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The Average State Complexity of Rational Operations

on Finite Languages∗

Frédérique Bassino, LIPN UMR CNRS 7030, Université Paris 13, 93430 Villetaneuse, France.
Laura Giambruno, Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy.

Cyril Nicaud, LIGM UMR CNRS 8049, Université Paris-Est, 77454 Marne-la-Vallée, France.

Considering the uniform distribution on sets of m non-empty words whose sum of lengths
is n, we establish that the average state complexities of the rational operations are
asymptotically linear.

1. Introduction

This paper addresses first and foremost the following issue: given a finite alphabet

A, a set of words X ⊂ A∗, and a word u ∈ A∗, we want to efficiently determine

whether u ∈ X∗.

With a nondeterministic automaton, one can determine whether a word u is in

X∗ in time proportional to the product of the lengths of u and X , where the length

of X is defined as the sum of the lengths of its elements.

With a deterministic automaton recognizing X∗, one can check whether a word

u is in X∗ in time proportional to the length of u, once the automaton has been

built. The problem here is that the number of states of the automaton can be

very large: in [6], Ellul, Krawetz, Shallit and Wang found an example where the

state complexity (i.e., the number of states of the minimal automaton) of X∗ is

exponential. More precisely, for every integer h ≥ 3, they gave a language Xh

of length Θ(h2), containing Θ(h) words, whose state complexity is Θ(h2h). Using

another measure on finite sets of words, Campeanu, Culik, Salomaa and Yu proved

in [3, 4] that if the set X is a finite language over an alphabet of at least three letters

having state complexity n ≥ 4, the state complexity of X∗ is 2n−3 + 2n−4 in the

worst case. In addition when X is not necessarily finite, the state complexity of X∗

is 2n−1 + 2n−2 in the worst case [16, 17].

An efficient alternative solution based on the Aho-Corasick automaton was pro-

posed in [5] by Clément, Duval, Guaiana, Perrin and Rindone. In their paper, they

describe an algorithm to compute all the decompositions of a word as a concatena-

tion of elements in a finite set of non-empty words.

Our paper is a contribution to the general problem, called the non-commutative

Frobenius problem by Kao, Shallit and Xu [12]. This name is originated by its

relation with the classical problem [10, 11] of which it is a generalization. We present

∗The authors acknowledge partial support from the ESF program AutoMathA. The first and
third authors were supported by the ANR GAMMA (project BLAN07-2 195422).
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an average case analysis of this problem. More precisely we analyze the average state

complexity of X∗, when all sets of m non-empty words and total length n are equally

liked to occur. In this setting, we let n tend to infinity. The analysis relies on the

general framework of analytic combinatorics [7] applied to sets of words, and on

classical automata constructions.

Our main result is that, in average, the state complexity of the star X∗ of a set

X of m non-empty words is linear with respect to the length of X . For an alphabet

with at least three letters, we slightly improve this result, and show that the average

state complexity of X∗ is asymptotically equivalent to n.

As a natural extension of this result, we also propose an average-case analysis of

the union and the concatenation, the two other rational operations, for finite lan-

guages. In both cases we establish the linearity, in average, of the state complexity.

The probability distribution chosen in this article is quite natural for the prob-

lem. Indeed, the sum of the lengths of the words can be seen as the size of a finite

language since it corresponds to the space needed for its direct representation (i.e.

by listing its elements). If we remove the condition that the number of words is fixed,

and consider the uniform distribution on finite languages of length n, the proba-

bility that a random language contains small words is very high. More precisely,

all the words of length one, are contained in a random set with a non-negligible

probability. Since our main focus is the star operation, this latter distribution is

not very interesting, because the probability that the star of a random set is A∗

(with state complexity one) is then too high.

It is important to remark that an interesting and rather different distribution

has been introduced in [8]. For a given n, Gruber and Holzer consider the uni-

form distribution over finite languages whose longest word is of length at most n.

The probability distribution is quite different from ours. For instance, there are

2(|A|n+1−1)/(|A|−1) distinct sets of size n, where we have around
(

n−1
m−1

)

|A|n sets. For

the probability distribution considered in [8], it is likely to have a large amount of

words of large size, and the authors proved that almost all languages have a state

complexity in Θ(|A|n/n). On the other side, for the distribution considered in this

article, the average state complexity of a language of length n is asymptotically

equivalent to n, as we shall see in Proposition 9 (p.8).

The paper is organized as follows. In Section 2 we recall some definitions, usual

automata constructions and establish some technical combinatorial properties about

words. In Section 3, we prove lower bounds for rational operations on finite lan-

guages, in the average case. The average state complexities are established in Sec-

tion 4 for the union and the concatenation, and in Section 5 for the star operation.

Finally, some algorithmic perspectives are discussed in Section 6.

A preliminary version of this work has been presented in [1].
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2. Preliminary

2.1. Automata and Words

We recall some definitions about automata and combinatorics on words. We refer

the readers to [9, 15, 2] for elements of theory of finite automata and to [13, 14, 15]

for combinatorics on words.

A finite automaton A over a finite alphabet A is a quintuple A = (A, Q, T, I, F )

where Q is a finite set of states, T ⊂ Q × A × Q is the set of transitions, I ⊂ Q is

the set of initial states and F ⊂ Q is the set of final states. The automaton A is

deterministic if it has only one initial state and for any (p, a) ∈ Q×A there exists at

most one state q ∈ Q such that (p, a, q) ∈ T . It is complete if for each (p, a) ∈ Q×A,

there exists at least one state q ∈ Q such that (p, a, q) ∈ T . A deterministic finite

automaton A is accessible when for each state q of A, there exists a path from the

initial state to the state q. The size #A of an automaton A is its number of states.

Any finite automaton A = (A, Q, T, I, F ) can be transformed into a deterministic

automaton B = (A,P(Q), T ′, {I}, F ′) recognizing the same language and in which

F ′ = {P ∈ P(Q) | P ∩ F 6= ∅} and T ′ = {(P, a, R) with P ∈ P(Q), a ∈ A and R =

{q | ∃p ∈ P, (p, a, q) ∈ T }}. In practice only the accessible part of the automaton

B is built in this subset construction.

We say that the word v is a proper prefix (resp. suffix) of a word u if v is a

prefix (resp. suffix) of u such that v 6= ε and v 6= u. The word v is called a border

of u if v is both a proper prefix and a proper suffix of u. We denote by Pr(u) (resp.

Sf(u)) the set of all prefixes (resp. suffixes) of u, by Pref(u) (resp. Suff(u)) the set

of proper prefixes (resp. suffixes) and by Bord(u) the set of borders of u. A word

is primitive when it is not the power of another word. Let u, v and w be three

non-empty words such that w is a proper suffix of v, v is a proper suffix of u and

define the following sets: Qu = {{u}∪P | P ⊂ Suff(u)}, Qu,v = {{u}∪P | P ∈ Qv}
and Qu,v,w = {{u} ∪ P | P ∈ Qv,w}. The cardinalities of Qu, Qu,v and Qu,v,w are

respectively equal to 2|u|−1, 2|v|−1 and 2|w|−1.

The minimal automaton of a regular language is the unique (up to isomorphism)

smallest accessible and deterministic automaton recognizing this language. The state

complexity of a regular language is the size of its minimal automaton. Moreover

the state complexity of a regular language L is equal to its number of distinct

left quotients, i.e. the languages of the form u−1L = {w ∈ A∗ | uw ∈ L}. Let

L ⊂ A∗ be a finite set of words. The automaton TL = (A, Pr(L), TL, {ε}, L), where

TL = {(u, a, ua) | u ∈ Pr(L), a ∈ A, ua ∈ Pr(L)}, recognizes the set L (see Figure 1

p.14 for an example). Therefore the state complexity of a finite language, whose sum

of the lengths of its elements is n, is less than or equal to n + 1.

2.2. Enumeration

Recall that f(n) = O(g(n)) if there exist a positive real c and a nonnegative integer

n0 such that, for all n ≥ n0, |f(n)| ≤ c|g(n)|. We write f(n) = Ω(g(n)) if there exist
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a positive real c and a nonnegative integer n0 such that, for all n ≥ n0, |f(n)| ≥
c|g(n)|. And we say that f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Let X ⊂ A∗ be a finite set of words. We denote by |X | the cardinality of X

and by ‖X‖ the length of X defined as the sum of the lengths of its elements:

‖X‖ =
∑

u∈X |u|. Let Setn,m be the set of sets of m non-empty words whose sum

of lengths is n:

Setn,m = {X = {u1, . . . , um} | ‖X‖ = n, ∀i ∈ {1, . . . , m} ui ∈ A+}

and Sn,m be the set of sequences of m non-empty words whose sum of lengths is n:

Sn,m = {S = (u1, . . . , um) | ‖S‖ = n, ∀i ∈ {1, . . . , m} ui ∈ A+}.

We denote by S 6=
n,m ⊂ Sn,m the set of sequences of pairwise distinct words.

Proposition 1. For any fixed integer m ≥ 2, the number |Sn,m| of sequences of m

non-empty words whose sum of lengths is n satisfies the following equality:

|Sn,m| =

(

n − 1

m − 1

)

|A|n, (1)

and the number |Setn,m| of sets of m non-empty words whose sum of lengths is n

satisfies the following one:

|Setn,m| =
1

m!
|Sn,m|

(

1 + O
(

1

n2

))

. (2)

Proof. Any sequence S of Sn,m can be uniquely defined by a word v of length

n, which is the concatenation of the elements of S, and a composition of n into

m parts, that indicates how to cut the word of length n into m parts. Therefore

|Sn,m| =
(

n−1
m−1

)

|A|n. Moreover, since m is fixed,

(

n − 1

m − 1

)

|A|n ∼ nm−1

(m − 1)!
|A|n. (3)

Let Fn,m be the set of the elements S = (u1, . . . , um) of Sn,m such that u1 = u2,

then we will prove that

|Fn,m| = |Sn,m|O
(

1

n2

)

. (4)

Indeed, if m = 2 then |Fn,2| =

{

0 if n is odd

|A|n/2 if n is even
which proves the result.

If m ≥ 3, the generating function for the number of pairs of non-empty words

(u, v) such that u = v is z 7→ |A|z2

1−|A|z2 , and

Fm(z) =
∑

n≥0

Fn,mzn =
|A|z2

1 − |A|z2
Sm−2(z) =

|A|z2

1 − |A|z2

( |A|z
1 − |A|z

)m−2

,
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where Sm−2(z) =
∑

n≥0 Sn,m−2z
n. Therefore Fm(z) is a rational function with a

simple pole at 1√
|A|

and a pole of order m−2 at 1
|A| . Hence there exist a polynomial

P of degree m − 3 and a constant c, such that

Fn,m = P (n)|A|n + c |A|n/2 = P (n)|A|n
(

1 + O(|A|−n/2)
)

.

Equation (4) is then obtained using Equation (3) and the degree of P .

For the general case let i, j ∈ {1, . . . , m} and denote by F (i,j)
n,m the subset of

Sn,m containing all sequences (u1, . . . , um) such that ui = uj . Then the following

equation holds

Sn,m = S 6=
n,m ∪

⋃

1≤i<j≤m

F (i,j)
n,m

where S 6=
n,m ⊂ Sn,m is the subset of sequences whose elements are pairwise distinct.

By the symmetry of the problem |F (i,j)
n,m | = |Fn,m| and consequently |Sn,m|−|S 6=

n,m| ≤
(

m
2

)

|Fn,m|. Hence by Equation (4), |Sn,m| − |S 6=
n,m| = |Sn,m|O

(

1
n2

)

.

Finally, to complete the proof, since an element in Setn,m is mapped on exactly

m! sequences in S 6=
n,m, we obtain |S 6=

n,m| = m!|Setn,m|.

In the sequel we shall count the number of states of automata according to their

labels. This enumeration is based on combinatorial properties of words.

Lemma 2. Let u be a non-empty word of length ℓ. The number of sequences S

belonging to Sn,m such that u is a prefix (resp. suffix) of a word of S is smaller than

or equal to m
(

n−ℓ
m−1

)

|A|n−ℓ.

Proof. There are at most m
(

n−ℓ−1
m−2

)

|A|n−ℓ elements in Sn,m containing u. This can

be seen by taking an element of Sn−ℓ,m−1 and adding u at one of the m possible

places. This construction covers all the possibilities (with some over-counting by

repetitions). Moreover there are at most m
(

n−ℓ−1
m−1

)

|A|n−ℓ elements in Sn,m contain-

ing a word having u as a prefix (resp. suffix), since taking an element of Sn−ℓ,m

and concatenating u at the beginning (resp. end) of one of the words covers all

the possibilities (with some over-counting). We conclude the proof by noticing that

m
(

n−ℓ−1
m−2

)

|A|n−ℓ + m
(

n−ℓ−1
m−1

)

|A|n−ℓ = m
(

n−ℓ
m−1

)

|A|n−ℓ.

Lemma 3. Let u, v ∈ A+ such that v is not a prefix of u, |u| = ℓ and |v| = i. The

number of sequences S ∈ Sn,m such that both u and v are prefixes of words of S is

smaller than or equal to m(m − 1)|A|n−ℓ−i
(

n−ℓ−i+1
m−1

)

.

Proof. It is similar to the proof of Lemma 2. We have to distinguish four cases:

• u and v are proper prefixes of words in S,

• u ∈ S and v is a proper prefix,

• v ∈ S and u is a proper prefix,

• and both u and v are in S.
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One can upper bound the number of sequences for these different cases by

m(m − 1)|Sn−ℓ−i,m|, m(m − 1)|Sn−ℓ−i,m−1|, m(m − 1)|Sn−ℓ−i,m−1| and m(m −
1)|Sn−ℓ−i,m−2| respectively. We conclude by noticing that

(

n − ℓ − i − 1

m − 1

)

+ 2

(

n − ℓ − i − 1

m − 2

)

+

(

n − ℓ − i − 1

m − 3

)

=

(

n − ℓ − i + 1

m − 1

)

In the following lemmas, we establish important properties that link a word and

its borders.

Lemma 4. For 1 ≤ i < ℓ, there are at most |A|ℓ−i pairs of non-empty words (u, v)

such that |u| = ℓ, |v| = i and v is a border of u.

Proof. Since v is a border of u, then ℓ−i is a period of u (see [14] p.270). Therefore

the ℓ− i first letters of u completely define u and v, hence there are at most |A|ℓ−i

possible pairs.

Lemma 5. For 1 ≤ j < i < ℓ such that i ≤ 2
3ℓ or j ≤ i

2 , there are at most |A|ℓ− i
2
−j

triples of non-empty words (u, v, w) with |u| = ℓ, |v| = i, |w| = j such that v is a

border of u and w is a border of v.

Proof. If i ≤ ℓ
2 , since w is a border of v, there are at most |A|i−j possible pairs

(v, w) satisfying the conditions of the lemma. Since v is a border of u and ℓ ≥ 2i,

u can be defined with only ℓ − 2i letters for fixed v. There are hence at most

|A|ℓ−i−j < |A|ℓ− i
2
−j possible triples (u, v, w).

When i > ℓ
2 and j ≤ i

2 , since v is a border of u, there are at most |A|ℓ−i possible

pairs (u, v). Since −j ≥ − i
2 we get ℓ − i ≤ ℓ − i

2 − j and |A|ℓ−i ≤ |A|ℓ− i
2
−j .

Finally when ℓ
2 < i ≤ 2

3ℓ and j > i
2 , since w is a border of v, there are at most

|A|i−j possible pairs (v, w). Since ℓ− i is a period of u, v completely define u. And

since i − j ≤ ℓ − i
2 − j, there are at most |A|l− i

2
−j possible triples (u, v, w).

Proposition 6. For 1 ≤ j < i < ℓ such that i > 2
3ℓ and j > i

2 and for any triple

of words (u, v, w) with |u| = ℓ, |v| = i, |w| = j such that v is a border of u and w

is a border of v, there exist a primitive word x, with 1 ≤ |x| ≤ ℓ − i, a prefix x0 of

x and integers p > q > s > 0 such that u = xpx0, v = xqx0 and w = xsx0.

Proof. Since v is a border of u, then ℓ − i is a period of u. Let x be the unique

primitive word such that xk is the prefix of u of length ℓ−i, for some positive integer

k. Then there exist a prefix x0 of x and a positive integer p such that u = xpx0.

Since v is a suffix of u of length i, then v = xp−kx0. And since ℓ − i < i, then

p − k > 0. Since w is a prefix of v and ℓ − i < i
2 < j, then w = xsx1 where s > 0

and x1 is a prefix of x.

It remains to prove that x1 = x0. Since w is a suffix of v, then there exist a suffix

x2 of x and r ≥ 0 such that w = x2x
rx0. If x2 is empty, then the result follows.

Otherwise xrx0 is a border of w, then w is a power of x2 and x is a power of x2. But
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x cannot be an integral power of x2 since it is primitive. Therefore x = x2
tx′

2 where

t > 0 and x′
2 is a prefix of x2. Since x2 is a suffix of x, then there exists a proper

suffix x′′
2 of x2 such that x2 = x′′

2x′
2. Since x′

2 is a prefix of x2, then x2 = x′
2x

′′
2 . And

since x′′
2x′

2 = x′
2x

′′
2 , then x′

2 and x′′
2 are integral powers of a same word [13]. This

leads to a contradiction with the fact that x is primitive.

3. Lower Bounds

We first introduce the subsets S(p)
n,m of Sn,m that will be used to establish average

lower bound results. Let n ≥ (2p+1)m, denote by S(p)
n,m the set of tuples (u1, . . . , um)

belonging to S(p)
n,m and such that, for every i ∈ {1, . . . , m}, |ui| > 2p and whose

prefixes (resp. suffixes) of length p of the ui are pairewise disjoint. Note that the

set of words defined by a sequence in S(p)
n,m is a bifix (i.e., prefix and suffix) code.

We prove next that almost all sequences of Sn,m are in S(⌊log n⌋)
n,m , and that the

state complexity of the set associated to a sequence in S(⌊log n⌋)
n,m is asymptotically

equivalent to n.

Lemma 7. For any fixed m ≥ 1, |S(p)
n,m| ∼ |Sn,m| since n → ∞ and p → ∞, with

p = o(n).

Proof. Let P(p)
m be the set of sequences of m distinct words of length p. Since p

tends to infinity, the cardinality of P satisfies

|P(p)
m | = |A|p(|A|p − 1) · · · (|A|p − m + 1) ∼ |A|mp.

By separating prefixes and suffixes of length p in elements of S(p)
n,m, we find that

|S(p)
n,m| = |P(p)

m × Sn−2p,m × P(p)
m |. As a consequence, when n and p tend to infinity

with p = o(n), we have:

|S(p)
n,m| ∼ |A|mp

(

n − 2mp− 1

m − 1

)

|A|n−2mp |A|mp ∼
(

n − 1

m − 1

)

|A|n.

The lemma then follows by Equation (1) of Proposition 1.

Lemma 8. For any sequence S in Sn,m, every singleton {v}, with v a suffix of a

word in S, is a left quotient of the finite language associated to S. Moreover, if

S ∈ S(p)
n,m then there are at least n− 2pm such suffixes. As a consequence, the state

complexity of S is at least n − 2pm.

Proof. Let v, v′ with v 6= v′ be two prefixes of the words u ∈ S and u′ ∈ S

respectively, such that p < |v| ≤ |u| − p and p < |v′| ≤ |u′| − p. Let w and w′ be

the suffixes associated to v and v′ respectively (i.e. u = vw and u′ = v′w′). We

claim that w 6= w′. Indeed, if w = w′ then u = u′, since the suffixes of length p

of two distinct words in S are distinct and |w| > p. Hence v = v′ since they are

both prefixes of length |u| − |w| of u. Therefore, v−1S = {w}, v′−1S = {w′} and

{w} 6= {w′}. As a consequence, all the left quotients of S defined by such prefixes
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are distinct. This concludes the proof since there are n−2pm such prefixes of words

in S.

The proof of the following result is a direct consequence of Lemma 7, Lemma 8 and

by Equation (2) of Proposition 1:

Proposition 9. For any fixed m ≥ 1, the average state complexity of an element

in Setn,m is asymptotically equivalent to n as n tends to infinity.

Proposition 10 (Union) For the uniform distribution over the pairs (X1, X2) of

Setn1,m1
×Setn2,m2

, the average state complexity of X1 ∪X2 is bounded below by a

function equivalent to n1 + n2 when both n1 and n2 tend to infinity.

Proof. It is sufficient to prove the result for pairs of sequences. The property can

then be extended to pairs of sets using Equation (2) of Proposition 1. Assume

without lost of generality that n1 ≤ n2 and consider the subset X ⊂ S(p)
n1,m1

×S(p)
n2,m2

,

with p = ⌊log n1⌋, defined by

X = {(X1, X2) ∈ S(p)
n1,m1

× S(p)
n2,m2

| X1 ∪ X2 ∈ S(p)
n1+n2,m1+m2

}.

In other words, all prefixes (resp. suffixes) of length p of words either in X1 or in

X2 are distinct.

For any fixed X1 ∈ S(p)
n1,m1

, the number of sequences X2 ∈ S(p)
n2,m2

such that

(X1, X2) ∈ X is asymptotically equal to |S(p)
n2,m2

|. This can be established with

similar arguments as those presented in the proof of Lemma 7. And applying

Lemma 7, we obtain |X | ∼ |S(p)
n1,m1

| · |S(p)
n2,m2

| ∼ |Sn1,m1
| · |Sn2,m2

|. Moreover for

every (X1, X2) ∈ X , we have X1 ∪ X2 ∈ S(p)
n1+n−2,m1+m2

. Therefore, by Lemma 8

the state complexity of X1 ∪ X2 is at least n1 + n2 − 2(m1 + m2)⌊log n1⌋. This

concludes the proof since this inequality holds for almost all pairs of sequences.

Proposition 11 (Concatenation) For the uniform distribution over the pairs

(X1, X2) of Setn1,m1
×Setn2,m2

, the average state complexity of X1 ·X2 is bounded

below by a function equivalent to n1 + n2, when both n1 and n2 tend to infinity.

Proof. As for the union construction, it is sufficient to establish the result for pairs

of sequences. Let X1 ∈ S(⌊log n1⌋)
n1,m1

and X2 ∈ S(⌊log n2⌋)
n2,m2

. Assume first that m2 = 1,

and that X2 = (x). The left quotients of X1 ·X2 are either of the form {vx}, with v

a suffix of a word in X1 or {v}, with v a suffix of x. By Lemma 8 there are at least

n1 − 2m1 log n1 + n2 + 1 such classes.

Assume now that m2 ≥ 2. Let u be an element of X1. Since X1 is a prefix code,

then, for any word v ∈ A∗, uv ∈ X1 · X2 if and only if v ∈ X2. Therefore, when

w ranges over all the prefixes of words in X2, the left quotient (uw)−1(X1 · X2) =

w−1X2 ranges over all the left quotients of X2 and these quotients are singletons.

Hence by Lemma 8 there are at least n2 − 2m2⌊log n2⌋ distinct left quotients of

X1 · X2 which are singletons.
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Let w be a prefix of a word of X1 of length at least ⌊log n1⌋. For any u ∈ X1

and any v ∈ X2, if w is a prefix of uv then either w is a prefix of u or u is a prefix

of w. The latter case is not possible since X1 is a prefix code. Hence u = ws for

some word s ∈ A∗, and w−1(X1 · X2) = s · X2. Let u = ws and u′ = w′s′ be two

words of X1 such that |s| ≥ ⌊log n1⌋ and |s′| ≥ ⌊log n1⌋. If s · X2 = s′ · X2, let y

and y′ be two elements of X2 such that sy = s′y′, then y = y′ since X2 is a suffix

code and consequently s = s′. So, for such suffixes s, the sets s ·X2 are distinct and

there are at least n1−2m1⌊log n1⌋ such left quotients. Since these quotients are not

singleton, there are at least n1 − 2m1⌊log n1⌋ + n2 − 2m2⌊log n2⌋ left quotients of

X1 · X2. This concludes the proof since this inequality holds for almost all pairs of

sequences.

Proposition 12 (Star) For the uniform distribution over the sets X of Setn,m

the average state complexity of X∗ is bounded below by a function equivalent to n,

when n tends to infinity.

Proof. As previously we only establish the result for sequences. Recall that if X is

a prefix code, then the minimal automaton of X has only one final state. Therefore

the state complexity of X∗ when X is a prefix code of state complexity n is either n

or n− 1 (see [2] Proposition 2.4, p. 95). We conclude the proof since, by Lemma 8,

every S ∈ S(⌊log n⌋)
n,m has a state complexity greater than n − 2n⌊log n⌋ and, by

Lemma 7, almost all elements of Sn,m belongs to S(⌊log n⌋)
n,m .

4. Average State Complexity of the Union and the Concatenation

4.1. Average State Complexity of the Union

Due to the structure of finite languages, it is not difficult to compute the state

complexity of their union:

Theorem 13 (Union) For the uniform distribution over the pairs (X1, X2) of

Setn1,m1
× Setn2,m2

the average state complexity of X1 ∪ X2 is equal to (n1 +

n2) + O(1) when both n1 and n2 tend to infinity.

Proof. This result directly comes from the inequalities |X1 ∪ X2| ≤ |X1| + |X2|
and ‖X1 ∪ X2‖ ≤ ‖X1‖ + ‖X2‖ together with the lower bound of Proposition 10.

Note that the state complexity of the union is the same in the average case and

in the worst case.

4.2. Average State Complexity of the Concatenation

In the following we prove that the average state complexity of the concatenation of

two finite languages is linear in the sum of their lengths.
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Theorem 14 (Concatenation) For the uniform distribution over the pairs

(X1, X2) of Setn1,m1
×Setn2,m2

, the average state complexity of X1 ·X2 is equal to

(n1 + n2) + O(1) when both n1 and n2 tend to infinity.

Note that Proposition 11 already gives the lower bound (n1+n2)+O(1). The rest

of this section is devoted to the proof of the upper bound: From a nondeterministic

automata recognizing X1 · X2, we bound from above the number of states of its

associated deterministic automaton obtained by the subset construction, which is

greater than or equal to the state complexity of X1 · X2.

4.2.1. Construction

We associate to the finite languages X1 and X2 the automata TX1
and TX2

defined

in Section 2.1. Let AX1·X2
be the nondeterministic automaton defined by

AX1·X2
= (A, (Pr(X1) × {∅}) ∪ ({∅} × Pr(X2)), T

′
X1

∪ T ′
X2

∪ T, (ε, ∅), F ),

where T ′
X1

= {((u, ∅), a, (ua, ∅)) | (u, a, ua) ∈ TX1
}, T ′

X2
= {((∅, v), a, (∅, va)) |

(v, a, va) ∈ TX2
}, T = {((u, ∅), a, (∅, a)) | u ∈ X1, a ∈ Pr(X2)} and F = {∅} × X2

(note that ε /∈ X2). This automaton recognizes X1 · X2. We denote by AS·T the

automaton defined for the set of elements of any two sequences S and T by the

above construction. For any two finite sets of words X1, X2 ⊂ A∗ (resp. any two

sequences S, T ), we denote by DX1·X2
(resp. DS·T ) the accessible deterministic

automaton obtained from the automaton AX1·X2
(resp. AS·T ) making use of the

subset construction.

Lemma 15. For any two finite sets of non-empty words X1, X2 ⊂ A∗, the states

of the deterministic automaton DX1·X2
recognizing X1 · X2 are couples (u, Z) in

(Pr(X1) ∪ {∅}) × P(Pr(X2)) and they satisfy the following properties:

• If u ∈ Pr(X1), there exists a unique Z ∈ P(Pr(X2)) such that (u, Z) is a

state of DX1·X2
.

• If u = ∅ and Z = {v1, . . . , vℓ}, then for each i, j in {1, . . . , ℓ}, there exist

xi, xj ∈ X1 and pi, pj ∈ X2 such that xipi = xjpj. In particular, if v is the

longest word in Z, for any i ∈ {1, . . . , ℓ}, v = wivi, with wi ∈ X−1
1 X1.

Proof. The first property comes from the structure of the automaton TX1
. Indeed,

for any u ∈ Pr(X1), there is only one path from the initial state to u in TX1
and

therefore only one path from the initial state to a state of the form (u, Z) in DX1·X2
.

Let (∅, Z) be a state in DX1·X2
. Since (∅, Z) is accessible from the initial state,

for any word u ∈ Z there exists a path labelled by u from the initial state to (∅, Z) in

DX1·X2
. Therefore, by construction of DX1·X2

, there exist x ∈ X1 and p ∈ Pr(X2)

such that u = xp.

We prove the result for pairs of sequences instead of pairs of sets and use Equa-

tion (2) of Proposition 1 to generalize it to pairs of sets. In the sequel we denote by
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S the product Sn1,m1
×Sn2,m2

. Given u ∈ A∗∪{∅}, Z ∈ P(A∗) and (S1, S2) ∈ S, we

denote by Det(S1 · S2, (u, Z)) the property: (u, Z) is the label of a state in DS1·S2
.

To find an upper bound on the average number of states of the deterministic

automaton DS1·S2
when the sequence S1 ranges over the set Sn1,m1

and S2 ranges

over the set Sn2,m2
, we count the states of all automata according to their labels.

More precisely we want to estimate the suma

∆ =
∑

(S1,S2)∈S

#DS1·S2
=

∑

(S1,S2)∈S

∑

u∈(A∗∪{∅})

∑

Z∈P(A∗)

[[Det(S1 · S2, (u, Z))]].

Taking into account the cardinality of the labels of the states, we find

∆ =
∑

(S1,S2)∈S

∑

u∈A∗

∑

Z∈P(Pr(X2))

[[Det(S1 · S2, (u, Z))]]

+
∑

(S1,S2)∈S

∑

v∈A∗

[[Det(S1 · S2, (∅, {v}))]]

+
∑

(S1,S2)∈S

∑

u∈A+

∑

Z⊂A∗,|Z|≥2

[[Det(S1 · S2, (∅, Z))]].

By Lemma 15 the number of states labelled by (u, Z) with u 6= ∅ is equal to the

cardinality of Pr(X1), and therefore smaller than or equal to n1 + 1. Hence, we get
∑

(S1,S2)∈S

∑

u∈A∗

∑

Z∈P(Pr(X1))

[[Det(S1 · S2, (u, Z))]] ≤
∑

(S1,S2)∈S

(n1 + 1) ≤ (n1 + 1)|S|.

Moreover, if (∅, {v}) is a label of a state, then v is in Pr(X2), therefore we obtain
∑

(S1,S2)∈S

∑

u∈A∗

[[Det(S1 · S2, (∅, v))]] ≤ (n2 + 1)|S|.

It remains to study Γ, with

Γ =
∑

(S1,S2)∈S

∑

u∈A+

∑

Z⊂A∗,|Z|≥2

[[Det(S1 · S2, (∅, Z))]].

Let Z ⊂ A∗ be the subset of non-empty words, with |Z| ≥ 2. By Lemma 15, if

(∅, Z), with |Z| ≥ 2, is the label of a state of an automaton DS1·S2
, then Z belongs

to a set Qu,v, for some u, v in Z such that v iswe have a proper suffix of u. Therefore,

we have

Γ =
∑

(S1,S2)∈S

∑

u∈A+

∑

v∈Suff(u)

∑

Z∈Qu,v

[[Det(S1 · S2, (∅, Z))]].

Changing the order of the sums, we get

Γ =
∑

u∈A+

∑

v∈Suff(u)

∑

Z∈Qu,v

∑

(S1,S2)∈S

[[Det(S1 · S2, (∅, Z))]].

aThe operator [[ ]] is defined by [[P ]] = 1 if the property P is true and 0 otherwise.
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Partitioning the sum Γ into Γ1 ∪ Γ2, depending on whether the word v is prefix of

u or not, we obtain:

Γ1 =
∑

u∈A+

∑

v∈Suff(u)\Pref(v)

∑

Z∈Qu,v

∑

(S1,S2)∈S

[[Det(S1 · S2, (∅, Z))]],

Γ2 =
∑

u∈A+

∑

v∈Bord(u)

∑

Z∈Qu,v

∑

(S1,S2)∈S

[[Det(S1 · S2, (∅, Z))]].

To prove Theorem 16, we shall establish that Γ1 and Γ2 are both O(|S|).
• Γ1 is in O(|S|): For any u ∈ A+, for any v ∈ Suff(u) \ Pref(u) and for any

Z ∈ Qu,v, the number of pairs of sequences (S1, S2) ∈ S such that DS1·S2
contains

a state labelled by (∅, Z) is at most

m1|A|n1−|u|+|v|

(

n1 − |u| + |v|
m1 − 1

)

× m2(m2 − 1)|A|n2−|u|−|v|

(

n2 − |u| − |v| + 1

m2 − 1

)

.

The left part is a consequence of Lemma 2, v−1u being a suffix of an element in X1;

the right part is a consequence of Lemma 3, v and u being prefixes of two distinct

elements in X2. Hence, Γ1 is bounded above by
∑

u∈A+

∑

v∈Suff(u)
v/∈Pref(u)

∑

Z∈Qu,v

m1m2(m2−1)|A|n1+n2−2|u|

(

n1 − |u| + |v|
m1 − 1

)(

n2 − |u| − |v| + 1

m2 − 1

)

.

Moreover if u is the longest word in Z, then by Lemma 15, Z must be a subset

of (X−1
1 X1)u for (∅, Z) to be the label of a state. But |X−1

1 X1| ≤ m2
1. Therefore,

setting |u| = ℓ and |v| = i, we obtain:

Γ1 ≤
n2−m2+1
∑

ℓ=2

|A|ℓ
ℓ−1
∑

i=1

2m2
1 m1m2(m2−1)|A|n1+n2−2ℓ

(

n1 − ℓ + i

m1 − 1

)(

n2 − ℓ − i + 1

m2 − 1

)

.

Since 1 ≤ i ≤ ℓ − 1 and ℓ ≥ 2,
(

n1−ℓ+i
m1−1

)

≤
(

n1−1
m1−1

)

and
(

n2−ℓ−i+1
m2−1

)

≤
(

n2−2
m2−1

)

. Thus

Γ1 ≤ Dm1,m2
|A|n1+n2

(

n1 − 1

m1 − 1

)(

n2 − 2

m2 − 1

) n2−m2+1
∑

ℓ=2

|A|−ℓ(ℓ − 1),

where Dm1,m2
only depends on m1 and m2. Since

∑∞
ℓ=2 |A|−ℓ(ℓ − 1) is a conver-

gent series, it is bounded above by a constant M . Therefore, by Equation (1) of

Proposition 1, Γ1 ≤ MDm1,m2
|S| or, in other words, Γ1 = O(|S|).

• Γ2 is in O(|S|): For any u ∈ A+, any v ∈ Bord(u) and any Z ∈ Qu,v, the

number of pairs of sequences (S1, S2) ∈ S such that DS1·S2
contains a state labelled

by (∅, Z) is at most

m1|A|n1−|u|+|v|

(

n − |u| + |v|
m1 − 1

)

× m2|A|n2−|u|

(

n2 − |u|
m2 − 1

)

.

Both the left and the right parts are consequences of Corollary 2.1, v−1u being a

suffix of an element in X1 and u being a prefix of a word in X2. Hence, we get

Γ2 ≤
∑

u∈A+

∑

v∈Bord(u)

∑

Z∈Qu,v

m1m2|A|n1+n2−2|u|+|v|

(

n1 − |u| + |v|
m1 − 1

)(

n2 − |u|
m2 − 1

)

.
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As for Γ1, the number of subsets Z of Qu,v that can appear in a label of a state in

the automaton is at most 2m2
1 . Therefore setting |u| = ℓ and |v| = i, by Lemma 4,

we obtain:

Γ2 ≤
n2−m2+1
∑

ℓ=2

ℓ−1
∑

i=1

|A|ℓ−i2m2
1m1m2|A|n1+n2−2ℓ+i

(

n1 − ℓ + i

m1 − 1

)(

n2 − ℓ

m2 − 1

)

.

Hence, there exists Em1,m2
such that

Γ2 ≤ Em1,m2

(

n1 − 1

m1 − 1

)(

n2 − 2

m2 − 1

)

|A|n1+n2

n2−m2+1
∑

ℓ=2

|A|−ℓ(ℓ − 1).

Thus Γ2 ≤ |S|Em1,m2

∑∞
l=2(ℓ − 1)|A|−ℓ or, in other words, Γ2 = O (|S|). This

concludes the proof since, putting all together, ∆ = (n1 + n2 + O(1))|S|.

5. Average State Complexity of the Star

In the following we study the average state complexity of the star of finite languages.

Theorem 16 (Star) For the uniform distribution over the sets X of Setn,m the

average state complexity of X∗ is in Θ(n) when n tends to infinity. Moreover, if

the cardinality of the alphabet is greater than or equal to 3, this state complexity is

asymptotically equivalent to n.

In order to prove Theorem 16 we show that the average number of states of the

deterministic automaton DX (defined in the next section) recognizing X∗ is linear

in the length of X and that, if the alphabet is of cardinality greater than two, this

complexity is smaller than or equal to n+O(1). The result holds for the average state

complexity of X∗ since, for each X in Setn,m, the size of the minimal automaton

MX of X∗ is smaller than or equal to the size of DX .

5.1. Construction

Let X ⊂ A∗ be a finite set of words. The automaton TX defined in Section 2.1.

recognizes the set X and the automaton AX = (A, Pr(X), TX ∪ T, {ε}, X ∪ {ε}),
where T = {(u, a, a) | u ∈ X, a ∈ A∩Pr(X)} recognizes X∗ (see Fig.1). We denote

by AS the automaton defined for the set of elements of any sequence S by the above

construction. In such an automaton, only the states labelled by a letter have more

than one incoming transition.

For any finite set of words X ⊂ A∗ (resp. any sequence S), we denote by DX

(resp. DS) the accessible deterministic automaton obtained from the automaton

AX (resp. AS) making use of the subset construction and by MX the minimal

automaton of X∗.

Lemma 17. For any finite set of words X ⊂ A∗, the states of the deterministic

automaton DX recognizing X∗ are non-empty subsets {u1, . . . , ul} of Pr(X) such

that, for all i, j ∈ {1, . . . , l},



July 2, 2010 16:45 WSPC/INSTRUCTION FILE BGN

14

ε a ab
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ba bab
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ab
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b

a

b

a

b

ab

Fig. 1. The automata TX and AX , for X = {a, aba, bab}

• either ui is a suffix of uj or uj is a suffix of ui,

• there exist x0, . . . , xhi
, y0, . . . , yhj

∈ X such that x0 · · ·xhi
ui = y0 · · · yhj

uj.

Proof. If {u1, . . . , ul} is a state of DX , then, for each i, ui is a prefix of a word

of X by construction. Since every state in DX is accessible, then there exists a

path from the initial state {ε} to {u1, . . . , ul} with label α. By definition of subset

construction, for each ui, there exists in AX a path pi with label α from the initial

state ε to the state ui. Moreover the path pi must have as suffix a path with label ui,

starting at a final state and ending at ui. So, for each i, there exist x0, . . . , xhi
∈ X

such that α = x0 · · ·xhi
ui, concluding the proof of the second item.

Corollary 18. Let X be a finite set and u, v ∈ A∗, |u| > |v|. If DX has a state

containing u and v then u and v are prefixes of two words in X and there exists

w ∈ Suff(X)X∗ ∪ X+ such that u = wv.

5.2. Upper Bound

To prove the result on sets it is sufficient to prove it on sequences since

1

|Setn,m|
∑

X∈Setn,m

#DX =
1

m! |Setn,m|
∑

S∈S 6=
n,m

#DS ≤ 1

m! |Setn,m|
∑

S∈Sn,m

#DS

and then Equation (2) of Proposition 1 leads to the conclusion.

Let Y ⊂ A∗ and S ∈ Sn,m. Recall that we denote by Det(S, Y ) the property: Y

is the label of a state of DS .

To find an upper bound for the average number of states of the deterministic

automaton DS when the sequence S ranges over the set Sn,m, we count the states

of all automata according to their labels. More precisely we want to estimate the

sum

∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

Y ⊂A∗

[[Det(S, Y )]].
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Taking into account the cardinality of the labels of the states, we find
∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y )]] +
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y )]].

The first sum deals with states labelled by a single word. Since, for each S ∈
Sn,m, the words that appear in the labels of states of DS are prefixes of words of

S, we have
∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y )]] =
∑

S∈Sn,m

∑

u prefix of
a word of S

[[Det(S, {u})]] ≤ (n + 1)|Sn,m|.

It remains to study the sum

∆ =
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y )]].

Let Y ⊂ A∗ be a non-empty set which is not a singleton. By Lemma 17, if Y

is the label of a state of an automaton DS , then Y belongs to a set Qu,v, for some

non-empty word u and some proper suffix v of u. Therefore, we have

∆ =
∑

S∈Sn,m

∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

[[Det(S, Y )]].

Changing the order of the sums, we obtain

∆ =
∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y )]].

We then partition the sum ∆ into ∆1 + ∆2 depending on whether the word v is

prefix of u or not:

∆1 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y )]], (5)

∆2 =
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y )]]. (6)

To prove Theorem 16, we study the asymptotic behavior of ∆1 and ∆2.

5.3. The Case of Alphabets with at Least Three Letters

The following lemmas will be used to prove the second part of Theorem 16. They

rely on the condition w ∈ Suff(X)X∗ ∪ X+ of Corollary 18.

Lemma 19. Let u, v be two words in A+ such that v is a suffix of u, but not a

prefix of u and let w be the word such that u = wv. Setting |u| = ℓ and |v| = i, then

there are at most

Cm|A|n−2ℓ

(

n − 2ℓ + 1

m − 1

)

+ CmAn−ℓ−i

(

n − ℓ − i

m − 2

)

sequences S in Sn,m such that u et v are prefixes of two words in S and such that

w ∈ Suff(S)S∗ ∪ S+.
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Proof. Let S be a sequence that satisfies the conditions of the lemma, We consider

two cases, depending on whether w ∈ Suff(S) or not.

If w ∈ Suff(S), then there exist three words xu, xv and xw in S such that u is

a prefix of xu, v is a prefix of xv and w is a suffix of xw . Since v is not a prefix of

u, then xu 6= xv. We distinguish three cases:

• If xu = xw and |u| + |w| ≥ |xu|, setting with j = |xu|, the sequence S

can be built, from a sequence in Sn−j,m−1 having v as prefix of one of

its words, by adding xu at some position. Hence, using Lemma 2, there

are at most m(m− 1)
(

n−i−j
m−2

)

|A|n−j−i such sequences. Since j ranges from

ℓ + 1 to 2ℓ − 1, the total number of such sequences is bounded above by

Km

(

n−i−ℓ
m−2

)

|A|n−ℓ−i for some Km that only depends on m.

• If xv = xw and |v| + |w| ≥ |xv|, then using similar arguments as the

previous ones, we can prove that there are at most K ′
m

(

n−i−ℓ
m−2

)

|A|n−ℓ−i

such sequences.

• In all other cases, the sequence can be built from a sequence of Sn−(ℓ−i),m

having u and v as prefixes of two of its words, by adding w at the end of

some element. Hence, by Lemma 3, there are at most K ′′
m

(

n−2ℓ+1
m−1

)

|A|n−2ℓ

such sequences.

If w /∈ Suff(S), then w ∈ (Suff(S)∪{ε})X+. Therefore there exist a word xw ∈ S

that is a suffix of w and two words xu and xv having respectively u and v as prefixes.

Since |w| < |u|, then |xw| < |xu| and the words xu and xw are distinct. Since v is

not a prefix of u, then xu and xv are distinct too. Denote by j the length of xw.

We now distinguish whether xv = xw or not.

If xv 6= xw, since xw is a word belonging to the sequence, by Lemma 3,

the number of sequences that satisfies the properties is at most m(m −
1)
(

n−i−ℓ−j+1
m−2

)

|A|n−ℓ−i−j . Summing for j from 1 to ℓ − i, we find that there are

at most Lm|A|n−i−ℓ
(

n−i−ℓ
m−2

)

such sequences, where Lm only depends on m.

If xv = xw, then, by Lemma 2, there are at most B′
m

(

n−j−ℓ
m−2

)

|A|n−j−ℓ such

sequences. Summing for j from i to ℓ − i − 1, we find that there are at most

L′
m|A|n−i−ℓ

(

n−i−ℓ
m−2

)

such sequences, where L′
m only depends on m.

Adding all the contributions, we get the announced upper bound.

Lemma 20. Let u, v be two words in A+ such that v is a proper border of u and

let w be the word such that u = wv. Setting |u| = ℓ and |v| = i, then there are at

most

Dm|A|n−2ℓ+i

(

n − 2ℓ + i

m − 1

)

+ Dm|A|n−ℓ

(

n − ℓ − 1

m − 2

)

sequences S in Sn,m such that u et v are prefixes of two words in S and such that

w ∈ Suff(S)S∗ ∪ S+.

Proof. We consider two cases depending on whether w ∈ Suff(S) or not.
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If w ∈ Suff(S), then there exist xu and xw in S such that u is a prefix of xu

and w is a proper suffix of xw. The number of such sequences with xu = xw and

|u| + |w| ≤ |xu| is smaller than or equal to m
(

n−j−1
m−2

)

|A|n−j . Summing for j from

ℓ+1 to 2ℓ− 1, we find that there are at most Em

(

n−ℓ−1
m−2

)

|A|n−ℓ such sequences, for

some Em depending only on m. On the other hand, if xu 6= xw or |u| + |w| > |xu|,
the number of sequences is smaller than or equal to E′

m

(

n−ℓ−(ℓ−i)+1
m−1

)

|A|n−ℓ−(ℓ−i).

If w /∈ Suff(S), then w ∈ (Suff(S)∪{ε})X+ and there exists a word xw in S that

is a suffix of w. Setting |xw| = j, by Lemma 2, there are at most Fm

(

n−ℓ−j
m−2

)

|A|n−ℓ−j

such sequences. Summing for j from 1 to ℓ − i, we find that there are at most

F ′
m

(

n−ℓ−1
m−2

)

|A|n−ℓ such sequences.

Adding all the contributions, we get the announced upper bound.

In the sequel, we prove that ∆1 and ∆2 defined by Equations (5) and (6) (p.15)

are both in O(|Sn,m|).
By Corollary 18 and Lemma 20, one has ∆1 ≤ ∆1,1 + ∆1,2 with

∆1,1 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

Dm|A|n−2|u|+|v|

(

n − 2|u|+ |v|
m − 1

)

,

∆1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

Dm|A|n−|u|

(

n − |u| − 1

m − 2

)

.

Setting |u| = ℓ and |v| = i and using Lemma 4, we get

∆1,1 ≤
n−m+1
∑

ℓ=2

ℓ−1
∑

i=1

|A|ℓ−i2i−1Dm|A|n−2ℓ+i

(

n − 2ℓ + i

m − 1

)

.

Since, for 2 ≤ ℓ ≤ n − m + 1 and 1 ≤ i ≤ ℓ − 1,
(

n−2ℓ+i
m−1

)

≤
(

n−3
m−1

)

, we obtain

∆1,1 ≤ 1

2
Dm|A|n

(

n − 3

m − 1

)

(

∞
∑

ℓ=2

|A|−ℓ

)(

∞
∑

i=1

|A|−i2i

)

.

Finally, since |A| ≥ 3, then ∆1,1 is in O(|Sn,m|).
The same arguments lead to

∆1,2 ≤
n−m+1
∑

ℓ=2

ℓ−1
∑

i=1

|A|ℓ−i2i−1Dm|A|n−ℓ

(

n − ℓ − 1

m − 2

)

.

Moreover, since
∑N

j=m−2

(

j
m−2

)

=
(

N+1
m−1

)

, we obtain

∆1,2 ≤ 1

2
Dm|A|n

(

n − 2

m − 1

)

(

∞
∑

i=1

|A|−i2i

)

or, in other words, since |A| ≥ 3, ∆1,2 = O(|Sn,m|).
Thus using exactly the same kind of computations, one can prove by Lemma 19

that ∆2 is in O(|Sn,m|).
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5.4. For Binary Alphabets

We now prove that the average state complexity of the star of a finite language

on a binary alphabet is linear. More precisely we show that ∆1 and ∆2 defined by

Equations (5) and (6) (p.15) are both in O(n|Sn,m|).
By Lemma 3, we have

∆2 ≤
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

m(m − 1)2n−|u|−|v|

(

n − |u| − |v| + 1

m − 1

)

.

Since |Qu,v| = 2|v|−1, with ℓ = |u| and i = |v|, we get

∆2 ≤ m(m − 1)

n−m+1
∑

ℓ=2

2ℓ
ℓ−1
∑

i=1

2i−12n−ℓ−i

(

n − ℓ − i + 1

m − 1

)

.

Moreover, since
∑n−m+1

ℓ=2

∑ℓ−1
i=1

(

n−ℓ−i+1
m−1

)

=
(

n−1
m

)

, then ∆2 ≤ m(m−1)
2 2n

(

n−1
m

)

and,

by Equation (1) of Proposition 1, ∆2 is in O(n |Sn,m|).
We partition now the sum ∆1 into two sums ∆1,1 and ∆1,2 depending on whether

the set Y contains exactly two elements or not (and therefore belongs to some set

Qu,v,w). More precisely, we have

∆1,1 =
∑

u∈A+

∑

v∈Bord(u)

∑

S∈Sn,m

[[Det(S, {u, v})]]

and

∆1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]].

Using Lemma 2 and Lemma 4, and since
∑n−m+1

ℓ=2

(

n−ℓ
m−1

)

=
(

n−1
m

)

, we obtain

∆1,1 ≤
n−m+1
∑

ℓ=2

ℓ−1
∑

i=1

m

(

n − ℓ

m − 1

)

2n−ℓ2ℓ−i ≤ m 2n

(

n − 1

m

)

.

Consequently, by Equation (1) of Proposition 1, ∆1,1 is in O(n |Sn,m|).
We decompose next the sum ∆1,2 into the sum B1,2+N1,2 depending on whether

w is a prefix (and therefore a border) of v or not.

When w is not a prefix of v, by Lemma 3, the number of sequences S ∈ Sn,m

such that u and w are prefixes of two distinct words of S is smaller than or equal

to m(m − 1)2n−ℓ−j
(

n−ℓ−j+1
m−1

)

.

Since, by Lemma 4, there are less than 2ℓ−i pairs (u, v) such that v is a border
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of u and since |Qu,v,w| = 2|w|−1, we get:

N1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)\Pref(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]]

≤ m(m − 1)

n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

i−1
∑

j=1

2ℓ−i2j−12n−ℓ−j

(

n − ℓ − j + 1

m − 1

)

≤ m(m − 1)

2
2n

n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

2−i
i−1
∑

j=1

(

n − ℓ − j + 1

m − 1

)

.

Since
(

n−ℓ−j+1
m−1

)

≤
(

n−ℓ
m−1

)

, we obtain

N1,2 ≤ m(m − 1)

2
2n

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

) ℓ−1
∑

i=2

(i − 1)2−i.

Because of the convergence of the series,
∑ℓ−1

i=2 (i − 1)2−i is bounded. Therefore,

since
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, we have N1,2 = O(n|Sn,m|).
When w is prefix of v, the associated sum B1,2 is partitioned into the following

sums:

B1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Bord(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]] = B′
1,2 + B′′

1,2

with

B′
1,2 =

∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3
|u|

∑

w∈Bord(v)

|w|> |v|
2

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]]

and B′′
1,2 = B1,2 \B′

1,2. Using Lemma 4, the fact that |Qu,v,w| = 2|w|−1 and relaxing

the constraints on the lengths of the words v and w, we get

B′′
1,2 ≤

n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

i−1
∑

j=1

m

(

n − ℓ

m − 1

)

2n−ℓ2ℓ− i
2
−j2j−1.

Since
∑ℓ−1

i=2 (i − 1)2−
i
2 is bounded by a constant M ,

B′′
1,2 ≤ mM2n−1

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

.

Finally since
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, then B′′
1,2 is in

O(n |Sn,m|).
Now by Lemma 2 and since |Qu,v,w| = 2|w|−1, we get:

B′
1,2 ≤

∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3
|u|

∑

w∈Bord(v)

|w|> |v|
2

2|w|−1m

(

n − |u|
m − 1

)

2n−|u|.
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Moreover, by Proposition 6, the words u, v and w of respective lengths ℓ, i and j are

powers of a same primitive word x. We set u = xpx0, v = xqx0 and w = xsx0, with

p > q > s > 0 and x0 ∈ Pr(x). Let r be the length of x, then there are less than 2r

such words x. And since 1 ≤ r ≤ ℓ − i and i > 2
3 ℓ, then r < ℓ

3 . As a consequence,

the lengths of v and w can be written i = ℓ−hr where 1 ≤ h < ℓ/3r and j = ℓ−h′r

where h < h′ < 1
2 ( ℓ

r + h). Therefore, we get

B′
1,2 ≤

n−m+1
∑

ℓ=3

ℓ
3
−1
∑

r=1

ℓ
3r
∑

h=1

1
2
( ℓ

r
+h)
∑

h′=h+1

m

(

n − ℓ

m − 1

)

2n−ℓ2r2ℓ−h′r−1

≤ m 2n−1
n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

ℓ
3
−1
∑

r=1

2r

ℓ
3r
∑

h=1

1
2
( ℓ

r
+h)
∑

h′=h+1

(2−r)h′

.

Since
∑

ℓ
3r

h=1

∑

1
2
( ℓ

r
+h)

h′=h+1(2−r)h′ ≤ 4/22r when r ≥ 1, we find

B′
1,2 ≤ m2n+1

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

ℓ
3
−1
∑

r=1

2−r ≤ m2n+1
n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

.

Finally, since
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, we obtain that B′
1,2

is in O(n |Sn,m|), concluding the proof.

6. Remarks on the Average Time Complexity

The state complexity of a language recognized by a nondeterministic automaton

with n states is, in the worst case, equal to 2n. Therefore, the worst-case time

complexity of the determinization is in Ω(2n). It is thus natural to measure the

time complexity according to the size of the output of the algorithm and strive to

design algorithms whose efficiency is a function of the size of the output, rather

than the input.

The constructions we proposed—to build deterministic automata recognizing the

star of a finite language or the concatenation of two finite languages—mainly rely on

a classical determinization of some specific nondeterministic automata. The union

operation is easy to perform efficiently by considering the union of {u1, . . . , um1
}

and {v1, . . . , vm2
} as an element of the set Setn1+n2,m1+m2

, and constructing the

tree associated to {u1, . . . , um1
, v1, . . . , vm2

}.
The complexity of the subset construction basically depends upon the encoding

and the storage of the set of states. At each step, for a given set of states P and a

letter a ∈ A, the algorithm computes the set P ·a of states of the initial automaton

that can be reached from a state of P by a transition labelled a. Then it tests

whether this set has already been computed.

Here the automata to be determinized are specific. In both the star and the

concatenation constructions, they have the following property: for any accessible

set of states X and every letter a, the size of X · a is at most twice the size of X .

More precisely, the automata satisfy the following:
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• for the star, the image of a state u by a letter a in the nondeterministic

automaton is either ∅, a, ua or {a, ua};
• for the concatenation, the image by a letter a of a state of the form (∅, X)

is (∅, X · a) and X · a is of size at most |X | since the second automaton is

deterministic; the image of (u, X) by a letter a is (z, X ′), where X ′ is either

X · a or X · a ∪ {a}.

Hence computing the image of a set of states X by a letter a can be performed in

time O(P (|X |)), where P is some polynomial.

In order to store the sets of states, N + 1 balanced trees T0, . . . , TN are used,

where each tree Ti contains only subsets of size i. When a new set of states X is

computed, it is inserted in the tree T|X|—in the concatenation case, the size of a

state (z, X) is defined as the size of X . In order to cover all the possible sizes, it is

enough to set N = n+1 in the star case and N = n2 +1 in the concatenation case.

Each balanced tree T ∈ Ti contains at most
(

N
i

)

≤ N i elements in the star case,

and at most 2
(

N
i

)

≤ 2N i in the concatenation case, since the first coordinate can

be either a word or ∅, the word being unique for a given second coordinate. Thus

the insertion and search in T can be performed in O(i log N) comparisons. Since

the comparisons can be performed in polynomial time in i, the overall complexity

of the computation of the image of X by a letter a (namely, checking if X · a is in

T|X·a| and insert it if it is not) is in time O(Q(i) log N), for some polynomial Q.

As a consequence, one can show the following results:

• for |A| ≥ 3, the average time complexity of the construction of DX recog-

nizing the star of a finite language X in Setn,m is in O(n log n),

• for |A| ≥ 2, the average time complexity of the construction of DX1X2

recognizing the concatenation of two finite languages X1 ∈ Setn1,m1
and

X2 ∈ Setn2,m2
is in O((n1 + n2) log n2).

The proof consists in reproducing the proofs of Theorem 16 and Theorem 14, adding

a multiplicative factor Q(i + 1) log N .

Conclusion To manipulate finite languages given by lists of words, deterministic

automata are very efficient when the probability distribution we considered here

models the input data correctly: the theoretical possible exponential growth in

space almost never appears, and deterministic automata can be quickly computed

using standard constructions.
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