=1

[
‖Xi‖2

(
〈θ0, Xi〉 − Yi

)2] ≤ 2dB r(f ∗),

B2 = 2E
[
‖X‖4

]
≤ 2d2B2,

B̂2 =
2

n

n∑

i=1

‖Xi‖4 ≤ 2d2B2,

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ0, X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
≤ 40BR(f ∗),

B̂3 = sup

{
40

n

n∑

i=1

〈u,Xi〉2
(
〈θ0, Xi〉 − Yi

)2
: u ∈ R

d, ‖u‖ = 1
}
≤ 40B r(f ∗),

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}
≤ 10B2,

B̂4 = sup

{
10

n

n∑

i=1

〈u,Xi〉4 : u ∈ R
d, ‖u‖ = 1

}
≤ 10B2.

Let us put

a0 =
2dB + 4dBα[R(f ∗) + r(f ∗)] + η

αn
+

16B2d2

αn2
,

a1 = 3/4− 40αB[R(f ∗) + r(f ∗)],

and
a2 = 20αB2.

Theorem 6.4 applied withβ = nα/2 implies that with probability at least1 − η
the excess riskR(f̂ (erm)) − R(f ∗) is upper bounded by the smallest positive root
of a1x − a2x

2 = a0 as soon asa21 > 4a0a2. In particular, settingε = exp(−η)
when (6.23) holds, we have

R(f̂ (erm))− R(f ∗) ≤ 2a0

a1 +
√
a21 − 4a0a2

≤ 2a0
a1
.

We conclude that

THEOREM 6.6 For anyα > 0 andε > 0, with probability at least1 − ε, if the
inequality

80

(
(2 + 4α[R(f ∗) + r(f ∗)])Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)

<

(
3

4B
− 40α[R(f ∗) + r(f ∗)]

)2

(6.23)
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holds, then we have

R(f̂ (erm))− R(f ∗) ≤ J

(
(2 + 4α[R(f ∗) + r(f ∗)])Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)
,

(6.24)
whereJ = 8/(3α− 160α2B[R(f ∗) + r(f ∗)])

Now, the Bienaymé-Chebyshev inequality implies

P
(
r(f ∗)−R(f ∗) ≥ t

)
≤ E

(
r(f ∗)− R(f ∗)

)2

t2
≤ E[Y − f ∗(X)]4/nt2.

Under the finite moment assumption of Theorem 2.2, we obtain that for anyε ≥
1/n, with probability at least1− ε,

r(f ∗) < R(f ∗) +
√

E[Y − f ∗(X)]4.

From Theorem 6.6 and a union bound, by taking

α =
(
80B[2R(f ∗) +

√
E[Y − f ∗(X)]4

)−1

,

we get that with probability1− 2ε,

R(f̂ (erm))− R(f ∗) ≤ J1B

(
3Bd′ + log(ε−1)

n
+

(
4Bd′

n

)2
)
,

with J1 = 640
(
2R(f ∗) +

√
E
{
[Y − f ∗(X)]4

})
. This concludes the proof of

Theorem 2.2.

REMARK 6.1 Let us indicate now how to handle the case whenQ is degenerate.
Let us consider the linear subspaceS of Rd spanned by the eigenvectors ofQ cor-
responding to positive eigenvalues. Then almost surely Span{Xi, i = 1, . . . , n} ⊂
S. Indeed for anyθ in the kernel ofQ, E

(
〈θ,X〉2

)
= 0 implies that〈θ,X〉 = 0

almost surely, and considering a basis of the kernel, we see thatX ∈ S almost
surely,S being orthogonal to the kernel ofQ. Thus we can restrict the problem to
S, as soon as we choose

θ̂ ∈ span
{
X1, . . . , Xn

}
∩ argmin

θ

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
,

or equivalently with the notationX = (ϕj(Xi))1≤i≤n,1≤j≤d andY = [Yj]
n
j=1,

θ̂ ∈ im XT ∩ argmin
θ

‖X θ − Y ‖2

This proves that the results of this section apply to this special choice of the em-
pirical least squares estimator. Since we haveR

d = ker X⊕im XT , this choice is
unique.
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6.3. PROOF OF THEOREM 3.1. We use a similar notation as in Section 6.2:
we writeX for ϕ(X). Therefore, the functionfθ maps an inputx to 〈θ, x〉. We
consider the change of coordinates

X = Q
−1/2
λ X.

Thus, from (6.19), we haveE
[
‖X‖2

]
= D. We will use

R(θ) = E
[
(〈θ,X〉 − Y )2

]
,

so thatR(Q1/2θ) = E
[
(〈θ,X〉 − Y )2

]
= R(fθ). Let

Θ =
{
Q

1/2
λ θ; θ ∈ Θ

}
.

Consider

θ0 = argmin
θ∈Θ

{
R(θ) + λ‖Q−1/2

λ θ‖2
}
.

We thus havẽθ = Q
−1/2
λ θ0, and

σ =

√
E
[(
〈θ0, X〉 − Y

)2]
,

χ = sup
u∈Rd

E
(
〈u,X〉4

)1/2

E
(
〈u,X〉2

) ,

κ =
E
(
‖X‖4

)1/2

E
(
‖X‖2

) =
E
(
‖X‖4

)1/2

D
,

κ′ =
E
[(
〈θ0, X〉 − Y

)4]1/2

σ2
,

T = ‖Θ‖ = max
θ,θ′∈Θ

‖θ − θ′‖.

Forα > 0, we introduce

Ji(θ) = 〈θ,Xi〉 − Yi, J(θ) = 〈θ,X〉 − Y

Li(θ) = α
(
〈θ,Xi〉 − Yi

)2
, L(θ) = α

(
〈θ,X〉 − Y

)2

Wi(θ) = Li(θ)− Li(θ0), W (θ) = L(θ)− L(θ0),

and

r′(θ, θ′) = λ(‖Q−1/2
λ θ‖2 − ‖Q−1/2

λ θ′‖2) + 1

nα

n∑

i=1

ψ
(
L(θ)− L(θ′)

)
.
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Let θ̄ = Q
1/2
λ θ̂ ∈ Θ. We have

−r′(θ0, θ̄) = r′(θ̄, θ0) ≤ max
θ1∈Θ

r′(θ̄, θ1) ≤ γ +max
θ1∈Θ

r′(θ0, θ1), (6.25)

whereγ = max
θ1∈Θ

r′(θ̄, θ1) − inf
θ∈Θ

max
θ1∈Θ

r′(θ, θ1) is a quantity which can be made

arbitrary small by choice of the estimator. By using an upperboundr′(θ0, θ1) that
holds uniformly inθ1, we will control both left and right hand sides of (6.25).

To achieve this, we will upper bound

r′(θ0, θ1) = λ(‖Q−1/2
λ θ0‖2 − ‖Q−1/2

λ θ1‖2) +
1

nα

n∑

i=1

ψ
[
−Wi(θ1)

]
(6.26)

by the expectation of a distribution depending onθ1 of a quantity that does not
depend onθ1, and then use the PAC-Bayesian argument to control this expectation
uniformly in θ1. The distribution depending onθ1 should therefore be taken such
that for anyθ1 ∈ Θ, its Kullback-Leibler divergence with respect to some fixed
distribution is small (at least whenθ1 is close toθ0).

Let us start with the following result.

LEMMA 6.7 Let f, g : R → R be two Lebesgue measurable functions such that
f(x) ≤ g(x), x ∈ R. Let us assume that there existsh ∈ R such thatx 7→
g(x) + hx2

2
is convex. Then for any probability distributionµ on the real line,

f

(∫
xµ(dx)

)
≤
∫
g(x)µ(dx) + min

{
sup f − inf f,

h

2
Var(µ)

}
.

PROOF. Let us putx0 =
∫
xµ(dx) The function

x 7→ g(x) +
h

2
(x− x0)

2

is convex. Thus, by Jensen’s inequality

f(x0) ≤ g(x0) ≤
∫
µ(dx)

[
g(x) +

h

2
(x− x0)

2

]
=

∫
g(x)µ(dx) +

h

2
Var(µ).

On the other hand

f(x0) ≤ sup f ≤ sup f +

∫ [
g(x)− inf f

]
µ(dx)

=

∫
g(x)µ(dx) + sup f − inf f.
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The lemma is a combination of these two inequalities.�

The above lemma will be used withf = g = ψ, whereψ is the increasing
influence function

ψ(x) =





− log(2), x ≤ −1,

log(1 + x+ x2/2), −1 ≤ x ≤ 0,

− log(1− x+ x2/2), 0 ≤ x ≤ 1,

log(2), x ≥ 1.

Since we have for anyx ∈ R

− log

(
1− x+

x2

2

)
= log

(
1 + x+ x2

2

1 + x4

4

)
< log

(
1 + x+

x2

2

)
,

the functionψ satisfies for anyx ∈ R

− log

(
1− x+

x2

2

)
< ψ(x) < log

(
1 + x+

x2

2

)
.

Moreover

ψ′(x) =
1− x

1− x+ x2

2

, ψ′′(x) =
x(x− 2)

2
(
1− x+ x2

2

)2 ≥ −2, 0 ≤ x ≤ 1,

showing (by symmetry) that the functionx 7→ ψ(x) + 2x2 is convex on the real
line.

For anyθ′ ∈ R
d andβ > 0, we consider the Gaussian distribution with menaθ′

and covarianceβ−1I:

ρθ′(dθ) =

(
β

2π

)d/2

exp

(
−β
2
‖θ − θ′‖2

)
dθ.

From Lemmas 6.2 and 6.7 (withµ the distribution of−Wi(θ) +
α‖Xi‖2

β
when

θ is drawn fromρθ1 and for a fixed pair(Xi, Yi)), we can see that

ψ
[
−Wi(θ1)

]
= ψ

{∫
ρθ1(dθ)

[
−Wi(θ) +

α‖Xi‖2
β

]}

≤
∫
ρθ1(dθ)ψ

[
−Wi(θ) +

α‖Xi‖2
β

]

+min
{
log(4),Varρθ1

[
Li(θ)

]}
.
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Let us compute

1

α2
Varρθ1

[
Li(θ)

]
= Varρθ1

[
J2
i (θ)− J2

i (θ1)
]

=

∫
ρθ1(dθ)

[
J2
i (θ)− J2

i (θ1)
]2 − ‖Xi‖4

β2

=

∫
ρθ1(dθ)

[
〈θ − θ1, X i〉2 + 2〈θ − θ1, Xi〉Ji(θ1)

]2
− ‖X i‖4

β2

=
2‖Xi‖4
β2

+
4Li(θ1)‖Xi‖2

αβ
. (6.27)

Let ξ ∈ (0, 1). Now we can remark that

Li(θ1) ≤
Li(θ)

ξ
+
α〈θ − θ1, Xi〉2

1− ξ
.

We get

min
{
log(4),Varρθ1

[
Li(θ)

]}

= min
{
log(4),

4α‖X i‖2Li(θ1)

β
+

2α2‖X i‖4
β2

}

≤
∫
ρθ1(dθ)min

{
log(4),

4α‖Xi‖2Li(θ)

βξ
+

2α2‖X i‖4
β2

+
4α2‖X i‖2〈θ − θ1, Xi〉2

β(1− ξ)

}

≤
∫
ρθ1(dθ)min

{
log(4),

4α‖Xi‖2Li(θ)

βξ
+

2α2‖X i‖4
β2

}

+min
{
log(4),

4α2‖Xi‖4
β2(1− ξ)

}
.

Let us now puta = 3
log(4)

< 2.17, b = a+ a2 log(4) < 8.7 and let us remark that

min
{
log(4), x

}
+min

{
log(4), y

}

≤ log
[
1 + amin{log(4), x}

]
+ log(1 + ay)

≤ log
(
1 + ax+ by

)
, x, y ∈ R+.

Thus

min
{
log(4),Varρθ1

[
Li(θ)

]}
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≤
∫
ρθ1(dθ) log

[
1 +

4aα‖X i‖2Li(θ)

βξ
+

2α2‖Xi‖4
β2

(
a+

2b

1− ξ

)]
.

We can then remark that

ψ(x) + log(1 + y) = log
[
exp[ψ(x)] + y exp[ψ(x)]

]

≤ log
[
exp[ψ(x)] + 2y

]
≤ log

(
1 + x+

x2

2
+ 2y

)
, x ∈ R, y ∈ R+.

Thus, puttingc0 = a +
2b

1− ξ
, we get

ψ
[
−Wi(θ1)

]
≤
∫
ρθ1(dθ) log[Ai(θ)], (6.28)

with

Ai(θ) = 1−Wi(θ) +
α‖Xi‖2

β
+

1

2

(
−Wi(θ) +

α‖Xi‖2
β

)2

+
8aα‖X i‖2Li(θ)

βξ
+

4c0α
2‖X i‖4
β2

.

Similarly, we defineA(θ) by replacing(Xi, Yi) by (X, Y ). Since we have

E exp

( n∑

i=1

log[Ai(θ)]− n log[EA(θ)]

)
= 1,

from the usual PAC-Bayesian argument, we have with probability at least1 − ε,
for anyθ1 ∈ R

d,

∫
ρθ1(dθ)

( n∑

i=1

log[Ai(θ)]

)
− n

∫
ρθ1(dθ) log[A(θ)] ≤ K(ρθ1 , ρθ0) + log(ε−1)

≤ β‖θ1 − θ0‖2
2

+ log(ε−1)

From (6.26) and (6.28), with probability at least1− ε, for anyθ1 ∈ R
d, we get

r′(θ0, θ1) ≤
1

α
log

{
1 + E

[∫
ρθ1(dθ)

(
−W (θ) +

α‖X‖2
β

+
1

2

(
−W (θ) +

α‖X‖2
β

)2

+
8aα‖X‖2L(θ)

βξ
+

4c0α
2‖X‖4
β2

)]}
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+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα
+ λ(‖Q−1/2

λ θ0‖2 − ‖Q−1/2
λ θ1‖2).

Now from (6.27) andα‖X‖2
β

= −L(θ1) +
∫
ρθ1(dθ)L(θ), we have

∫
ρθ1(dθ)

(
−W (θ) +

α‖X‖2
β

)2

= Varρθ1
[
L(θ)

]
+W (θ1)

2

= W (θ1)
2 +

4αL(θ1)‖X‖2
β

+
2α2‖X‖4

β2
.

PROPOSITION6.8 With probability at least1− ε, for anyθ1 ∈ R
d,

r′(θ0, θ1) ≤
1

α
log

{
1 + E

[
−W (θ1) +

W (θ1)
2

2
+

(
2 + 8a/ξ

)
α‖X‖2L(θ1)
β

+

(
1 + 8a/ξ + 4c0

)
α2‖X‖4

β2

]}
+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα

+ λ(‖Q−1/2
λ θ0‖2 − ‖Q−1/2

λ θ1‖2)

≤ E

[
J(θ0)

2 − J(θ1)
2 +

1

2α
W (θ1)

2 +
(2 + 8a/ξ)‖X‖2L(θ1)

β

+
(1 + 8a/ξ + 4c0)α‖X‖4

β2

]
+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα

+ λ(‖Q−1/2
λ θ0‖2 − ‖Q−1/2

λ θ1‖2).

By using the triangular inequality and Cauchy-Scwarz’s inequality, we get

1

α2
E
[
W (θ1)

2
]
= E

{[
〈θ1 − θ0, X〉2 + 2〈θ1 − θ0, X〉J(θ0)

]2}

≤
{
E
[
〈θ1 − θ0, X〉4

]1/2
+ 2E

[
〈θ1 − θ0, X〉4

]1/4
E
[
J(θ0)

4
]1/4}2

≤
{
χ‖θ1 − θ0‖2E

[〈
θ1 − θ0
‖θ1 − θ0‖

, X

〉2]

+ 2‖θ1 − θ0‖σ
√
κ′χ

√

E

[〈
θ1 − θ0
‖θ1 − θ0‖

, X

〉2]}2

≤ χqmax

qmax + λ
‖θ1 − θ0‖2

{
‖θ1 − θ0‖

√
χqmax

qmax + λ
+ 2σ

√
κ′
}2

,
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and

1

α
E
[
‖X‖2L(θ1)

]
= E

{[
‖X‖〈θ1 − θ0, X〉+ ‖X‖J(θ0)

]2}

≤ E
[
‖X‖4

]1/2{
E
[
〈θ1 − θ0, X〉4

]1/4
+ E

[
J(θ0)

4
]1/4}2

≤ κD

{
‖θ1 − θ0‖

√
χqmax

qmax + λ
+ 2σ

√
κ′
}2

,

Let us put

R̃(θ) = R(θ) + λ‖Q−1/2
λ θ‖2,

c1 = 4(2 + 8a/ξ),

c2 = 4(1 + 8a/ξ + 4c0),

δ =
c1κκ

′Dσ2

n
+

2χ
( log(ε−1)

n
+ c2κ2D2

n2

)[
2
√
κ′σ + ‖Θ‖√χ

]2

1− 4c1κχD
n

.

We have proved the following result.

PROPOSITION6.9 With probability at least1− ε, for anyθ1 ∈ R
d,

r′(θ0, θ1) ≤ R̃(θ0)− R̃(θ1) +
α

2
χ‖θ1 − θ0‖2

[
2
√
κ′σ + ‖θ1 − θ0‖

√
χ
]2

+
c1α

4β
κD
[√
κ′σ + ‖θ1 − θ0‖

√
χ
]2

+
c2ακ

2D2

4β2

+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα
.

Let us assume from now on thatθ1 ∈ Θ, our convex bounded parameter set. In
this case, as seen in (6.20), we have‖θ0−θ1‖2 ≤ R̃(θ1)− R̃(θ0). We can also use
the fact that

[√
κ′σ + ‖θ1 − θ0‖

√
χ
]2 ≤ 2κ′σ2 + 2χ‖θ1 − θ0‖2.

We deduce from these remarks that with probability at least1− ε,

r′(θ0, θ1) ≤
{
−1+

αχ

2

[
2
√
κ′σ+‖Θ‖√χ

]2
+

β

2nα
+
c1ακDχ

2β

}[
R̃(θ1)−R̃(θ0)

]

+
c1ακDκ

′σ2

2β
+
c2ακ

2D2

4β2
+

log(ε−1)

nα
.

Let us assume thatn > 4c1κχD and let us choose

β =
nα

2
,
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α =
1

2χ
[
2
√
κ′σ + ‖Θ‖√χ

]2
(
1− 4c1κχD

n

)
,

to get

r′(θ0, θ1) ≤ −R̃(θ1)− R̃(θ0)

2
+ δ.

Plugging this into (6.25), we get

R̃(θ̄)− R̃(θ0)

2
− δ ≤ r′(θ̄, θ0) ≤ max

θ1∈Θ

(
R̃(θ0)− R̃(θ1)

2

)
+ γ + δ = γ + δ,

hence

R̃(θ̄)− R̃(θ0) ≤ 2γ + 4δ.

Computing the numerical values of the constants whenξ = 0.8 givesc1 < 95 and
c2 < 1511.

6.4. PROOF OF THEOREM 5.1. We use the standard way of obtaining PAC
bounds through upper bounds on Laplace transform of appropriate random vari-
ables. This argument is synthetized in the following result.

LEMMA 6.10 For anyε > 0 and any real-valued random variableV such that
E
[
exp(V )

]
≤ 1, with probability at least1− ε, we have

V ≤ log(ε−1).

Let V1(f̂) =
∫ [

L♭(f̂ , f) + γ∗R̄(f)
]
π∗
−γ∗R̄(df)− γR̄(f̂)

− I∗(γ∗) + I(γ) + log

(∫
exp
[
−Ê(f)

]
π(df)

)
− log

[
dρ

dπ̂

(
f̂
)]
,

andV2 = − log

(∫
exp
[
−Ê(f)

]
π(df)

)
+ log

(∫
exp
[
−E♯(f)

]
π(df)

)

To prove the theorem, according to Lemma 6.10, it suffices to prove that

E

{∫
exp
[
V1(f̂)

]
ρ(df̂)

}
≤ 1 and E

[∫
exp(V2)ρ(df̂)

]
≤ 1.

These two inequalities are proved in the following two sections.
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6.4.1. Proof ofE
{∫

exp
[
V1(f̂)

]
ρ(df̂)

}
≤ 1. From Jensen’s inequality, we have

∫ [
L♭(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df)

=

∫ [
L̂(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df) +

∫ [
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗
−γ∗R̄(df)

≤
∫ [

L̂(f̂ , f) + γ∗R̄(f)
]
π∗
−γ∗R̄(df) + log

∫
exp
[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗
−γ∗R̄(df).

From Jensen’s inequality again,

−Ê(f̂) = − log

∫
exp
[
L̂(f̂ , f)

]
π∗(df)

= − log

∫
exp
[
L̂(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df)− log

∫
exp
[
−γ∗R̄(f)

]
π∗(df)

≤ −
∫

[L̂(f̂ , f) + γ∗R̄(f)]π∗
−γ∗R̄(df) + I∗(γ∗).

From the two previous inequalities, we get

V1(f̂) ≤
∫ [

L̂(f̂ , f) + γ∗R̄(f)
]
π∗
−γ∗R̄(df)

+ log

∫
exp
[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗(df)− γR̄(f̂)

− I∗(γ∗) + I(γ) + log

(∫
exp
[
−Ê(f)

]
π(df)

)
− log

[
dρ

dπ̂
(f̂)

]
,

=

∫ [
L̂(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df)

+ log

∫
exp
[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗(df)− γR̄(f̂)

− I∗(γ∗) + I(γ)− Ê(f̂)− log

[
dρ

dπ
(f̂)

]
,

≤ log

∫
exp
[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗
−γ∗R̄(df)(df)

− γR̄(f̂) + I(γ)− log

[
dρ

dπ
(f̂)

]

= log

∫
exp
[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗
−γ∗R̄(df) + log

[
dπ−γR̄

dρ
(f̂)

]
,

hence, by using Fubini’s inequality and the equality
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E

{
exp
[
−L̂(f̂ , f)

]}
= exp

[
−L♭(f̂ , f)

]
,

we obtainE
∫

exp
[
V1(f̂)

]
ρ(f̂)

≤ E

∫ (∫
exp
[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗
−γ∗R̄(df)

)
π−γR̄(df̂)

=

∫ (∫
E exp

[
L♭(f̂ , f)− L̂(f̂ , f)

]
π∗
−γ∗R̄(df)

)
π−γR̄(df̂) = 1.

6.4.2. Proof ofE
[∫

exp(V2)ρ(df̂)
]
≤ 1. It relies on the following result.

LEMMA 6.11 LetW be a real-valued measurable function defined on a product
spaceA1 × A2 and letµ1 andµ2 be probability distributions on respectivelyA1

andA2.

• if Ea1∼µ1

{
log
[
Ea2∼µ2

{
exp
[
−W(a1, a2)

]}]}
< +∞, then we have

− Ea1∼µ1

{
log
[
Ea2∼µ2

{
exp
[
−W(a1, a2)

]}]}

≤ − log
{
Ea2∼µ2

[
exp
[
−Ea1∼µ1

W(a1, a2)
]]}

.

• if W > 0 onA1 ×A2 andEa2∼µ2

{
Ea1∼µ1

[
W(a1, a2)

]−1
}−1

< +∞, then

Ea1∼µ1

{
Ea2∼µ2

[
W(a1, a2)

−1
]−1}

≤ Ea2∼µ2

{
Ea1∼µ1

[
W(a1, a2)

]−1
}−1

.

PROOF.

• Let A be a measurable space andM denote the set of probability distribu-
tions onA. The Kullback-Leibler divergence between a distributionρ and
a distributionµ is

K(ρ, µ) ,




Ea∼ρ log

[
dρ

dµ
(a)

]
if ρ≪ µ,

+∞ otherwise,
(6.29)

where
dρ

dµ
denotes as usual the density ofρ w.r.t. µ. The Kullback-Leibler

divergence satisfies the duality formula (see, e.g., [8, page 159]): for any
real-valued measurable functionh defined onA,

inf
ρ∈M

{
Ea∼ρ h(a) +K(ρ, µ)

}
= − logEa∼µ

{
exp
[
−h(a)

]}
. (6.30)
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By using twice (6.30) and Fubini’s theorem, we have

−Ea1∼µ1

{
log
{
Ea2∼µ2

[
exp
[
−W(a1, a2)

]]}}

= Ea1∼µ1

{
inf
ρ

{
Ea2∼ρ

[
W(a1, a2)

]
+K(ρ, µ2)

}}

≤ inf
ρ

{
Ea1∼µ1

[
Ea2∼ρ

[
W(a1, a2)

]
+K(ρ, µ2)

]}

= − log
{
Ea2∼µ2

[
exp
{
−Ea1∼µ1

[
W(a1, a2)

]}]}
.

• By using twice (6.30) and the first assertion of Lemma 6.11, wehave

Ea1∼µ1

{
Ea2∼µ2

[
W(a1, a2)

−1
]−1}

= Ea1∼µ1

{
exp
{
− log

[
Ea2∼µ2

{
exp
[
− logW(a1, a2)

]}]}}

= Ea1∼µ1

{
exp
{
inf
ρ

[
Ea2∼ρ

{
log
[
W(a1, a2)

]}
+K(ρ, µ2)

]}}

≤ inf
ρ

{
exp
[
K(ρ, µ2)

]
Ea1∼µ1

{
exp
{
Ea2∼ρ

[
log
[
W(a1, a2)

]]}}

≤ inf
ρ

{
exp
[
K(ρ, µ2)

]
exp
{
Ea2∼ρ

{
log
[
Ea1∼µ1

[
W(a1, a2)

]]}}

= exp
{
inf
ρ

{
Ea2∼ρ

[
log
{
Ea1∼µ1

[
W(a1, a2)

]}]
+K(ρ, µ2)

}}

= exp
{
− log

{
Ea2∼µ2

{
exp
[
− log

{
Ea1∼µ1

[
W(a1, a2)

]}]}}}

= Ea2∼µ2

{
Ea1∼µ1

[
W(a1, a2)

]−1
}−1

. �

From Lemma 6.11 and Fubini’s theorem, sinceV2 does not depend on̂f , we
have

E

[∫
exp(V2)ρ(df̂)

]
= E

[
exp(V2)

]

=
∫
exp
[
−E♯(f)

]
π(df)E

{[∫
exp
[
−Ê(f)

]
π(df)

]−1}

≤
∫
exp
[
−E♯(f)

]
π(df)

{∫
E

[
exp
[
Ê(f)

]]−1

π(df)
}−1

=
∫
exp
[
−E♯(f)

]
π(df)

{∫
E

[∫
exp
[
L̂(f, f ′)

]
π∗(df ′)

]−1

π(df)
}−1

=
∫
exp
[
−E

♯(f)
]
π(df)

{∫ [∫
exp
[
L♯(f, f ′)

]
π∗(df ′)

]−1

π(df)
}−1

= 1.
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This concludes the proof that for anyγ ≥ 0, γ∗ ≥ 0 andε > 0, with probability
(with respect to the distributionP⊗nρ generating the observationsZ1, . . . , Zn and
the randomized prediction function̂f ) at least1− 2ε:

V1(f̂) + V2 ≤ 2 log(ε−1).

6.5. PROOF OF LEMMA 5.3. Let us look atF from the point of view off ∗.
Precisely letSRd(O, 1) be the sphere ofRd centered at the origin and with radius
1 and

S =
{ d∑

j=1

θjϕj ; (θ1, . . . , θd) ∈ SRd(O, 1)
}
.

Introduce
Ω =

{
φ ∈ S; ∃u > 0 s.t.f ∗ + uφ ∈ F

}
.

For anyφ ∈ Ω, let uφ = sup{u > 0 : f ∗ + uφ ∈ F}. Sinceπ is the uniform
distribution on the convex setF (i.e., the one coming from the uniform distribution
onΘ), we have

∫
exp
{
−α[R(f)− R(f ∗)]

}
π(df)

=

∫

φ∈Ω

∫ uφ

0

exp
{
−α[R(f ∗ + uφ)− R(f ∗)]

}
ud−1dudφ.

Let cφ = E[φ(X)ℓ̃′Y (f
∗(X))] andaφ = E

[
φ2(X)

]
. Since

f ∗ ∈ argminf∈FE
{
ℓ̃Y
[
f(X)

]}
,

we havecφ ≥ 0 (and cφ = 0 if both −φ andφ belong toΩ). Moreover from
Taylor’s expansion,

b1aφu
2

2
≤ R(f ∗ + uφ)− R(f ∗)− ucφ ≤ b2aφu

2

2
.

Introduce

ψφ =

∫ uφ

0
exp
{
−α[ucφ + 1

2
b1aφu

2]
}
ud−1du∫ uφ

0
exp
{
−β[ucφ + 1

2
b2aφu2]

}
ud−1du

.

For any0 < α < β, we have
∫
exp
{
−α[R(f)− R(f ∗)]

}
π(df)∫

exp
{
−β[R(f)− R(f ∗)]

}
π(df)

≤ inf
φ∈S

ψφ.
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For anyζ > 1, by a change of variable,

ψφ < ζd
∫ uφ

0
exp
{
−α[ζucφ + 1

2
b1aφζ

2u2]
}
ud−1du∫ uφ

0
exp
{
−β[ucφ + 1

2
b2aφu2]

}
ud−1du

≤ ζdsup
u>0

exp
{
β[ucφ +

1
2
b2aφu

2]− α[ζucφ +
1
2
b1aφζ

2u2]
}
.

By taking ζ =
√

(b2β)/(b1α) when cφ = 0 and ζ =
√

(b2β)/(b1α) ∨ (β/α)
otherwise, we obtainψφ < ζd, hence

log

(∫
exp
{
−α[R(f)− R(f ∗)]

}
π(df)∫

exp
{
−β[R(f)− R(f ∗)]

}
π(df)

)
≤





d

2
log
(b2β
b1α

)
when sup

φ∈Ω
cφ = 0,

d log
(√b2β

b1α
∨ β

α

)
otherwise,

which proves the announced result.

6.6. PROOF OFLEMMA 5.4. For−(2AH)−1 ≤ λ ≤ (2AH)−1, introduce the
random variables

F = f(X) F ∗ = f ∗(X),

Ω = ℓ̃′Y (F
∗) + (F − F ∗)

∫ 1

0

(1− t)ℓ̃′′Y (F
∗ + t(F − F ∗))dt,

L = λ[ℓ̃(Y, F )− ℓ̃(Y, F ∗)],

and the quantities

a(λ) =
M2A2 exp(Hb2/A)

2
√
π(1− |λ|AH)

and

Ã = Hb2/2 + A log(M) =
A

2
log
{
M2 exp

[
Hb2/(2A)

]}
.

From Taylor-Lagrange formula, we have

L = λ(F − F ∗)Ω.

SinceE
[
exp
(
|Ω|/A

)
|X
]
≤M exp

[
Hb2/(2A)

]
, Lemma D.2 gives

log
{
E

[
exp
{
α[Ω− E(Ω|X)]/A

}
|X
]}

≤ M2α2 exp
(
Hb2/A

)

2
√
π(1− |α|)

for any−1 < α < 1, and ∣∣E(Ω|X)
∣∣ ≤ Ã. (6.31)

62



By consideringα = Aλ[f(x)− f ∗(x)] ∈ [−1/2; 1/2] for fixedx ∈ X, we get

log
{
E

[
exp
[
L− E(L|X)

]
|X
]}

≤ λ2(F − F ∗)2a(λ). (6.32)

Let us put moreover

L̃ = E(L|X) + a(λ)λ2(F − F ∗)2.

Since−(2AH)−1 ≤ λ ≤ (2AH)−1, we haveL̃ ≤ |λ|HÃ+ a(λ)λ2H2 ≤ b′ with
b′ = Ã/(2A) +M2 exp

(
Hb2/A

)
/(4

√
π). SinceL − E(L) = L − E(L|X) +

E(L|X)− E(L), by using Lemma D.1, (6.32) and (6.31), we obtain

log
{
E

[
exp
[
L− E(L)

]]}
≤ log

{
E

[
exp
[
L̃− E(L̃)

]]}
+ λ2a(λ)E

[
(F − F ∗)2

]

≤ E
(
L̃2
)
g(b′) + λ2a(λ)E

[
(F − F ∗)2

]

≤ λ2E
[
(F − F ∗)2

][
Ã2g(b′) + a(λ)

]
,

with g(u) =
[
exp(u)−1−u

]
/u2. Computations show that for any−(2AH)−1 ≤

λ ≤ (2AH)−1,

Ã2g(b′) + a(λ) ≤ A2

4
exp
[
M2 exp

(
Hb2/A

)]
.

Consequently, for any−(2AH)−1 ≤ λ ≤ (2AH)−1, we have

log
{
E

[
exp
{
λ[ℓ̃(Y, F )− ℓ̃(Y, F ∗)]

}]}

≤ λ[R(f)−R(f ∗)] + λ2E
[
(F − F ∗)2

]A2

4
exp
[
M2 exp

(
Hb2/A

)]
.

Now it remains to notice thatE
[
(F − F ∗)2

]
≤ 2[R(f) − R(f ∗)]/b1. Indeed

consider the functionφ(t) = R(f ∗ + t(f − f ∗)) − R(f ∗), wheref ∈ F and
t ∈ [0; 1]. From the definition off ∗ and the convexity ofF, we haveφ ≥ 0 on
[0; 1]. Besides we haveφ(t) = φ(0)+ tφ′(0)+ t2

2
φ′′(ζt) for someζt ∈]0; 1[. So we

haveφ′(0) ≥ 0, and using the lower bound on the convexity, we obtain fort = 1

b1
2
E(F − F ∗)2 ≤ R(f)− R(f ∗). (6.33)

6.7. PROOF OFLEMMA 5.6. We have

E

({
[Y − f(X)]2 − [Y − f ∗(X)]2

}2)

= E

(
[f ∗ − f(X)]2

{
2[Y − f ∗(X)] + [f ∗ − f(X)]

}2)
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= E

(
[f ∗ − f(X)]2

{
4E
(
[Y − f ∗(X)]2

∣∣X
)

+ 4E(Y − f ∗(X)|X)[f ∗(X)− f(X)] + [f ∗(X)− f(X)]2
})

≤ E

(
[f ∗ − f(X)]2

{
4σ2 + 4σ|f ∗(X)− f(X)|+ [f ∗(X)− f(X)]2

})

≤ E

(
[f ∗ − f(X)]2(2σ +H)2

)

≤ (2σ +H)2[R(f)− R(f ∗)],

where the last inequality is the usual relation between excess risk andL2 distance
using the convexity ofF (see above (6.33) for a proof).

6.8. PROOF OFLEMMA 5.7. LetS = {s ∈ Flin : E[s(X)2] = 1}. Using the
triangular inequality inL2, we get

E

({
[Y − f(X)]2 − [Y − f ∗(X)]2

}2)

= E

({
2[f ∗ − f(X)][Y − f ∗(X)] + [f ∗(X)− f(X)]2

}2)

≤
(
2
√
E
{
[f ∗(X)− f(X)]2[Y − f ∗(X)]2

}
+
√

E
{
[f ∗(X)− f(X)]4

})2

≤
[
2
√
E
(
[f ∗(X)− f(X)]2

)√
sup
s∈S

E
(
s2(X)[Y − f ∗(X)]2

)

+ E
(
[f ∗(X)− f(X)]2

)√
sup
s∈S

E
[
s4(X)

]]2

≤ V [R(f)−R(f ∗)],

with

V =

[
2
√
sup
s∈S

E
(
s2(X)[Y − f ∗(X)]2

)

+
√

sup
f ′,f ′′∈F

E
(
[f ′(X)− f ′′(X)]2

)√
sup
s∈S

E
[
s4(X)

]]2
,

where the last inequality is the usual relation between excess risk andL2 distance
using the convexity ofF (see above (6.33) for a proof).

A. UNIFORMLY BOUNDED CONDITIONAL VARIANCE IS NECESSARY TO

REACH d/n RATE

In this section, we will see that the target (0.2) cannot be reached if we just
assume thatY has a finite variance and that the functions inF are bounded.
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For this, consider an input spaceX partitioned into two setsX1 andX2: X =
X1 ∪ X2 andX1 ∩ X2 = ∅. Let ϕ1(x) = 1x∈X1

andϕ2(x) = 1x∈X2
. Let F ={

θ1ϕ1 + θ2ϕ2; (θ1, θ2) ∈ [−1, 1]2
}
.

THEOREM A.1 For any estimatorf̂ and any training set sizen ≥ 1, we have

sup
P

{
ER(f̂)− R(f ∗)

}
≥ 1

4
√
n
, (A.1)

where the supremum is taken with respect to all probability distributions such that
f (reg) ∈ F andVarY ≤ 1.

PROOF. Let β satisfying0 < β ≤ 1 be some parameter to be chosen later.
Let Pσ, σ ∈ {−,+}, be two probability distributions onX× R such that for any
σ ∈ {−,+},

Pσ(X1) = 1− β,

Pσ(Y = 0|X = x) = 1 for anyx ∈ X1,

and

Pσ

(
Y =

1√
β
|X = x

)
=

1 + σ
√
β

2

= 1− Pσ

(
Y = − 1√

β
|X = x

)
for anyx ∈ X2.

One can easily check that for anyσ ∈ {−,+}, VarPσ(Y ) = 1 − β2 ≤ 1 and
f (reg)(x) = σϕ2 ∈ F. To prove Theorem A.1, it suffices to prove (A.1) when the
supremum is taken amongP ∈ {P−, P+}. This is done by applying Theorem
8.2 of [3]. Indeed, the pair(P−, P+) forms a(1, β, β)-hypercube in the sense of
Definition 8.2 with edge discrepancy of type I (see (8.5), (8.11) and (10.20) for
q = 2): dI = 1. We obtain

sup
P∈{P−,P+}

{
ER(f̂)− R(f ∗)

}
≥ β(1− β

√
n),

which gives the desired result by takingβ = 1/(2
√
n). �

B. EMPIRICAL RISK MINIMIZATION ON A BALL : ANALYSIS DERIVED FROM

THE WORK OFBIRGÉ AND MASSART

We will use the following covering number upper bound [16, Lemma 1]
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LEMMA B.1 If F has a diameterH > 0 forL∞-norm (i.e.,supf1,f2∈F,x∈X |f1(x)−
f2(x)| = H), then for any0 < δ ≤ H, there exists a setF# ⊂ F, of cardinal-
ity |F#| ≤ (3H/δ)d such that for anyf ∈ F there existsg ∈ F# such that
‖f − g‖∞ ≤ δ.

We apply a slightly improved version of Theorem 5 in Birgé and Massart [5].
First for homogeneity purpose, we modify Assumption M2 by replacing the con-
dition “σ2 ≥ D/n” by “σ2 ≥ B2D/n” where the constantB is the one appearing
in (5.3) of [5]. This modifies Theorem 5 of [5] to the extent that “∨1” should be
replaced with “∨B2”. Our second modification is to remove the assumption that
Wi andXi are independent. A careful look at the proof shows that the result still
holds when (5.2) is replaced by: for anyx ∈ X, andm ≥ 2

Es[M
m(Wi)|Xi = x] ≤ amA

m, for all i = 1, . . . , n

We considerW = Y −f ∗(X), γ(z, f) = (y−f(x))2,∆(x, u, v) = |u(x)−v(x)|,
andM(w) = 2(|w| + H). From (1.7), for allm ≥ 2, we haveE

{
[(2(|W | +

H)]m|X = x] ≤ m!
2
[4M(A+H)]m. Now considerB′ andr such that Assumption

M2 of [5] holds forD = d. Inequality (5.8) forτ = 1/2 of [5] implies that
for any v ≥ κ d

n
(A2 + H2) log(2B′ + B′r

√
d/n), with probability at least1 −

κ exp
[ −nv
κ(A2 +H2)

]
,

R(f̂ (erm))− R(f ∗) + r(f ∗)− r(f̂ (erm)) ≤
(
E
{[
f̂ (erm)(X)− f ∗(X)

]2} ∨ v
)
/2

for some large enough constantκ depending onM . Now from Proposition 1 of

[5] and Lemma B.1, one can take eitherB′ = 6 andr
√
d =

√
B̃ orB′ = 3

√
n/d

andr = 1. By usingE
{[
f̂ (erm)(X)− f ∗(X)

]2} ≤ R(f̂ (erm))− R(f ∗) (sinceF is

convex andf ∗ is the orthogonal projection ofY onF), andr(f ∗)− r(f̂ (erm)) ≥ 0
(by definition off̂ (erm)), the desired result can be derived.

Theorem 1.5 provides ad/n rate provided that the geometrical quantityB̃
is at most of ordern. Inequality (3.2) of [5] allows to bracket̃B in terms of
B = supf∈span{ϕ1,...,ϕd} ‖f‖2∞/E[f(X)]2, namelyB ≤ B̃ ≤ Bd. To understand
better how this quantity behaves and to illustrate some of the presented results, let
us give the following simple example.

Example 1. Let A1, . . . , Ad be a partition ofX, i.e., X = ⊔d
j=1Aj . Now

consider the indicator functionsϕj = 1Aj
, j = 1, . . . , d: ϕj is equal to1 on

Aj and zero elsewhere. Consider thatX andY are independent and thatY is a
Gaussian random variable with meanθ and varianceσ2. In this situation:f ∗

lin =
f (reg) =

∑d
j=1 θϕj. According to Theorem 1.1, if we know an upper boundH on

‖f (reg)‖∞ = θ, we have that the truncated estimator(f̂ (ols) ∧H) ∨ −H satisfies

ER(f̂ (ols)
H )−R(f ∗

lin) ≤ κ
(σ2 ∨H2)d logn

n
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for some numerical constantκ. Let us now apply Theorem C.1. Introducepj =
P(X ∈ Aj) andpmin = minj pj . We haveQ =

(
Eϕj(X)ϕk(X)

)
j,k

= Diag(pj),

K = 1 and‖θ∗‖ = θ
√
d. We can takeA = σ andM = 2. From Theorem C.1,

for λ = dLε/n, as soon asλ ≤ pmin, the ridge regression estimator satisfies with
probability at least1− ε:

R(f̂ (ridge))−R(f ∗
lin) ≤ κLε

d

n

(
σ2 +

θ2d2L2
ε

npmin

)
(B.1)

for some numerical constantκ. Whend is large, the term(d2L2
ε)/(npmin) is felt,

and leads to suboptimal rates. Specifically, sincepmin ≤ 1/d, the r.h.s. of (B.1) is
greater thand4/n2, which is much larger thand/nwhend is much larger thann1/3.
If Y is not Gaussian but almost surely uniformly bounded byC < +∞, then the
randomized estimator proposed in Theorem 1.3 satisfies the nicer property: with
probability at least1− ε,

R(f̂)−R(f ∗
lin) ≤ κ(H2 + C2)

d log(3p−1
min) + log((logn)ε−1)

n
,

for some numerical constantκ. In this example, one can check thatB̃ = B̃′ =
1/pmin wherepmin = minj P(X ∈ Aj). As long aspmin ≥ 1/n, the target (0.1)
is reached from Corollary 1.5. Otherwise, without this assumption, the rate is in
(d log(n/d))/n. �

C. RIDGE REGRESSION ANALYSIS FROM THE WORK OFCAPONNETTO AND

DE V ITO

From [6], one can derive the following risk bound for the ridge estimator.

THEOREM C.1 Let qmin be the smallest eigenvalue of thed × d-product matrix
Q =

(
Eϕj(X)ϕk(X)

)
j,k

. Let K = supx∈X
∑d

j=1 ϕj(x)
2. Let ‖θ∗‖ be the Eu-

clidean norm of the vector of parameters off ∗
lin =

∑d
j=1 θ

∗
jϕj. Let 0 < ε < 1/2

andLε = log2(ε−1). Assume that for anyx ∈ X,

E

{
exp
[
|Y − f ∗

lin(X)|/A
]
|X = x

}
≤M.

For λ = (KdLε)/n, if λ ≤ qmin, the ridge regression estimator satisfies with
probability at least1− ε:

R(f̂ (ridge))−R(f ∗
lin) ≤

κLεd

n

(
A2 +

λ

qmin

KLε‖θ∗‖2
)

(C.1)

for some positive constantκ depending only onM .

67



PROOF. One can check that̂f (ridge) ∈ argminf∈H r(f) + λ
∑d

j=1 ‖f‖2H, where
H is the reproducing kernel Hilbert space associated with thekernelK : (x, x′) 7→∑d

j=1 ϕj(x)ϕk(x
′). Introducef (λ) ∈ argminf∈H R(f)+λ

∑d
j=1 ‖f‖2H. Let us use

Theorem 4 in [6] and the notation defined in their Section 5.2.Letϕ be the column
vector of functions[ϕj ]

d
j=1, Diag(aj) denote the diagonald×d-matrix whosej-th

element on the diagonal isaj, andId be thed × d-identity matrix. LetU and
q1, . . . , qd be such thatUUT = I andQ = UDiag(qj)UT . We havef ∗

lin = ϕT θ∗

andf (λ) = ϕT (Q + λI)−1Qθ∗, hence

f ∗
lin − f (λ) = ϕTUDiag(λ/(qj + λ))UT θ∗.

After some computations, we obtain that the residual, reconstruction error and
effective dimension respectively satisfyA(λ) ≤ λ2

qmin
‖θ∗‖2, B(λ) ≤ λ2

q2
min

‖θ∗‖2,
andN(λ) ≤ d. The result is obtained by noticing that the leading terms in(34) of
[6] areA(λ) and the term with the effective dimensionN(λ). �

The dependence in the sample sizen is correct since1/n is known to be mini-
max optimal. The dependence on the dimensiond is not optimal, as it is observed
in the example given page 66. Besides the high probability bound (C.1) holds
only for a regularization parameterλ depending on the confidence levelε. So we
do not have a single estimator satisfying a PAC bound for every confidence level.
Finally the dependence on the confidence level is larger thanexpected. It contains
an unusual square. The example given page 66 illustrates Theorem C.1.

D. SOME STANDARD UPPER BOUNDS ON LOG-LAPLACE TRANSFORMS

LEMMA D.1 Let V be a random variable almost surely bounded byb ∈ R. Let
g : u 7→

[
exp(u)− 1− u

]
/u2.

log
{
E

[
exp
[
V − E(V )

]]}
≤ E

(
V 2
)
g(b).

PROOF. Sinceg is an increasing function, we haveg(V ) ≤ g(b). By using the
inequalitylog(1 + u) ≤ u, we obtain

log
{
E

[
exp
[
V − E(V )

]]}
= −E(V ) + log

{
E
[
1 + V + V 2g(V )

]}

≤ E
[
V 2g(V )

]
≤ E

(
V 2
)
g(b).

�

LEMMA D.2 Let V be a real-valued random variable such thatE
[
exp
(
|V |
)]

≤
M for someM > 0. Then we have|E(V )| ≤ logM , and for any−1 < α < 1,

log
{
E

[
exp
{
α
[
V − E(V )

]}]}
≤ α2M2

2
√
π(1− |α|) .
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PROOF. First note that by Jensen’s inequality, we have|E(V )| ≤ log(M). By
usinglog(u) ≤ u− 1 and Stirling’s formula, for any−1 < α < 1, we have

log
{
E

[
exp
{
α
[
V − E(V )

]}]}
≤ E

[
exp
{
α
[
V − E(V )

]}]}
− 1

= E

{
exp
{
α
[
V − E(V )

]}
− 1− α

[
V − E(V )

]}

≤ E

{
exp
[
|α||V − E(V )|

]
− 1− |α||V − E(V )|

}

≤ E

{
exp
[
|V − E(V )|

]}
sup
u≥0

{[
exp(|α|u)− 1− |α|u

]
exp(−u)

}

≤ E

[
exp
(
|V |+ |E(V )|

)]
sup
u≥0

∑

m≥2

|α|mum
m!

exp(−u)

≤M2
∑

m≥2

|α|m
m!

sup
u≥0

um exp(−u) = α2M2
∑

m≥2

|α|m−2

m!
mm exp(−m)

≤ α2M2
∑

m≥2

|α|m−2

√
2πm

≤ α2M2

2
√
π(1− |α|) .

�
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E. EXPERIMENTAL RESULTS FOR THE MIN-MAX TRUNCATED ESTIMATOR

DEFINED IN SECTION 3.3

Table 1: Comparison of the min-max truncated estimatorf̂ with the ordinary least
squares estimator̂f (ols) for the mixture noise (see Section 3.4.1) withρ = 0.1
andp = 0.005. In parenthesis, the95%-confidence intervals for the estimated
quantities.
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(f̂
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E
R
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R
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∗ )

E
R
(f̂
)
−
R
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∗ )

E
R
[(
f̂

(o
ls

) )
|f̂

6=
f̂

(o
ls

) ]
−
R
(f

∗ )

E
[R

(f̂
)|f̂

6=
f̂

(o
ls

) ]
−
R
(f

∗ )

INC(n=200,d=1) 1000 419 405 0.567(±0.083) 0.178(±0.025) 1.191(±0.178) 0.262(±0.052)
INC(n=200,d=2) 1000 506 498 1.055(±0.112) 0.271(±0.030) 1.884(±0.193) 0.334(±0.050)
HCC(n=200,d=2) 1000 502 494 1.045(±0.103) 0.267(±0.024) 1.866(±0.174) 0.316(±0.032)
TS(n=200,d=2) 1000 561 554 1.069(±0.089) 0.310(±0.027) 1.720(±0.132) 0.367(±0.036)
INC(n=1000,d=2) 1000 402 392 0.204(±0.015) 0.109(±0.008) 0.316(±0.029) 0.081(±0.011)
INC(n=1000,d=10) 1000 950 946 1.030(±0.041) 0.228(±0.016) 1.051(±0.042) 0.207(±0.014)
HCC(n=1000,d=10) 1000 942 942 0.980(±0.038) 0.222(±0.015) 1.008(±0.039) 0.203(±0.015)
TS(n=1000,d=10) 1000 976 973 1.009(±0.037) 0.228(±0.017) 1.018(±0.038) 0.217(±0.016)
INC(n=2000,d=2) 1000 209 207 0.104(±0.007) 0.078(±0.005) 0.206(±0.021) 0.082(±0.012)
HCC(n=2000,d=2) 1000 184 183 0.099(±0.007) 0.076(±0.005) 0.196(±0.023) 0.070(±0.010)
TS(n=2000,d=2) 1000 172 171 0.101(±0.007) 0.080(±0.005) 0.206(±0.020) 0.083(±0.012)
INC(n=2000,d=10) 1000 669 669 0.510(±0.018) 0.206(±0.012) 0.572(±0.023) 0.117(±0.009)
HCC(n=2000,d=10) 1000 669 669 0.499(±0.018) 0.207(±0.013) 0.561(±0.023) 0.125(±0.011)
TS(n=2000,d=10) 1000 754 753 0.516(±0.018) 0.195(±0.013) 0.558(±0.022) 0.131(±0.011)
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Table 2: Comparison of the min-max truncated estimatorf̂ with the ordinary least
squares estimator̂f (ols) for the mixture noise (see Section 3.4.1) withρ = 0.4
andp = 0.005. In parenthesis, the95%-confidence intervals for the estimated
quantities.
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−
R
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E
[R

(f̂
)|f̂

6=
f̂

(o
ls

) ]
−
R
(f
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INC(n=200,d=1) 1000 234 211 0.551(±0.063) 0.409(±0.042) 1.211(±0.210) 0.606(±0.110)
INC(n=200,d=2) 1000 195 186 1.046(±0.088) 0.788(±0.061) 2.174(±0.293) 0.848(±0.118)
HCC(n=200,d=2) 1000 222 215 1.028(±0.079) 0.748(±0.051) 2.157(±0.243) 0.897(±0.112)
TS(n=200,d=2) 1000 291 268 1.053(±0.079) 0.805(±0.058) 1.701(±0.186) 0.851(±0.093)
INC(n=1000,d=2) 1000 127 117 0.201(±0.013) 0.181(±0.012) 0.366(±0.053) 0.207(±0.035)
INC(n=1000,d=10) 1000 262 249 1.023(±0.035) 0.902(±0.030) 1.238(±0.081) 0.777(±0.054)
HCC(n=1000,d=10) 1000 201 192 0.991(±0.033) 0.902(±0.031) 1.235(±0.088) 0.790(±0.067)
TS(n=1000,d=10) 1000 171 162 1.009(±0.033) 0.951(±0.031) 1.166(±0.098) 0.825(±0.071)
INC(n=2000,d=2) 1000 80 77 0.105(±0.007) 0.099(±0.006) 0.214(±0.042) 0.135(±0.029)
HCC(n=2000,d=2) 1000 44 42 0.102(±0.007) 0.099(±0.007) 0.187(±0.050) 0.120(±0.034)
TS(n=2000,d=2) 1000 47 47 0.101(±0.007) 0.099(±0.007) 0.147(±0.032) 0.103(±0.026)
INC(n=2000,d=10) 1000 116 113 0.511(±0.016) 0.491(±0.016) 0.611(±0.052) 0.437(±0.042)
HCC(n=2000,d=10) 1000 110 105 0.500(±0.016) 0.481(±0.015) 0.602(±0.056) 0.430(±0.044)
TS(n=2000,d=10) 1000 101 98 0.511(±0.016) 0.499(±0.016) 0.601(±0.054) 0.486(±0.051)
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Table 3: Comparison of the min-max truncated estimatorf̂ with the ordinary least
squares estimator̂f (ols) with the heavy-tailed noise (see Section 3.4.1).

n
b

o
fi

te
ra

tio
n

s

n
b

o
fi

te
r.

w
ith
R
(f̂
)
6=
R
(f̂

(o
ls

) )

n
b

o
fi

te
r.

w
ith
R
(f̂
)
<
R
(f̂

(o
ls

) )

E
R
(f̂

(o
ls

) )
−
R
(f

∗ )

E
R
(f̂
)
−
R
(f

∗ )

E
R
[(
f̂

(o
ls

) )
|f̂

6=
f̂

(o
ls

) ]
−
R
(f

∗ )

E
[R

(f̂
)|f̂

6=
f̂

(o
ls

) ]
−
R
(f

∗ )

INC(n=200,d=1) 1000 163 145 7.72(±3.46) 3.92(±0.409) 30.52(±20.8) 7.20(±1.61)
INC(n=200,d=2) 1000 104 98 22.69(±23.14) 19.18(±23.09) 45.36(±14.1) 11.63(±2.19)
HCC(n=200,d=2) 1000 120 117 18.16(±12.68) 8.07(±0.718) 99.39(±105) 15.34(±4.41)
TS(n=200,d=2) 1000 110 105 43.89(±63.79) 39.71(±63.76) 48.55(±18.4) 10.59(±2.01)
INC(n=1000,d=2) 1000 104 100 3.98(±2.25) 1.78(±0.128) 23.18(±21.3) 2.03(±0.56)
INC(n=1000,d=10) 1000 253 242 16.36(±5.10) 7.90(±0.278) 41.25(±19.8) 7.81(±0.69)
HCC(n=1000,d=10) 1000 220 211 13.57(±1.93) 7.88(±0.255) 33.13(±8.2) 7.28(±0.59)
TS(n=1000,d=10) 1000 214 211 18.67(±11.62) 13.79(±11.52) 30.34(±7.2) 7.53(±0.58)
INC(n=2000,d=2) 1000 113 103 1.56(±0.41) 0.89(±0.059) 6.74(±3.4) 0.86(±0.18)
HCC(n=2000,d=2) 1000 105 97 1.66(±0.43) 0.95(±0.062) 7.87(±3.8) 1.13(±0.23)
TS(n=2000,d=2) 1000 101 95 1.59(±0.64) 0.88(±0.058) 8.03(±6.2) 1.04(±0.22)
INC(n=2000,d=10) 1000 259 255 8.77(±4.02) 4.23(±0.154) 21.54(±15.4) 4.03(±0.39)
HCC(n=2000,d=10) 1000 250 242 6.98(±1.17) 4.13(±0.127) 15.35(±4.5) 3.94(±0.25)
TS(n=2000,d=10) 1000 238 233 8.49(±3.61) 5.95(±3.486) 14.82(±3.8) 4.17(±0.30)
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Table 4: Comparison of the min-max truncated estimatorf̂ with the ordinary least
squares estimator̂f (ols) with an asymetric variant of the heavy-tailed noise.
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INC(n=200,d=1) 1000 87 77 5.49(±3.07) 3.00(±0.330) 35.44(±34.7) 6.85(±2.48)
INC(n=200,d=2) 1000 70 66 19.25(±23.23) 17.4(±23.2) 37.95(±13.1) 11.05(±2.87)
HCC(n=200,d=2) 1000 67 66 7.19(±0.88) 5.81(±0.397) 31.52(±10.5) 10.87(±2.64)
TS(n=200,d=2) 1000 76 68 39.80(±64.09) 37.9(±64.1) 34.28(±14.8) 9.21(±2.05)
INC(n=1000,d=2) 1000 101 92 2.81(±2.21) 1.31(±0.106) 16.76(±21.8) 1.88(±0.69)
INC(n=1000,d=10) 1000 211 195 10.71(±4.53) 5.86(±0.222) 29.00(±21.3) 6.03(±0.71)
HCC(n=1000,d=10) 1000 197 185 8.67(±1.16) 5.81(±0.177) 20.31(±5.59) 5.79(±0.43)
TS(n=1000,d=10) 1000 258 233 13.62(±11.27) 11.3(±11.2) 14.68(±2.45) 5.60(±0.36)
INC(n=2000,d=2) 1000 106 92 1.04(±0.37) 0.64(±0.042) 4.54(±3.45) 0.79(±0.16)
HCC(n=2000,d=2) 1000 99 90 0.90(±0.11) 0.66(±0.042) 3.23(±0.93) 0.82(±0.16)
TS(n=2000,d=2) 1000 84 81 1.11(±0.66) 0.60(±0.042) 6.80(±7.79) 0.69(±0.17)
INC(n=2000,d=10) 1000 238 222 6.32(±4.18) 3.07(±0.147) 16.84(±17.5) 3.18(±0.51)
HCC(n=2000,d=10) 1000 221 203 4.49(±0.98) 2.98(±0.091) 9.76(±4.39) 2.93(±0.22)
TS(n=2000,d=10) 1000 412 350 5.93(±3.51) 4.59(±3.44) 6.07(±1.76) 2.84(±0.16)
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Table 5: Comparison of the min-max truncated estimatorf̂ with the ordinary least
squares estimator̂f (ols) for standard Gaussian noise.
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INC(n=200,d=1) 1000 20 8 0.541(±0.048) 0.541(±0.048) 0.401(±0.168) 0.397(±0.167)
INC(n=200,d=2) 1000 1 0 1.051(±0.067) 1.051(±0.067) 2.566 2.757
HCC(n=200,d=2) 1000 1 0 1.051(±0.067) 1.051(±0.067) 2.566 2.757
TS(n=200,d=2) 1000 0 0 1.068(±0.067) 1.068(±0.067) – –
INC(n=1000,d=2) 1000 0 0 0.203(±0.013) 0.203(±0.013) – –
INC(n=1000,d=10) 1000 0 0 1.023(±0.029) 1.023(±0.029) – –
HCC(n=1000,d=10) 1000 0 0 1.023(±0.029) 1.023(±0.029) – –
TS(n=1000,d=10) 1000 0 0 0.997(±0.028) 0.997(±0.028) – –
INC(n=2000,d=2) 1000 0 0 0.112(±0.007) 0.112(±0.007) – –
HCC(n=2000,d=2) 1000 0 0 0.112(±0.007) 0.112(±0.007) – –
TS(n=2000,d=2) 1000 0 0 0.098(±0.006) 0.098(±0.006) – –
INC(n=2000,d=10) 1000 0 0 0.517(±0.015) 0.517(±0.015) – –
HCC(n=2000,d=10) 1000 0 0 0.517(±0.015) 0.517(±0.015) – –
TS(n=2000,d=10) 1000 0 0 0.501(±0.015) 0.501(±0.015) – –
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Figure 1: Surrounding points are the points of the training set generated several
times fromTS(1000, 10) (with the mixture noise withp = 0.005 andρ = 0.4)
that are not taken into account in the min-max truncated estimator (to the extent
that the estimator would not change by removing simultaneously all these points).
The min-max truncated estimatorx 7→ f̂(x) appears in dash-dot line, whilex 7→
E(Y |X = x) is in solid line. In these six simulations, it outperforms the ordinary
least squares estimator.
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Figure 2: Surrounding points are the points of the training set generated several
times fromTS(200, 2) (with the heavy-tailed noise) that are not taken into account
in the min-max truncated estimator (to the extent that the estimator would not
change by removing these points). The min-max truncated estimatorx 7→ f̂(x)
appears in dash-dot line, whilex 7→ E(Y |X = x) is in solid line. In these six
simulations, it outperforms the ordinary least squares estimator. Note that in the
last figure, it does not consider64 points among the200 training points.
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