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ABSTRACT

This year, the LIGO detectors entered their third observing run and have been
detecting black hole interactions with increasing precision and sensitivity. These
detections have opened up a new way to compare the predictions of Einsteinian
gravity with more exotic models. One of these models, massive gravity, is a concrete
toy to use in testing these predictions. This project uses ideas from EFT and standard
techniques from quantum field theory to calculate scattering amplitudes for scalar
particles interacting via gravitons. We first calculated amplitudes up to the 1-loop
level assuming the standardmassless graviton and then assuming amassive graviton.
We then mapped these amplitudes to gravitational potentials for black holes. Future
work will include looking at the different predictions of these two theories (massless
and massive gravitons), and comparing them to black hole inspiral data to determine
if the massive graviton theory could be a legitimate contender as a model for gravity.
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C h a p t e r 1

INTRODUCTION

Although many physicists have attempted to make major breakthroughs in the field
of quantum gravity, as of now, it is challenging to reconcile the fields of gravity and
quantummechanics at all energies. However, the ideas of effective field theory (EFT)
have taken root in many theorists’ consciousnesses and are birthing a newmethod of
examining how gravity and quantum field theory may still be able to work together.
These ideas provide a realisticmeans of calculating scattering amplitudes for sources
coupled by gravitons. In particular, new research in EFT is now being done to
allow us to calculate the scattering amplitudes of black holes. These scattering
amplitudes can actually be simplymapped to gravitational potentials for binary black
hole systems at higher orders than is usually possible through existing perturbative
methods from general relativity. These new andmore accurate potentials can be used
by the Laser Interferometer Gravitational-Wave Observatory or LIGO to calculate
the inspirals and mergers for these black holes. As LIGO is currently in its third
observing run and is detecting more events than ever, this research into creating
more accurate models for fitting LIGO waveforms is more important than ever. In
addition, this ease of calculation of gravitational potentials through effective field
theoretic means has opened the opportunity to test theories beyond Einsteinian
gravity. In particular, it is possible to calculate gravitational amplitudes and thus
potentials for these new theories and compare them to the predictions of general
relativity. By comparing both predictions to LIGO’s observations, it is possible to
determine which of the theories is a better fit to what we see.

In this project, we look at one specific theory beyond general relativity, massive
gravity. We examine how the addition of a graviton mass may change the gravi-
tational potentials of black hole binaries. We use the techniques of quantum field
theory and effective field theory to quantize general relativity in the low energy
regimes and calculate the scattering amplitudes for the interaction of two massive
scalar particles mediated by massive gravitons. After mapping the amplitudes to
gravitational potentials, we compare the predictions of this more exotic theory of
gravity to those of the regular Einsteinian model which assumes a massless graviton.

In the second chapter, we begin by describing the methods of effective field theory
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and how it can be used to quantize general relativity. We also illustrate the path
from scattering amplitudes to potentials of black holes and describe the benefits of
this particular method. Chapter 3 outlines the history and motivations for pursuing
the theory of massive gravity. In Chapter 4, we describe the purpose of Feynman
diagrams and Feynman rules as well as how the basic rules change with respect to
massive gravity. The fifth chapter uses the methods of effective field theory to find
the Newtonian potential from the tree level amplitudes for the case of the massless
graviton. We then derive how the amplitude shifts to produce a Yukawa potential
when a graviton mass is included. In Chapter 6, we rederive previous calculations at
the one-loop level for the massless graviton. We follow the work of Bjerrum-Bohr
et. al. and Holstein, and find consistent results [5, 20]. Chapter 7 describes the
changes in integration due to the graviton mass as well as the process of finding
these new integrals. In Chapter 8, we move on to the one-loop level for the massive
graviton. We relate our results for both the classical and quantum diagrams and
discuss their relation to the corresponding results in the massless graviton case.
Finally, in Chapter 9, we look at various ways to add to this project, confirm our
results, and formulate future projects.
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C h a p t e r 2

EFFECTIVE FIELD THEORY

2.1 Background
The history of physics is a history of approximations, a history of theories that work
in a specific regime but fail dramatically when extended out of those regimes. Yet
it is that moment of failure which opens up new realms of ideas and new physics.
Classical mechanics, while incredibly accurate in everyday life, gives way to quan-
tum mechanics when looking at the very smallest parts of our universe. Newtonian
gravity, enough to explain Earth’s orbit around the sun, fails to comprehend the ideas
of black holes or gravitational lensing which are born from the tenets of general rel-
ativity. Even in particle physics, this idea of different theories working at successive
energy scales is not foreign. While we normally treat the electromagnetic, weak,
and strong forces as separate forces and theories, the Standard Model says that at
high enough energies, their relative strengths are approximately equal, suggesting
an underlying symmetry connecting all of them and forming a theory described by
a singular Lagrangian.

Because of this wide acceptance of theories that only work in specific realms,
the ideas of effective field theory should follow naturally. EFT is a way of thought
that does not require theories to be accurate at high energies, but instead looks at
their predictive power in the low energy regime [11]. EFT accepts that certain
theories might not be full descriptions of reality since they fail when taken to the
highest energy limits, but realizes that they could still reveal new knowledge about
the universe in the realms where they do apply. In particle physics, this means that
theories that were once rejected due to nonrenormalizability can now be used and
gleaned for useful truths.

More practically, how does EFT accomplish these lofty goals? In regular
quantum mechanics, physicists use perturbation theory when they do not have full
information about higher energy states. They are able to do this because these higher
energy states usually contribute much less to the interactions since they are harder
to access. EFT attempts to do a similar thing for quantum field theory. Due to the
Heisenburg Uncertainty Principle, physicists know that the higher the energy of an
interaction, the shorter distance it will be able to cover. This means that the super
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high energy contributions to interactions in quantumfield theorywill only contribute
to very local interactions. If we are interested in long-distance interactions, these
higher energy (singular) interactions can be neglected. Thus, another definition of
EFT, as said by Donoghue [12], is that "effective field theory is then the procedure
for describing the long-distance physics [...] that are active at low energy." This
procedure can be used both for theories where the entire theory is known or for
those where it is only partially known; in both we are then able to use an effective
Lagrangian to describe the theory.

2.2 Graviton EFT
While EFT is a very general theory for describing phenomena in lower energy
regimes, it has found its greatest success in the realm of quantum gravity. For a long
time, the theories of general relativity and quantummechanics were considered to be
incompatible. This is due to the fact that the quantized version of general relativity
is what is known as a nonrenormalizable theory. When extended to extremely high
energies on the order of the Planck mass, the theory fails and produces an infinite
set of infinities. While they can be renormalized away, due to their infinite number,
the theory loses any predictive power. However, general relativity is actually one
of the most accurate theories physicists have today, only needing a few quantum
corrections up to the Planck scale. It is this combination of characteristics that make
general relativity a perfect candidate for the methods of EFT [11].

Review of General Relavity
Before we can quantize general relativity, it is important to define all the many terms
and conventions we will be using. Throughout the rest of this thesis, we will be
using the convention that ℏ = 2 = 1 as well as the minus metric convention (+1, -1,
-1, -1).

We have defined the Christoffel symbols or connection coefficients to be the
usual expression:

Γ_UV =
6_f

2
[
mU6Vf + mV6Uf − mf6UV

]
(2.1)

which all have one derivative of the metric.

Similarly, we have that the curvatures (Riemann tensor, Ricci tensor, and Ricci
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scalar , respectively) are:

'
`

aUV
≡ mUΓ`aV − mVΓ

`
aU + Γ`fUΓfaV − Γ

`

fV
ΓfaU (2.2)

'`a = '
U
`Ua = mUΓ

U
`a − maΓU`U + ΓUfUΓf`a − ΓUfaΓf`U (2.3)

' = 6`a'`a = 6
`amUΓ

U
`a − 6`amaΓU`U + 6`aΓUfUΓf`a − 6`aΓUfaΓf`U (2.4)

which each have two derivatives of the metric.

From classical general relativity, we get a Lagrangian that takes the simple form:

L = √−6
[
2'
^2 + L<0CC4A

]
(2.5)

where ^2 = 32c�, 6 is the determinant of the metric 6`a andL<0CC4A is the covariant
Lagrangian for the matter fields in the theory (scalars, fermions, etc.), and R is again
the Ricci Scalar.

Quantifying GR via EFT
For Eq. 2.5 to describe an effective field theory, we must account for other higher
derivative couplings of the fields using the curvatures. Since the Lagrangian must
be a scalar, we can see that the extra terms can take the following form in order of
increasing derivatives:

L��) =
√−6

[
2'
^2 + 21'

2 + 22'`a'
`a + ... + L<0CC4A

]
(2.6)

The ellipses take into account all possible higher derivative terms that must be
included. There can also be higher derivative terms that must be added to the matter
Lagrangian due to this being an effective field theory. The coupling factors are
determined via empirical calculation, but the only current constraints on them are
that 21 and 22 must be both smaller than 10+74 as found by the experiment in [33].
However, the natural expectation is that these gravitational couplings are generated
by Planck scale quanta, which would set 21, 22 ∼ 1. In addition, we do know that the
curvature squared terms are expected to be incredibly tiny on regular energy scales.
While these terms could possibly cause instabilities at energies above the Planck
scale, EFT only holds below this scale anyway, so there are no contradictions and
this is not an issue with the theory.

The Graviton
The quantized version of general relativity requires a different interpretation of
gravity than one is used to. General relativity claims that gravity is fully geometric,
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that the apparent force of gravity is in fact due to curvature in space-time created by
matter in that space-time. Since curved space-time requires one to use differential
geometry and other complicated mathematics, often physicists will examine regions
of space-time far from any matter. In these low-gravity regions, it is possible to find
a linearized perturbation off of flat space-time as seen below.

6`a = [`a + ℎ`a (2.7)

where [ is the flat space metric and ℎ is the small perturbation tensor. In this
approximation, h acts almost like a field since it has values at every point in space
and time. If one finds the equation of motion of this tensor, it is actually the origin
of the prediction of gravitational waves. These small bits of curvature propagate
out from massive objects at the speed of light and exert the force of gravity on the
surrounding space and matter.

However, when general relativity is quantized, this picture changes. Since we
are now in the realm of particle physics and quantum field theory, the gravitational
force is now said to be mediated by a spin 2 boson called the graviton. Since it is
spin 2, its field is actually represented by a rank 2 tensor which perfectly correlates
to the ℎ`a seen in general relativity, only now it is interpreted as a field instead

Figure 2.1: A simple scalar-
graviton interaction

of curvature. The graviton is massless, so it is still
expected to propagate at the speed of light, just like
the gravitational waves from above. This theoreti-
cal particle has not yet been observed empirically,
but doing so would confirm the success of EFT’s
interpretation of gravity.

The Simplest Model of Interaction
Above we said that in this theory, the graviton now
mediates the gravitational force. But how does this
actually occur? This process and the ensuing calcu-
lation will change depending on what type of parti-
cles are interacting via gravity. However, for sim-
plicity’s sake, this thesis will only look at how scalar
particles interact via gravitons. In fig 2.1, we see the most simple interaction - one
massive scalar particle emitting a graviton and the other particle absorbing it. The
solid lines represent the scalar particles, while the double squiggle is the path of the
graviton. ?8 represents the momenta of the incoming and outgoing particles, while
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q is the momenta exchanged between the two scalar particles. This diagram is a
Feynman diagram and is built to describe particle interactions as well as provide
a means to find the probability of those interactions occurring. This calculation is
known as a scattering amplitude, since these particles are considered to be scattering
off of one another.

The Gravitational Potential
These scattering amplitudes and diagrams are useful because they allow us to find
the gravitational potentials of these two scalar particles. However, this mapping is
not immediately obvious and there is not one conventional method; many different
papers have used various means of finding these potentials [9, 23, 26, 29]. We have
chosen to use the samemethod as used by Bjerrum-Bohr et. al. [5] - simplymapping
the full scattering amplitude to the potential itself via the Born approximation. They
defined the potential via the following formula:

〈 5 |) |8〉 ≡ (2c)4X(4) (? − ?′) (M(@))
= −(2c)X(� − �′)〈 5 |+̃ (@) |8〉 (2.8)

where ? and ?′ are the incoming and outgoing four-momenta. We can convert this
into a calculation of the coordinate-space potential by taking the non-relativistic
limit and Fourier-transforming. While the normal non-relativistic normalization
equation takes the form 1

(2�1) (2�2) , we drop the velocity corrections, producing the
formula 1

(2<1) (2<2) , resulting in:

1
2<1

1
2<2

∫
33@

(2c)3
48q·xM(®@) (2.9)

It must be noted that there are other methods to calculate the potential from
the scattering amplitude. In particular, we could subtract off the second order
contributions from the Born approximation. We chose the first method since we are
only looking at leading order behavior and this more complex method would simply
increase the amount of work for no extra benefit at this order. This potential +̃1B (@)
is used in bound state quantum mechanics and can be simply related to our defined
potential at this order via:

+1B (A) = + (A) +
7�<1<2(<1 + <2)

222A2 (2.10)

2.3 From Scattering Amplitudes to Black Hole Inspirals
We have now been able to make the transition from scattering amplitudes to grav-
itational potentials. However, we are still solidly in the realm of particle physics.
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How can we connect this back to the idea of black holes? Well, those massive
scalar particles from the above section have very few constraints. They must simply
be massive, scalar and particle like. However, we know of another object that is
extremely massive: the black hole. Additionally, while most observed black holes
have a net angular momentum, and are thus not scalar, we can consider the most
basic spinless black hole. Our calculation will also still apply to other black holes
at zeroth order in spin, i.e. ignoring spin completely. While spin is important, we
consider the simplest case here. Finally, we also assume that the distance between
the two black holes is much much larger than their finite size. For black holes, these
finite size effects enter at 5PM, i.e. 5-loops relative to this 1-loop calculation (see
Section 2.4 for full explanation of PM order counting). This effect is known as
the "effacement theorem." Thus, for the sake of our 1-loop calculation, we can also
treat black holes as point-like particles. Putting this all together, we can see that
we can simply map these particle interactions to interactions between black holes.
Using this mapping, those gravitational potentials that we calculated are now the
gravitational potentials of two black holes. With these potentials, one can create
models for black hole binary inspirals - just like those LIGO uses to make detections.

2.4 A Higher Order Calculation
This new method is incredibly important because it actually finds these potentials
at higher order than is usually feasible via numerical relativity. Normal numerical
relativistic calculations keep track of post-Newtonian (PN) orders using two small
factors:

v2 ∼ �"|A | � 1 (2.11)

where " is the total mass of the binary system, and A and E are the relative
position and velocity of the two black holes. The virial theorem tells us that
these two quantities (corresponding to the kinetic and potential energies) should
be approximately the same magnitude. The PN expansion is a double expansion
with respect to both of these small quantities. However, this new procedure using
EFT introduces a new type of expansion, called the post-Minkowskian expansion
(PM) [2]. As seen in fig. 2.2, this new expansion actually calculates all orders
in v2 at the same time and then calculates order by order in G. The PM expansion
produces far more information at lower orders in the calculation, but can also be used
simultaneously with the regular PN expansion as shown by the green rectangles.
Due to this convenient mechanism, this method of calculation requires much less
computing power and complex mathematics than numerical relativistic calculations
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Figure 2.2: A summary of known results for the two-body potential for spinless black
holes in the PN and PM expansions, outlined in blue and green regions respectively.
We are calculating at 2PM, directly above the red highlighted section. Figure taken
from [2].

do. This method has been used by Cheung et. al. to do these scattering amplitude
calculations up to the two loop level, which has immense applications for LIGO
[2]. These new and more accurate potentials can be used by LIGO to calculate
the inspirals of black hole binary systems. Since LIGO’s third observing run is
currently running, this research into creating more accurate models that will be used
to fit waveforms is more important than ever before.

However, this method has other applications besides just aiding LIGO’s search
for more merger events. It also creates an opportunity to test the predictions of more
exotic theories of gravity. EFT’s method approaches a problem normally solidly in
the realm of general relativity and shapes it into a particle theory problem. This
opens up the theory to take from a far wider range of challengers to traditional
Einsteinian gravity and determine how their predictions weigh against those of
quantized general relativity. In particular, one of these theories, massive gravity,
shows promise and will be discussed throughout the rest of this thesis.
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C h a p t e r 3

MASSIVE GRAVITY

3.1 Introduction
In the most straightforward way, massive gravity is a modification to general rel-
ativity that is formed when we simply add a mass term to the Einstein-Hilbert
Lagrangian which would give the graviton a mass <. We should expect that as
< → 0, the theory should return to classical general relativity and retrieve those
results. At this point, several different studies have tried to constrain this graviton
mass. In particular, a study looking at its effect on weak gravitational lensing es-
tablished that < < 6× 10−32 eV, while another study examining gravitational waves
from LIGO constrained the mass to be less than 6.76×10−23 eV [3, 8]. While these
are different in magnitude, it still gives an idea for how small this mass would need
to be to match experimental results.

One important consequence of changing from a massless graviton theory to
a massive graviton theory is the addition of 3 extra degrees of freedom. While
a massless spin two particle has two helicity states, the massive graviton has five
polarizations, along both the transverse and longitudinal axes. As a warning, these
extra degrees of freedom causemany of the issues with the theory of massive gravity,
so this will come up again and again in this chapter.

3.2 Motivations for a Massive Graviton
Testing Einstein
Although general relativity is one of the most accurate theories that physicist know
of today, it still has some major issues. In particular, when one tries to extend
the quantized version of the theory beyond the Planck scale, the theory completely
breaks down. This means that general relativity simply cannot be the full description
of gravity. This issue provides a great incentive to create theories that would fix
these problems. However, that is impossible without testing the theory thoroughly.
One common method of testing a theory involving a massless particle is by giving
that particle a small but non-negligible mass and seeing how the dynamics of the
system shift perturbatively. This process not only determines if the particle might be
better described by slightly massive particle, but also provides a method of exploring
the limits of the original theory. Massive gravity exactly fits this narrative. One
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of the major goals of the theory of massive gravity is to see if this description of
gravity provide a cohesive picture that could even be extended to energies greater
than the Planck scale.

The Cosmological Constant Problem
One of the most pressing issues in cosmology today is explaining the small but
nonzero value of the cosmological constant. While current theories usually insert
the hypothesis of dark energy, some unknown energy with negative pressure, there is
a lot of skepticism for this explanation. However, massive gravity is able to provide
an natural explanation for the small value of the cosmological constant. At first
order, the force mediated by a massive graviton takes the form ∼ 1

A
4−<A . As r is

increased, the field will diminish exponentially from that of the massless graviton. If
we set the graviton mass to be on the order of the Hubble constant (< ∼ �), then we
should see the effect of gravity fall off just as the Hubble expansion predicts. This
provides a natural explanation for the small cosmological constant since it is now
explained by the mass of a particle. In addition, Vainshtein screening, as discussed
in 3.3, provides some rationale for why we do not see this exponential decay on the
scale of a galaxy, but only in cosmological distances. While there are still some
issues with this specific explanation of the cosmological constant, massive gravity
as a whole shows promise, in particular in fields such as bigravity[1, 18].

3.3 History
Fiers-Pauli Theory
In the 1930s, the first theory of massive gravitons was developed by Pauli and Fierz
[19]. They wrote down the action for a single massive spin 2 particle in Minkowski
space with the field defined to be a symmetric rank two tensor ℎ`a. This action,
usually known as the Fierz-Pauli action is shown below [19]:

( =

∫
3�G

[
−1

2
m_ℎ`am

_ℎ`a + m`ℎa_maℎ`_ − m`ℎ`amaℎ +
1
2
m_ℎm

_ℎ − 1
2
<2(ℎ`aℎ`a − ℎ2)

]
(3.1)

To partially rationalize this choice of action, we note that this choice contains all
possible contractions of ℎwith two or fewer derivatives. Importantly, it also includes
the desired mass term. Once that mass < is taken to zero, this action matches the
linearized form of the Einstein-Hilbert action.

One other thing to note about this action is the Fiers-Pauli tuning, the name for the
relative factor of -1 chosen to be between the twomass terms. Ifwe violate the tuning,
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and introduce a nonzero, dimensionless 0, forming −1
2<

2(ℎ`aℎ`a − (1 − 0)ℎ2), we
actually get an action has an extra (sixth) degreee of freedom. This extra degree
of freedom in the Lagrangian describes a scalar ghost with negative kinetic energy
of mass <2

6 =
3−40

20 <
2. For small 0, this ghost’s mass goes as ∼ 1

0
, which clearly

goes to infinity in the limit 0 → 0 or equivalently, when we try to return to the
Fiers-Pauli tuning. This infinite mass renders the ghost particle non-dynamical and
unphysical. However, using the tuning from the beginning carefully eliminates the
issue, by removing that extra degree of freedom and thereby the ghost field.

The vDVZ Discontinuity
In its most essential elements, the vDVZ discontinuity describes the result of taking
the theory of massive gravity and returning to the more traditional theory by taking
the limit as the graviton mass vanishes. Unfortunately, as clued in by the name,
there is a discontinuity there. The easiest method to find this discontinuity is through
looking at how light would be expected to bend around a heavy object. In regular,
linearized general relativity, we can examine how a test particle might be effected
by a small perturbation of curvature ℎ`a. Referring to textbooks, we find that if we
constrain the field ℎ`a to take the form 2ℎ00

"%
= −2q, 2ℎ8 9

"%
= −2kX8 9 , and ℎ08 = 0 for

some functions q(A) and k(A), and where "% is the Planck mass, then we know
that the Newtonian potential felt by the particle should simply be q(A). If we define
k(A) = Wq(A) and q(A) = − :

A
for some constants W and : , then the angle for the

bending of light with impact parameter b must be

U =
2: (1 + W)

1
. (3.2)

Matching this structure with the massless graviton case, we know that

q(A) = k(A) = −�"
A
, massless graviton (3.3)

and thus W = 1 and : = �" . The bending angle becomes:

U =
4�"
1

, massless graviton (3.4)

In the massive graviton case, as will be shown later, the metric is not in the right
form to plug into the above equations. However, since we have assumed the coupling
to the test particle to be gauge invariant, we are free to do a gauge transformation on
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our solution for ℎ`a, producing:

ℎ00 =
2"
3"%

1
4c
4−<A

A
, (3.5)

ℎ08 = 0, (3.6)

ℎ8 9 =
"

3"%

1
4c
4−<A

A
X8 9 (3.7)

Taking the limit < → 0, we get that the potential terms are:

q(A) = −4
3
�"

A
, k(A) = −2

3
�"

A
, massive graviton (3.8)

In this case, we now have W = 1
2 and : = 4�"

3 . Plugging this back into eq. 3.2, we
get

U =
2( 4�"3 ) (1 +

1
2 )

1
=

4�"
1

, massive graviton (3.9)

However, if we wish to rescale G, so that our potential matches the Newtonian
potential (� → 3

4 ), then the bending angle would change to

U =
3�"
1

, massive graviton (3.10)

which is off by 25% from GR’s prediction. This vDVZ discontinuity violates ones
intuition that the parameters of nature should be able to transition smoothly to zero
- there should not be a way to tell if a parameter is nonzero simply by a finite
measurement.

The Stückelberg Trick
While this puzzling discontinuity stuck for quite a while, and stalled research in
the field of massive gravity, eventually some contemporary physicists realized that
they could apply work done previously by Stückelberg for a different application.
Their realization was that the issue with trying to take the limit < → 0 was due
to the extra degrees of freedom necessitated by the massive graviton. The gauge
symmetry that eliminates those three degrees of freedom only appears when the
mass is zero. Taking the limit from the massive graviton to the massless graviton
attempts to remove those degrees of freedom without providing a way for them
to vanish. However, Stückelberg realized that if one introduced both a massless
vector and a massless scalar (with 2 and 1 degrees of freedom, respectively) into
the massive theory without changing it (via gauge symmetries), these new particles
would decouple in the limit < → 0. When these extra particles are included, the
extra degrees of freedom are no longer lost and the limit is once again smooth.
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This process of introducing extra massless fields to accommodate extra degrees of
freedom is called the Stückelberg trick, after the original physicist who discovered
this method. However, the expense of removing the vDVZ discontinuity is high -
any calculation attempting to do so would need to include all possible interactions
due to these extra fields.

Vainshtein Screening
Another potential solution to the vDVZ discontinuity is that of Vainshtein screening.
Vainshtein investigated how including nonlinearities into the theory would effect the
results. He found that around any massive object, such as a star of mass M, there is a

new length scale associated with it known as the Vainshtein radius, A+ ∼
(

"

<4"2
%

)1/5
.

At distances less than this length scale, non-linearities actually dominate the theory
and any predictions of the linear theory cannot be trusted. Indeed, if we take the limit
as < → 0, the Vainshtein radius goes to infinity and none of the linear results can
be trusted in any realm. This actually opens up the opportunity for these non-linear
effects to remove the vDVZ discontinuity. To introduce some numbers into this
calculation, let us assume " is one solar mass and < is approximately the Hubble
constant < ∼ 10−334+ . This gives us an A+ ∼ 1018 or approximately the size of
the Milky Way [19]. These changes also lead to one of the motivations for massive
gravity as a theory which we discussed in section 3.2.

The Boulware-Deser Ghost
However, this idea of Vainshtein screening introduced new issues of its own. Boul-
ware and Deser examined some of the fully nonlinear theories and determined that
they contained an extra (sixth) degree of freedom with negative kinetic energy [6].
This became aptly known as the Boulware-Deser ghost. This ghost occurs because
the Fierz-Pauli tuning, which worked so well for linear massive gravity, is no longer
able to fully cancel out this extra mode when the nonlinear terms are included. For
many years, this ghost was thought to be unavoidable - that all versions of massive
gravity would contain it. This idea again stalled out the field until 2010.

dRGT Massive Gravity
In 2010, de Rham, Gabadadze, and Tolley discovered a massive gravity theory with
nonlinear terms that had the coefficients precisely tuned to eliminate the Boulware-
Deser ghost. The action for the ghost-free dRGT (de Rham-Gabadadze-Tolley)
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massive gravity is given by [17] as:

( =

∫
34G
√−6

(
− "%;

2

2
' + <2"2

%

4∑
==0

V=4=
(
X
)
+ L<0CC4A

)
(3.11)

Similarly to in Fierz-Pauli’s original theory, the first term (proportional to the Ricci
scalar ') is still identical to the Einstein-Hilbert action and there is again a minimal
coupling to the matter Lagrangian. However, the middle term is new and is a
carefully constructed and tuned mass term.

We will here define all the various terms used in this term. First, we define X =√
6−1 5 or equivalently in index notation, -`U -Ua = 6`U 5aU where 6`a is the normal

metric and 5`a is a reference metric which corresponds to the background metric
around which the Pauli-Fierz fluctuations take place. Thus, for most calculation’s
purposes, we can take 5`a = [`a, although this formulation is generalized for any
background metric. The V8 are dimensionless coupling constants which are usually
considered to be O(1). We can also define the elementary symmetric polynomials
4= as:

40(X) = 1, (3.12)

41(X) = [X] (3.13)

42(X) =
1
2
(
[X]2 − [X2]

)
(3.14)

43(X) =
1
6
(
[X]3 − 3[X] [X2] + 2[X3]

)
(3.15)

44(X) = detX (3.16)

where [X] indicates the trace of X or -`` . This particular antisymmetric com-
bination of terms in each 4= fully eliminates the Boulware-Deser ghost from the
calculation.
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C h a p t e r 4

FEYNMAN DIAGRAMS

4.1 The Basic Feynman Rules
In quantumfield theory, one of the first things one learns about is Feynman diagrams:
how they were first derived and how to use them practically. Explanations usually
begin by attempting to calculate the scattering amplitude for a simple scalar particle
interaction via the Feynman path integral formulation, looking something like

〈@′′, C′′|@′, C′〉 =
∫
D@ exp

[∫ C ′′

C ′
3C! ( ¤@(C), @(C))

]
(4.1)

This integral is impossible to solve analytically in most cases. However, Feynman
realized that one could Taylor expand the integrand of this integral and and match
the terms to specific particle interactions, order by order. He created the Feynman
diagrams as a way to graphically represent these interactions in a clear way. The
diagrams also serve as a method to return to the calculation of the scattering ampli-
tudes by relating the parts of the diagram to pieces of the Taylor expanded integrand.
Feynman wrote down several key rules for how to make this mapping and thereby
find the amplitude. While these rules change somewhat depending on what types of
particles and interactions one is dealing with, we will here enumerate the ones that
are important for our calculation as listed in [16, 32].

1. Momentum labels: Label all the incoming and outgoing (external) momenta
:1, :2, ...:=. Label all internal momenta @1, @2, ...@=. Put an arrow on or

Figure 4.1: A generic Feynman diagram, with external lines labeled (internal lines
not shown). Figure and caption taken from [32]

.
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alongside each line to designate the positive flow of the momentum.

2. Propagators: For each internal line, write down the corresponding propagator
term. Each of these propagators correspond to a particle, or more accurately,
the path of a particle. For example, for a double squiggle as seen in fig.
5.1, which represents a graviton, the propagator takes the form 8%UVWX

@2+8n , where
%UVWX is defined in A.3.

3. Vertex factors: For each vertex between propagators, write down a vertex
factor corresponding to the particle type of vertex. These vertices correspond
to interaction points between the participating particles. They also usually
have a coupling constant which determines how strong an interaction will be.

4. Conservation of energy/momentum: For each vertex, write down a delta
function of the form (2c)4X4(:1 + :2 + :3), with positive momenta defined as
coming into the vertex. This should make sure that momentum is conserved
throughout the diagram.

5. Integration/Loops: Now integrate over each internal momenta. The dif-
ferential should take the form 34@8

(2c)4 . The delta functions from momentum
conservation should cancel out most of the integrals, unless there are loops.
Since there can be an undefined amount of momenta flowing around a loop,
all possible values for that momenta must be integrated over.

6. Cancel the delta function: Finally, there should be one remaining delta func-
tion of the form (2c)4X4(?1 + ?2 + ... − ?=), which contains the overall
momentum conservation for the diagram. Cancel this factor, and multiply
the amplitude by 8. The result should be the scattering amplitudeM for the
diagram.

4.2 Changes in the Feynman Rules due to Massive Gravity
The propagators and vertex factors for the massless graviton were given in [5, 11]
and then replicated in Appendix A for ease of reference. We then consulted a paper
by Hinterbichler on massive gravity [19] to determine how these Feynman rules
might change given a massive graviton. We found that while (g1, g2, g3, g6) do not
change form, the propagator for the graviton does. While the massless graviton
propagator takes the form

8 12 [[
UW[VX + [UX[VW − 2

�−2[
UV[WX]

@2 + 8n
(4.2)
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in D dimensions, the massive graviton propagator takes the more complex form

8 12

[
�
UW
< (@, <)�VX< (@, <) + �UX< (@, <)�

VW
< (@, <) − 2

�−1�
UV
< (@, <)�WX< (@, <)

]
@2 + 8n

(4.3)
where �UV< (@, <) = [UV + @U@V

<2 . We can see that in the limit < → 0, the massive
propagator does not smoothly return back to the massless propagator. Even if we
ignore the singular terms, there is still a difference of a factor of 2

�−1 instead of 2
�−2 .

This is due to the fact that for this project, we chose to use the Fierz-Pauli theory
of massive gravity instead of the Stückelberg theory. Although it has the detriment
that the vDVZ discontinuity is present, the overall calculation is simplified because
we do not have to calculate the additional interactions from the extra Stückelberg
fields.

4.3 The Nonanalytic Component of the Scattering Matrix
A normal scattering amplitude in the massless graviton case will take the following:

" ∼
(
� + �@2 + ... + U^2 1

@2 + V1^
4 ln (−@2) + V2^

4 <√
−@2
+ ...

)
(4.4)

The coefficients �, �, ... correspond to the analytic componentswhile theU, V1, V2, ...

correspond to the nonanalytic components. In this thesis, we will only analyze the
nonanalytic terms of the scattering amplitude. This is due to the fact that analytic
terms, when Fourier transformed will map to delta functions, which are purely local
phenomena. We would only expect these terms to dominate in the very high energy
regime, so in this effective field theory, we can ignore their contribution. We will
instead focus on the nonanalytic terms which Fourier transform to sequential pow-
ers of 1

A
. In particular, the U term will yield the Newtonian potential, while V1, V2

terms will respectively yield the leading classical and quantum corrections to the
Newtonian potential.

For the massive graviton case, the amplitude will look a bit different, but we will
still only select the nonanalytic terms. We expect that we should again see the
same U, V1, V2, ... terms, but with different coefficients out front. These terms may
also include an exponential decay due to the graviton mass turning the Newtonian
potential to a Yukawa potential.

In this thesis, we will be examining 12 different diagrams (see figs 5.1, 6.2, 6.3,
6.1, 6.4, and 6.5) that contribute to this nonanalytic portion of the amplitude. Many
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other diagrams yield only analytic contributions, so we will omit any discussion of
them. The diagrams that do contribute to the nonanalytic amplitude are those which
contain two or more propagating gravitons (except for the tree amplitude, which
only has one).
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C h a p t e r 5

TREE LEVEL AMPLITUDES

5.1 Massless Graviton Interactions
With the Feynman rules in hand, the calculation of the tree level diagram (see 5.1)
is straightforward. It does not require any integration, but merely complex tensor
algebra. To aid in this process, we utilize the Mathematica package Feyncalc which
is built for reducing Einstein summation notation and solving Feynman integrals
[28, 31]. We find the scattering amplitude to be

8" (@) = g`a1 (:1, :2, <1)
[
8%`aUV

@2

]
g
UV

1 (:3, :4, <2) (5.1)

where @ = :1 − :2 = :4 − :3. If we contract all indices, we get

8" (@) = 8^2

2@2

[
(:1 · :4) (:2 · :3) + (:1 · :3) (:2 · :4) − (:1 · :2) (:3 · :4)

+ <2
2(:1 · :2) + <12(:3 · :4) − 2<2

1<
2
2

]
(5.2)

In order to confirm this as the known result, we take the non-relativistic and zero
velocity limit to yield the Newtonian potential. We define :2 and :4 in terms of :1,
:3, and q; divide by 1

4�1�3
= 1

4<1<2
; and set all dot products of external momenta

equal to the product of theirmasses , e.g. :1·:1 → <2
1, :1·:2 → <2

1, :1·:3 → <1<2,
etc. We also define ^2 = 32c�. Given these approximations, we recover the much

Figure 5.1: The Tree Level Diagram. Figure taken from [5]
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simpler amplitude:

8" (@) = 832c�<1<2

8@2 + 832c�@2

4@2 =
84c�<1<2

@2 + 84c� (5.3)

We can now Fourier transform this amplitude to obtain the potential:

+ (A) = �<1<2
A

− 4c�X3(A) (5.4)

However, we only care about non-local, long-distance classic interactions, so we
can disregard the delta function (localized at a single point) to get the final solution
which does match that of the Newtonian potential.

+ (A) = �<1<2
A

(5.5)

5.2 Massive Graviton Interactions
We then redo the calculation with the massive graviton propagator assuming a small
mass of < for the graviton. The full expression remains nearly the same, only
replacing the massless graviton propagator with the massive graviton propagator as
defined in App. A:

8" (@) = g`a1 (:1, :2, <1)
[
8%<`aUV

@2 − <2

]
g
UV

1 (:3, :4, <2) (5.6)

Due to its complexities, we only replicate the non-relativistic limit of the amplitude
here:

8" (@) = 8^2

@2 − <2

( @4

96<1<2
+ <2@

2

48<1
+ <1@

2

48<2
+ @

2

8
+ <1<2

6

)
(5.7)

We now change the form of the amplitude to reveal more clearly the parts that will
become delta functions. We use the following relations:

@2

@2 − <2 = 1 + <2

@2 − <2 (5.8)

@4

@2 − <2 = @
2 + <2 + <4

@2 − <2 (5.9)

and obtain:

8" (@) = 8^2
[

1
96<1<2

(
@2 + <2 + <4

@2 − <2

)
+

( <2
48<1

+ <1
48<2

+ 1
8

) (
1 + <2

@2 − <2

)
+ <1<2

6
1

@2 − <2

]
=

8^2

48<1<2

[
@2

2
+

(<2

2
+ <2

2 + <
2
1 + 6<1<2

)
+ 1
@2 − <2

(<4

2
+ 8<2

1<
2
2

+ <2<2
2 + <

2<2
1 + 6<2<1<2

)]
(5.10)
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We can now Fourier transform this amplitude to obtain the potential:

+ (A) = 82c�
3<1<2

[(<2

2
+ <2

2 + <
2
1 + 6<1<2

)
X3(A) + 1

2
X3′′(A)

+ 4
−<A

4cA

(<4

2
+ 8<2

1<
2
2 + <

2<2
2 + <

2<2
1 + 6<2<1<2

)]
(5.11)

However, once again, we only care about non-local interactions, so we can disregard
the delta function terms to get the final solution:

+ (A) = �4
−<A

A

(4<1<2
3
+ <

2<2
6<1

+ <
2<1

6<2
+ <2 + <4

12<1<2

)
(5.12)

We see that the term that would dominate in the limit of the graviton mass < being
very small is a term that looks a lot like the original Newtonian potential. It has two
small but key differences: an exponential decay with decay constant 1/< and an
extra factor of 4/3. The exponential decay term means that this potential now takes
the form of a Yukawa potential, as expected. This potential is characteristic of any
force mediated by a massive particle, see the weak force and W & Z bosons [22].
However, the factor of 4/3 is due to the vDVZ discontinuity mentioned previously
in Section 3.3. This is because we chose to use the original Pauli-Fierz theory
instead of Stückelberg’s method. While the newer method would have allowed us to
have the smooth limit, it would have required us to account for many more particle
interactions. We thus chose the simpler method for this calculation. However, it
should still produce the same results either way.
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C h a p t e r 6

ONE-LOOP MODIFICATION (MASSLESS)

6.1 Techniques
After finishing the tree level calculations, we determined that we should rederive
the gravitational potential at the one loop level for the massless graviton. Since this
calculation had already been done several times, but with conflicting results, we
believed that it would be good to redo it. As a reference, we followed a paper by
Bjerrum-Bohr as well as another by Holstein which had both done this calculation
or extremely similar ones [5, 21]. Since all the needed integrals had already been
solved and recorded in these papers, this process went smoothly. In order to aid in
contracting the many Einstein indices, we again utilized the Mathematica package
Feyncalc. We coded up all the expressions for the propagators and vertex factors
as well as the amplitudes for each diagram. We also replicated the results of the
integrals from the two papers using Feyncalc’s built in integral solving techniques.
We created a simple program that took in each amplitude and output the solution
in the desired format, contracting the indices and simplifying the expressions along
the way. We also used several identities given in [5] that helped us eliminate many
analytic terms from the start. In particular, these identities took the form

�`aU[
UV = �`a[

`a = �`a[
`a = 0 (6.1)

�`aU@
U = −@

2

2
�`a, �`a@

a = −@
2

2
�`, �`@

` = −@
2

2
� (6.2)

�`a@
a = −@

2

2
�`, �`@

` = −@
2

2
� (6.3)

�`aU:
U =

1
2
�`a, �`a:

a =
1
2
�`, �`:

` =
1
2
� (6.4)

Through this procedure, we were able to derive each of the contributions to the
gravitational potential from the diagrams. In all cases where the two previous
papers that we referenced agreed, our result also confirmed theirs exactly [5, 21]. In
the one case where there was one difference between the results of the two papers,
our result matched that of [21], the newer paper.
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Figure 6.1: The box and crossed box diagrams which contribute to the nonanalytic
component of the potential. Figure and caption taken from [5].

6.2 Results
The Box and Crossed Box Diagrams
As given in [5], the uncontracted amplitudes for the box and cross box diagrams
(see 6.1) are

8"20 =

∫
34;

(2c)4
g
`a

1 (:1, :1 + ;, <1)gdf1 (:1 + ;, :2, <1)gUV1 (:3, :3 − ;, <2)gWX1 (:3 − ;, :4, <2)

×
[

8

(:1 + ;)2 − <2
1

] [
8

(:3 − ;)2 − <2
2

] [
8%`aUV

;2

] [
8%dfWX

(; + @)2

]
(6.5)

for the box and

8"21 =

∫
34;

(2c)4
g
`a

1 (:1, :1 + ;, <1)gdf1 (:1 + ;, :2, <1)gWX1 (:3, :4 + ;, <2)gUV1 (:4 + ;, :4, <2)

×
[

8

(:1 + ;)2 − <2
1

] [
8

(:3 − ;)2 − <2
2

] [
8%`aUV

;2

] [
8%dfWX

(; + @)2

]
(6.6)

for the cross box. These two most complex diagrams require extra strategies of
simplification before integration. We use the fact that only the lowest order non-
analytic pieces contribute to eliminate portions of the integrals and eliminate all
dependence on any integral more complex than the scalar box and cross integrals
(as done in [5]). For example, we can simplify this integral

∫
34;

(2c)4
; · :1

;2(; + @)2((; + :1)2 − <2
1) ((; − :3)2 − <2

2)

=
1
2

∫
34;

(2c)4
(; + :1)2 − ;2 − <2

1

;2(; + @)2((; + :1)2 − <2
1) ((; − :3)2 − <2

2)
(6.7)

into simply
1
2

∫
34;

(2c)4
1

;2(; + @)2((; − :3)2 − <2
2)

(6.8)
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because the ;2 term does not contribute to the non-analytic component. Similarly,
we can turn∫

34;

(2c)4
; · @

;2(; + @)2((; + :1)2 − <2
1) ((; − :3)2 − <2

2)

=
1
2

∫
34;

(2c)4
(; + @)2 − ;2 − @2

;2(; + @)2((; + :1)2 − <2
1) ((; − :3)2 − <2

2)
(6.9)

into this much simpler scalar integral

1
2

∫
34;

(2c)4
@2

;2(; + @)2((; + :1)2 − <2
1) ((; − :3)2 − <2

2)
(6.10)

These simplifications are a simple example of the Passerino-Veltman decomposition
which is described in detail in Section 7.2. They allow us to reduce these difficult
integrals into less difficult integrals with few propagators and one scalar integral with
four propagators. Using the integrals in Appendix B, and taking the nonrelativistic
limit, we found that our results confirm those of Holstein and Bjerrum-Bohr et. al.
[5, 21]:

"20 (@) = �2<1<2

[(4<1<2

@2 + 8
(<2

1 + <
2
2

<1<2

)
− 8

)
! + 4(<1 + <2)(

]
− 84c�2<2

1<
2
2
!

@2

√
<1<2
B − B0

(6.11)

"21 (@) = �2<1<2

[(
− 4<1<2

@2 − 70
3

(<2
1 + <

2
2

<1<2

)
− 8

)
! − 4(<1 + <2)(

]
(6.12)

where ! = ;>6(−@2) and ( = c2√
−@2

. Adding these two terms together, we find the
full amplitude for the box and crossed box diagrams to be

"20+21 =
94
3
�2<1<2 log @2 − 84c�2<2

1<
2
2
!

@2

√
<1<2
B − B0

(6.13)

where B = (:1 + :3)2 is the square of the center of mass energy and B0 = (<1 +<2)2

is its threshold value. We note that the full amplitude does have an extra term as
compared to [5], specifically the term with B − B0. However, this term is present in
[21], a more recent paper. This paper explains its presence as from the second order
Born approximation and must thereby be subtracted off to find the correct correction
to the Newtonian potential, producing

"20+21 (@) =
94
3
�2<1<2 log @2 (6.14)
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Figure 6.2: The set of triangle diagrams contributing to the scattering amplitude.
Figure and caption taken from [5].

Fourier transforming the result gives us the potential due to these diagrams

+20+21 (A) =
47
3
�2<1<2

cA3 (6.15)

This is off by a negative sign from [5] (as all of the rest of the potentials will also
be), but matches the potential derived in [21] exactly. This difference of a negative
sign is simply due to a difference in convention for potentials.

The Triangle Diagrams
We next move onto the next set of diagrams: the triangle diagrams (as seen in 6.2).
The uncontracted amplitudes take the form

"30 (@) =
∫

34;

(2c)4
g
`a

1 (:1, ; + :1, <1)gUV1 (; + :1, :2, <1)gfdWX2 (:3, :4, <2)

×
[
8%UVWX

(; + @)2

] [
8%`afd

;2

] [
8

((; + :1)2 − <2
1)

]
(6.16)

"31 (@) =
∫

34;

(2c)4
g
fd

1 (:3, :3 − ;, <2)gWX1 (:3 − ;, :4, <2)g`aUV2 (:1, :2, <1)

×
[
8%`afd

;2

] [
8%UVWX

(; + @)2

] [
8

((; − :3)2 − <2
2)

]
(6.17)

Unlike the box and crossed box diagrams, these diagrams have simple integrals as
laid out in Appendix B. However, we are able to simplify the expression significantly
through the use of the identity

%WXfd%UV`ag
fd`a (:1, :2, <1) = gWXUV (:1, :2, <1) (6.18)

Taking the nonrelativistic limit, we found that our results confirm those of [5] and
[21]:

"30 (@) = 8�2<1<2

(7
2
! + <1(

)
(6.19)

"31 (@) = 8�2<1<2

(7
2
! + <2(

)
(6.20)
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Figure 6.3: The double-seagull contribution to the scattering amplitude. Figure and
caption taken from [5].

where ! = ;>6(−@2) and ( = c2√
−@2

. The Fourier transformed potential is thus

+30+31 (A) =
4�2<1<2(<1 + <2)

A2 + 28<1<2�
2

cA3 (6.21)

The Double-Seagull Diagram
For the double-seagull diagram, the amplitude is as follows

"40 (@) =
1
2!

∫
34;

(2c)4
g
UVWX

2 (:1, :2, <1)g`afd2 (:3, :4, <2)
[
8%WXfd

;2

] [
8%UV`a

(; + @)2

]
(6.22)

We again are able to use the simplifying identity from eq. 6.18. We also note
that due to the symmetry of the diagram, there is a symmetry factor of 1/2!. The
resulting, contracted amplitude is

"40 (@) = −44�2<1<2! (6.23)

where ! = ;>6(−@2). From this, a simply Fourier transform reveals the double-
seagull diagram’s correction to the potential

+40 (A) =
22�2<1<2

cA3 (6.24)

which agrees with the calculations in [5].

The Vertex Correction Diagrams
While there are more than four general vertex correction diagrams, the four shown
in fig. 6.4 are the only ones which contribute to the nonanalytic portion of the
scattering amplitude " . These figures can be divided into two classes: those with
massive loops and those with purely graviton loops. For the massive loop diagrams
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Figure 6.4: The class of the graviton vertex correction diagrams which yield non-
analytic corrections to the potential. Figure and caption taken from [5].

(5a and 5b), the scattering amplitudes take the form

"50 (@) =
∫

34;

(2c)4
g
UV

1 (:1, :2, <1)g`a1 (:3, :3 − ;, <2)gdf1 (:3 − ;, :4, <2)g(WX)_^qn3 (;,−@)
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] [
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] [
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((; − :3)2 − <2
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]
(6.25)

and

"51 (@) =
∫

34;

(2c)4
g
UV

1 (:1, ; + :1, <1)g`a1 (; + :1, :2, <1)g_^1 (:3, :4, <2)g(qn)WXdf3 (−;, @)
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] [
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(6.26)

while the graviton loop diagrams (5c and 5d) take the form

"52 (@) =
1
2!

∫
34;

(2c)4
g
_^qn

2 (:3, :4, <2)gUV1 (:1, :2, <1)g(WX)`adf3 (;,−@)

×
[
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] [
8%fdqn
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] [
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]
(6.27)

and

"53 (@) =
1
2!

∫
34;

(2c)4
g
df`a

2 (:1, :2, <1)g_^1 (:3, :4, <2)g(qn)UVWX3 (−;, @)

×
[
8%`aWX

;2

] [
8%fdUV

(; + @)2

] [
8%_^qn

@2

]
(6.28)

The second set of diagrams also have a symmetry factor of 1/2!. These diagrams
have the secondmost propagators (second only to the box and crossed box diagrams)
and are thereby some of the more difficult ones to solve. However, we were able to
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Figure 6.5: The vacuum polarization diagrams which contribute to the potential.
Note that there exists a ghost diagram along with the graviton loop. Figure and
caption taken from [5].

find the nonrelativistic, contracted amplitudes

"50 (@) = �2<1<2

(5
3
! + 2<1(

)
(6.29)

"51 (@) = �2<1<2

(5
3
! + 2<2(

)
(6.30)

"52+53 (@) =
52
3
�2<1<2! (6.31)

where ! = ;>6(−@2) and ( = c2√
−@2

. Adding the first two similar terms together, we
find

"50+51 (@) = 2�2<1<2

(5
3
! + (<1 + <2)(

)
(6.32)

"52+53 (@) =
52
3
�2<1<2! (6.33)

Once again Fourier transforming to yield the potential, we find

+50+51 =
�2<1<2(<1 + <2)

A2 − 5
3
�2<1<2

cA3 (6.34)

and
+52+53 = −

26
3
�2<1<2

cA3 (6.35)

These results again agree with the calculations in the paper [5].

The Vacuum Polarization Diagrams
Finally, we examine the effect of the two vacuum polarization diagrams, both from
a pure graviton loop as well as a ghost loop (see fig. 6.5). We again note that
there should be a vertex factor of 1/2! due to the symmetry of the diagrams.
Conveniently, we are able to use an effective Lagrangian calculated by ’t Hooft and
Veltman [15, 34, 35]

L = − 1
16c2 log @2

(
1

120
'2 + 7

20
'`a'

`a

)
(6.36)
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to find a vacuum polarization tensor which is given by

Π̂UV,WX = −
2�
c

log (−@2)
[

21
120

@4�UV,WX +
23
120

@4[UV[WX

− 23
120

@2([UV@W@X + [WX@U@V) −
21
240

@2(@U@X[VW

+ @V@X[UW + @V@W[UX) +
11
30
@U@V@W@X

]
(6.37)

We can then use this vacuum polarization tensor to easily find the amplitude

"601 (@) = gfd1 (:1, :2, <1)
[
8%fdqn

@2

]
Πqn`a

[
8%`a_^

@2

]
g_^1 (:3, :4, <2) (6.38)

Contracting and taking the nonrelativistic approximation, we get

"601 (@) = −
43
15
�2<1<2! (6.39)

where ! = ;>6(−@2). Taking the final Fourier transform, we find the expected result

+60+61 (A) =
43
30
�2<1<2

cA3 (6.40)

just as seen in [5].

6.3 Analysis of Full Potential
We can add up all of the contributions to the potential from each of the diagrams to
find the full gravitational potential at one loop order

+ (A) = �<1<2
A

[
1 + 3

� (<1 + <2)
A

+ 41
10c

�ℏ

A2

]
(6.41)

We note the addition of the factor of ℏ on the third term is added to make units work
correctly, which was until now ignored.

We see that that these terms seem to follow our expectations from Section 2.2 ac-
cording to simple order countingmethods. The first term is obviously the Newtonian
potential as discussed above, which is at order 0 in the Post-Newtonian (PN) ap-
proximation method or order 1 in the Post-Minkowski (PM) approximation method
due to its singular factor of �. The second two terms both share a factor of �2,
which puts them both at PM order 2. However, it is more difficult to determine their
order on the PN scale. In fact, the second term exactly corresponds to the first term
seen in a PN calculation via numerical relativity [23]. Due to this fact, it is usually
denoted the classical or Post-Newtonian term. However, the third term is not so
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easy to classify since it cannot be easily matched to any regular Post-Newtonian
approximations. Instead, this term is the new contribution of this effective field
theoretic calculation. We can thus interpret this aptly named "quantum term" to
encapsulate all orders of E2 into its one term (see the first row in fig. 2.2). However,
due to an extra factor of �"

A
as well as one of ℏ which suppress its contribution, in

this regime, this term is actually much smaller than the classical term even though
they are technically at the same PM order. Thus, while theoretically interesting, the
small value usually renders the quantum term impractical for common calculations,
since the classical term(s) will dominate in most realms of interest.
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C h a p t e r 7

INTEGRATION WITH A MASSIVE GRAVITON

Unfortunately, the addition of the graviton mass on the graviton propagator meant
that all of the original integrals used in the massless graviton calculations no longer
held. We thus needed to calculate all of the necessary integrals in order to find
the correct expressions for the amplitudes. These integrals took 4 different forms
depending on how many propagators were being integrated over and how many
indices they had. We labelled them as �, �, �, or � integrals if they had 1, 2, 3, or
4 propagators respectively, as seen below:

�0 =

∫
34ℓ

(2c)4
1

(ℓ2 − <2
1)

(7.1)

�0 =

∫
34ℓ

(2c)4
1

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

(7.2)

�0 =

∫
34ℓ

(2c)4
1

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2) ((ℓ + :1)2 − <2

3)
(7.3)

�0 =

∫
34ℓ

(2c)4
1

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2) ((ℓ + :1)2 − <2

3) ((ℓ + :2)2 − <2
4)

(7.4)

At times, we also equivalently refer to them as tadpole, bubble, triangle and box
integrals. This labelling system refers to the types of diagrams that one would expect
these integrals to originate from.

Similarly, if they are scalar integrals as shown above, they have have a subscript 0,
while integral tensors will have indices to match their rank as seen below:

�0 =

∫
34ℓ

(2c)4
1

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

(7.5)

�` =

∫
34ℓ

(2c)4
ℓ`

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

(7.6)

�`a =

∫
34ℓ

(2c)4
ℓ`ℓa

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

(7.7)

...

This method of defining integrals is characteristic of the Passarino-Veltman decom-
position technique which we will describe in detail in Section 7.2
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7.1 Scalar Integrals
Feyncalc already had the solutions for the �0 and �0 integrals programmed into
their code base. We were thus able to utilize these solutions and separated out the
nonanalytic portion of each of them. We coded this simpler version of them, as seen
in Appendix C.1, into our program.

Unfortunately, Feyncalc did not have the expressions for�0 or �0, so we had to look
elsewhere. We found several resources that had solved these integrals for various
cases [13, 14, 30], however none of these solved the integrals in the most general
case which is what we needed for our project. Ultimately, we did find one source
that did have a more general solution for both [10]. Devaraj and Stuart’s solution
for �0 is valid when the kinematic determinant vanishes

D = ?2
1?

2
2 − (?1 · ?2)2 = 0 (7.8)

While they found two solutions depending on which combinations of ?1 and ?2

made the determinant vanish, we were able to determine that our integrals only
followed the format of the second, allowing us to use and record only one solution.
This paper found a solution for �0 in a similar fashion, requiring the kinematic
determinant to vanish

D = ?2
1?

2
2?

2
3 − ?

2
1(?2 · ?3)2 − ?2

2(?1 · ?3)2 − ?2
3(?1 · ?2)2

+ 2(?1 · ?2) (?1 · ?3) (?2 · ?3) = 0 (7.9)

This time we utilized two of the three solutions, as recorded in Appendix C.3, for
the box and crossed box diagrams. Thus we were able to find and use expressions
for each of the scalar integrals that we needed.

7.2 Passarino-Veltman Decomposition
The Passarino-Veltman decomposition technique allows one to take advantage of
the particular form of tensor integrals from Feynman diagrams and simplify them
into an expression of the composite scalar integrals. This technique is applicable for
all integrals with indices, regardless of the number of propagators or indices. It is
also remarkably simple and adaptable compared to the original methods of solving
these integrals, which would require returning back to dimensional regularization
and other more difficult techniques. The process of decomposing can be divided up
into several easy steps
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First, check that your integral takes the form∫
34ℓ

(2c)4
� (ℓ, ?1, ..., <1, ...)

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2)...((ℓ ± ?=) − <
2
=+1)

(7.10)

where = ∈ R and � (ℓ, ?1, ..., <1, ...) is a general function of the momenta and
masses. Take the function �`1...`= and decompose it into the form

U0+U`1
1 ℓ`1+U

`1`2
2 ℓ`1ℓ`2+...+U

`1...`<
2 ℓ`1 ...ℓ`<+ℓ2

(
V0 + V`1

1 ℓ`1 + ... + V
`1...`<
2 ℓ`1 ...ℓ`<

)
+...,

(7.11)

separating each term depending on its ℓ dependence.

Let us first examine a term with a singular ℓ`. Dot ℓ with one of the momenta ±?8.
This term ∫

34ℓ

(2c)4
(ℓ · ?8)

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2)...((ℓ ± ?=) − <
2
=)
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is equal to ∫
34ℓ

(2c)4
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]
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If we put it in the form∫
34ℓ

(2c)4
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2
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)
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8
− <2

1)
]

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2)...((ℓ ± ?=) − <
2
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(7.14)

then we can see that many of the pieces should cancel. The first set of terms should
cancel out the 8th propagator, leaving a scalar integral with one less propagator. The
second set of terms will cancel out the first propagator and similarly leave one less
propagator. The third set of terms, which serves as a catchall, will simply leave a
scalar integral behind. This results in

±1
2

∫
34ℓ

(2c)4
1
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1)...((ℓ ± ?8−1) − <2

8
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∓ 1
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1) ((ℓ ± ?1) − <2
2)...((ℓ ± ?=) − <

2
=)

(7.15)

Now, since this is an integral of a tensor, we know that the solution of the integral
must also be a tensor, using only the momenta available to it from the integral as
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well as the metric [. This means that the solution to this integral must take the form∫
34ℓ

(2c)4
ℓ`

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2)...((ℓ ± ?=) − <
2
=)
= �1?

`

1 + ...+ �=?
`
= (7.16)

If we dot this with ?8, we can set this equal to the expression that we got from above
and solve for one of the �8 coefficients. We can repeat this process for each of the
?8’s to get a system of n equations and n variables and thereby solve for all of the A
coefficients.

While we have shown this process for any rank one integral (one index), it is very
similar for integrals with more indices. The only difference is that one needs to take
into account [`a on both sides of the equation. This is an additional way to cancel
terms. We begin with∫

34ℓ

(2c)4
[`aℓ

`ℓa

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2)...((ℓ ± ?=) − <
2
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(7.17)

which can be put into the form∫
34ℓ

(2c)4
(ℓ2 − <1) + <1

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2)...((ℓ ± ?=) − <
2
=)
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The first term can then cancel with the first propagator, leaving

1
2

∫
34ℓ
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=)

(7.19)

This expanded method lowers the rank of the resultant integrals by one each time (it
does not always produce scalar integrals right away).

While this method is reasonably simple, it does become computationally intensive
as the number of indices and momenta increases. Since it must take into account all
permutations of the momenta and indices, and then solve the system of equations,
the amount of computational time and power required grows exponentially.

All of the integrals that we solved were coded into the Mathematica notebook for
future use. We also recorded them in Appendix C. Due to the long expressions for
the triangle integrals, we chose to only record the Taylor expanded, highest order
terms.
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7.3 Tensor Integrals
The goal for all of these tensor integrals was to reduce them into expressions
of the composite scalar integrals. Unfortunately, Feyncalc does not have a good
internal method of doing this reduction. However, there is additional package called
Feynhelpers which can also be downloaded. This package uses Feyncalc language
and functions to interface with two other Mathematica packages, Package-X and
FIRE, which are specifically built for solving integrals with propagators. With
this combination of resources, we were able to decompose all of the bubble tensor
integrals and the first three triangle tensor integrals. However, when attempting to
decompose the last two triangle integrals, the computer that was being used ran out
of available memory and could not complete the solution.

After running into these issues, we attempted to use the Passarino-Veltman decom-
position technique to solve the last few integrals that we needed. We went through
the process described in Section 7.2 and were able to decompose the �`aUV inte-
gral. However, solving the�`aUVW integral required finding the solution to a general
system of 12 equations for 12 variables or equivalently inverting a general 12x12
matrix. This once again made the available computer run out of memory since it
used at least 12 GB of data. However, we realized that this integral was only required
for the box and crossed box diagram. Because of this, we decided to change our
focus as seen in Chapter 8.
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C h a p t e r 8

ONE-LOOP MODIFICATION (MASSIVE)

8.1 Classical vs Quantum
Since we expect the diagrams to still produce the same q dependence, merely
with extra factors, we expect that the diagrams should still split between those that
contribute to both the classical and quantum term and those that only contribute to
the quantum term. In particular, we expect the triangle diagrams (Fig 6.2) and the
first two vertex correction diagrams (Fig 6.4) should still contribute to the classical
portion. As mentioned in Section 6.3, the classical term should dominate the
quantum term. In addition, although we were unable to solve the �`aUVW term, it
is only used for the box and crossed box diagrams. Because of this, we decided to
focus on deriving the results for the more relevant classical portion. However, since
we had already made some progress on the other diagrams, we still relate what we
have done in Section 8.5.

8.2 Techniques
In order to elimate copy errors, we created a Mathematica pipeline to process the
amplitudes. This pipeline takes in the uncontracted amplitude expressions as well
as all the integral solutions. It uses various Feyncalc functions, such as Con-
tract, Collect2 and Simplify to simplify the answers. It then applies the function
ScalarProductCancel which reduces the number of the necessary integrals by can-
celing out propagators whenever possible. We next apply the integral solutions,
take the nonrelativistic limit and simplify the ensuing expressions once again. The
resulting expressions are long and have complicated dependence on @. In order to
simplify this, we first Taylor expand with respect to the tiny graviton mass. We then
Taylor expand with respect to the transferred momentum @, which we expect to be
small, but not as small as the graviton mass <. The expressions shown below have
the lowest order contributions of both the classical and quantum portions. We also
include any other low order terms that are dependent on the graviton mass.

8.3 Results for Classical Diagrams
After confirming all the massless results, we begin the massive case for the diagrams
that contribute to the classical potential term. Since the only Feynman rules that
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change are the graviton propagators, we see that the new uncontracted amplitudes
are simply as shown in the sections below.

The Triangle Diagrams
With only minor changes from the previous triangle diagram amplitudes (see 6.2),
the new massive graviton amplitudes take the form

"30 (@) =
∫

34;

(2c)4
g
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(8.1)
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(8.2)

Once this amplitude is run through the Mathematica pipeline, we get the following
expression for the contracted amplitude. This expression is only the nonanalytic
terms after taylor expanding with respect to both < and @ as well as taking the
nonrelativistic approximation.
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Adding the two disparate equations, we get the full amplitude from the two triangle
diagrams
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We here note that log
(
−<2

@2

)
can be decomposed into log (<2) − log (−@2). Since

log (<2) is actually only an analytic contribution, we remove it from the second set
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of terms

8"30+31 =
832�2

135@2

[
−1023<2<1<2 log

(
−<

2

@2

)
− 598<2<1<2

]
− 8�2

135<1<2

[
2142<2<2

1

− 27760<2
2<

2
1 + 11592<2<1<2 − 68<2<2

2

]
log

(
−@2

)
(8.6)

We can then Fourier transform the expression to find their contribution to the
potential

+30+31 =
10912�2<2<1<2

45

∫
33@

(2c)3
48q·r

log
(
−@2)
@2 − 4784

135c
�2<2<1<2

A

+ �2

135<1<2cA3

[
1071<2<2

1 − 13880<2
2<

2
1 + 5796<2<1<2 − 34<2<2

2

]
(8.7)

The Classical Vertex Correction Diagrams
We now specifically select out the two vertex correction diagrams (see 5.ab in 6.4)
that contribute to the classical term in the potential. The uncontracted amplitude
takes the form

"50 (@) =
∫

34;

(2c)4
g
UV

1 (:1, :2, <1)g`a1 (:3, :3 − ;, <2)gdf1 (:3 − ;, :4, <2)g(WX)_^qn3 (;,−@)

×
[
8%<UVWX

;2 − <2

] [
8%<`afd

(; + @ − <2)2

] [
8%<_^qn

@2 − <2

] [
8

((; − :3)2 − <2
2)

]
(8.8)

"51 (@) =
∫

34;

(2c)4
g
UV

1 (:1, ; + :1, <1)g`a1 (; + :1, :2, <1)g_^1 (:3, :4, <2)g(qn)WXdf3 (−;, @)

×
[
8%<UVWX

;2 − <2

] [
8%<`afd

(; + @)2 − <2

] [
8%<qn_^

@2 − <2

] [
8

((; + :1)2 − <2
1)

]
(8.9)

After we contract and simplify in the Mathematica pipeline, we get the following
nonrelativistic amplitudes

8"50 =
8�2

540<4 (
@2 − <2) [ − 26616<6<1<2 − 46852<6<1<2 log

(
−<

2

@2

)
+

[
240<1<

7
2 + 530<2<1<

5
2 + 405<8

2 + 1620<2<6
2 − 1085<6<1<2

− 240<6<2
2 + 615<4<1<

3
2 + 1665<4<4

2

]
log

(
<2

2
<2

)
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+
[
7600<6<1<2 − 2720<4<1<

3
2

]
log

(
−<

2

<2
2

))
−

[
2680<6<1<2 − 2880<4<1<

3
2

]
log

(
<2

<2
2

)]
(8.10)

8"51 = −
8�2

540<4 (
@2 − <2) [26616<6<1<2 + 46852<6<1<2 log

(
−<

2

@2

)
−

[
405<8

1 − 240<7
1<2 − 1620<2<6

1 − 530<2<5
1<2 + 1085<6<1<2

+ 240<6<2
1 − 1665<4<4

1 − 615<4<3
1<2

]
log

(
<2

1
<2

)
−

[
7600<6<1<2 − 2720<4<3

1<2

]
log

(
−<

2

<2
1

)
+

[
2680<6<1<2 − 2880<4<3

1<2

]
log

(
<2

<2
1

)]
(8.11)

Let us now add the two amplitudes and determine what terms may cancel or add.
We note that the terms with log

(
−<2

<2
8

)
will be imaginary since the masses are real

and positive. We can thus eliminate them from our amplitude as we did before in
6.2. We also flip some of the logs for more clarity.

8"50+51 =
8�2

540<4 (
@2 − <2) [ − 53232<6<1<2 − 93704<6<1<2 log

(
−<

2

@2

)
+

[
240<1<

7
2 + 530<2<1<

5
2 + 405<8

2 + 1620<2<6
2 − 1085<6<1<2

− 240<6<2
2 + 615<4<1<

3
2 + 1665<4<4

2 + 2680<6<1<2

− 2880<4<1<
3
2

]
log

(
<2

2
<2

)
+

[
405<8

1 − 240<7
1<2 − 1620<2<6

1 − 530<2<5
1<2 + 1085<6<1<2+

+ 240<6<2
1 − 1665<4<4

1 − 615<4<3
1<22680<6<1<2

− 2880<4<3
1<2

]
log

(
<2

1
<2

)]
(8.12)
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We can now Fourier transform this simplified expression to get the potential

+50+51 =
23426�2<2<1<2

135

∫
33@

(2c)3
48q·r

log
(
−@2)

(@2 − <2)
− 1344

452c
�2<2<1<2

A

− 1109
45c

�2<2<1<24
−<A

A
+ 1

4c
�24−<A

A

[ [
240<1<

7
2 + 530<2<1<

5
2

+ 405<8
2 + 1620<2<6

2 − 1085<6<1<2 − 240<6<2
2 + 615<4<1<

3
2

+ 1665<4<4
2 + 2680<6<1<2 − 2880<4<1<

3
2

]
log

(
<2

2
<2

)
+

[
405<8

1 − 240<7
1<2 − 1620<2<6

1 − 530<2<5
1<2 + 1085<6<1<2

+ 240<6<2
1 − 1665<4<4

1 − 615<4<3
1<2 + 2680<6<1<2

− 2880<4<3
1<2

]
log

(
<2

1
<2

)]
(8.13)

8.4 Classical Discussion
Wecan first begin by adding all of the different contributions to the classical potential
together

+2;0B = −
8816
135c

�2<2<1<2
A

− 1109
45c

�2<2<1<24
−<A

A

+ 1
4c
�24−<A

A

[ [
240<1<

7
2 + 530<2<1<

5
2 + 405<8

2 + 1620<2<6
2

− 1085<6<1<2 − 240<6<2
2 + 615<4<1<

3
2

+ 1665<4<4
2 + 2680<6<1<2 − 2880<4<1<

3
2

]
log

(
<2

2
<2

)
+

[
405<8

1 − 240<7
1<2 − 1620<2<6

1 − 530<2<5
1<2 + 1085<6<1<2

+ 240<6<2
1 − 1665<4<4

1 − 615<4<3
1<2 + 2680<6<1<2

− 2880<4<3
1<2

]
log

(
<2

1
<2

)]
+ �2

135<1<2cA3

[
1071<2<2

1 − 13880<2
2<

2
1 + 5796<2<1<2 − 34<2<2

2

]
(8.14)

However, the last term is dependent on 1
A3 , and is therefore a quantum term. We

can thus ignore this term for this analysis of the classical portion of the amplitude,
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producing the slightly simpler amplitude

+2;0B = −
8816
135c

�2<2<1<2
A

− 1109
45c

�2<2<1<24
−<A

A

+ 1
4c
�24−<A

A

[ [
240<1<

7
2 + 530<2<1<

5
2 + 405<8

2 + 1620<2<6
2

− 1085<6<1<2 − 240<6<2
2 + 615<4<1<

3
2

+ 1665<4<4
2 + 2680<6<1<2 − 2880<4<1<

3
2

]
log

(
<2

2
<2

)
+

[
405<8

1 − 240<7
1<2 − 1620<2<6

1 − 530<2<5
1<2 + 1085<6<1<2

+ 240<6<2
1 − 1665<4<4

1 − 615<4<3
1<2 + 2680<6<1<2

− 2880<4<3
1<2

]
log

(
<2

1
<2

)]
(8.15)

This expression for the classical potential has both similarities and differences to
the original massless graviton potential. All of the terms have the �2 and mass
dependence characteristic of the second order terms. In addition, most of the terms
have an exponential decay term like seen in the tree level potential for the massive
graviton. This makes sense, since would expect these terms to take similar form.
There are also many mass modification terms which are again similar to those seen
in the tree level potential.

However, there are also major differences from the previous results. None of these
terms are proportional to 1

A2 as we saw in the massless case. Instead, they are
all dependent on 1

A
. Now, these are still clearly second order contributions due to

their mass and G dependence and their size is suppressed due to factors of the tiny
graviton mass, but it is still unexpected to find this r dependence. There are also
some new log dependences on the various masses. This is somewhat expected from
the form of the integrals, but it does introduce another issue. When we attempt to
take the limit as the graviton mass < → 0, the potential becomes singular. While
this is different from what we saw previously, it is not all together unexpected for it
to occur in this limit due to the vDVZ discontinuity (see Section 3.3).

8.5 Results for Quantum Diagrams
As we attempted the calculation of the box and crossed box diagrams, two issues
arose. Firstly, we were unable to calculate the �`aUVW integral that we needed for
this amplitude. The calculation, which boiled down to solving an arbitrary system
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of 12 equations for 12 variables, used over 12GB of RAM from the computer that
we were using and still did not finish the calculation.

Additionally, we realized that our method of solving these integrals was for integrals
in a specific form that held for all of the integrals except for those used in the box
and crossed box diagrams. Specifically, the triangle integrals needed to be in the
form ∫

34ℓ

(2c)4
� (ℓ, ?1, ..., <1, ...)

(ℓ2 − <2
1) ((ℓ ± ?1) − <2

2) ((ℓ ± ?2) − <2
3)

(8.16)

However, since the diagrams have a fourth propagator, and thereby a thirdmomentum
?3, the Feyncalc function ScalarProductCancel put the triangle integrals into a form
more like

∫
34ℓ

(2c)4
� (ℓ, ?1, ..., <1, ...)

(ℓ2 − <2
1) ((ℓ ± ?1 ± ?3) − <2

2) ((ℓ ± ?2 ± ?3) − <2
3)

(8.17)

Thus, in order to continue to use the Passerino-Veltman decomposition, we would
need to include all the permutations of including ?3 in the solution for the integral.
While not physically impossible, this dramatically increases the number of coef-
ficients needing to be solved for. In fact, in this method, when we tried to solve
for �`aU, it required a system of 13 equations with 13 variables. Since we had
already not been able to solve the system of 12 equations and variables, we knew
that these calculations were simply infeasible given our limited resources. Once we
realized this, we knew we would be unable to finish the quantum amplitude calcu-
lations. However, even though we were unable to calculate the full modification to
the quantum potential due to the difficulties with the box and crossed box diagrams,
we were still able to make excellent progress on this calculation. We here list the
uncontracted amplitudes for the box and crossed box diagrams as well as the full
amplitudes and potentials for all the other quantum diagrams.

The Box and Crossed Box Diagrams
Unfortunately, due to the extra complication of the various integrals needed by these
two diagrams, we were unable to find the full contracted and simplified amplitudes.
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We here show the uncontracted versions

8"20 =

∫
34;

(2c)4
g
`a

1 (:1, :1 + ;, <1)gdf1 (:1 + ;, :2, <1)gUV1 (:3, :3 − ;, <2)gWX1 (:3 − ;, :4, <2)

×
[

8

(:1 + ;)2 − <2
1

] [
8

(:3 − ;)2 − <2
2

] [
8%<`aUV

;2 − <2

] [
8%<dfWX

(; + @)2 − <2

]
(8.18)

8"21 =

∫
34;

(2c)4
g
`a

1 (:1, :1 + ;, <1)gdf1 (:1 + ;, :2, <1)gWX1 (:3, :4 + ;, <2)gUV1 (:4 + ;, :4, <2)

×
[

8

(:1 + ;)2 − <2
1

] [
8

(:3 − ;)2 − <2
2

] [
8%<`aUV

;2 − <2

] [
8%<dfWX

(; + @)2 − <2

]
(8.19)

The Double-Seagull Diagram
Given the change to a massive graviton, the new uncontracted amplitude for the
double-seagull diagram (see 6.3) takes the form

"40 (@) =
1
2!

∫
34;

(2c)4
g
UVWX

2 (:1, :2, <1)g`afd2 (:3, :4, <2)
[
8%<WXfd

;2 − <2

] [
8%<UV`a

(; + @)2 − <2

]
(8.20)

We note the inclusion of the symmetry factor 1/2! due to the symmetry of the
diagram. We were able to simplify the amplitude via Mathematica and remove all
analytic and higher order nonanalytic terms. Under the nonrelativistic approxima-
tion, the amplitude takes the form

8"40 = −
328�2

45@2

(
271<2<1<2 log

(
−<

2

@2

)
− 168<2<1<2

)
+ 28�2

135<1<2

(
11595<2

1<
2
2 − 1296<2<2

1 − 4926<2<1<2 + 1948<2<1<2

− 1296<2<2
2

)
log

(
−<

2

@2

)
(8.21)

With a Fourier transform, we derive the contribution to the potential for the double
seagull diagram

+40 =
8672�2<2<1<2

45

∫
33@

(2c)3
48q·r

log
(
−@2)
@2 − 1344

45@2
�2<2<1<2

A

+ �2

135<1<2cA3

(
11595<2

1<
2
2 − 1296<2<2

1 − 4926<2<1<2

+ 1948<2<1<2 − 1296<2<2
2

)
(8.22)



45

The Fully Quantum Vertex Correction Diagrams
We next examine the two vertex correction diagrams (see 5.cd in 6.4) which only
contribute to the quantum portion of the amplitude and potential. Again, the changes
to the uncontracted amplitude are minor and we still include the symmetry factor
1/2!.

"52 (@) =
1
2!

∫
34;

(2c)4
g
_^qn

2 (:3, :4, <2)gUV1 (:1, :2, <1)g(WX)`adf3 (;,−@)

×
[
8%<`a_^

;2 − <2

] [
8%<fdqn

(; + @)2 − <2

] [
8%<UVWX

@2 − <2

]
(8.23)

"53 (@) =
1
2!

∫
34;

(2c)4
g
df`a

2 (:1, :2, <1)g_^1 (:3, :4, <2)g(qn)UVWX3 (−;, @)

×
[
8%<`aWX

;2 − <2

] [
8%<fdUV

(; + @)2 − <2

] [
8%<_^qn

@2 − <2

]
(8.24)

These two diagrams simplify dramatically once run through the Mathematica
pipeline. The nonrelativistic, Taylor expanded amplitudes become

"52 =
88�2

405
(
@2 − <2) (

4496<2<1<2 log
(
−<

2

@2

)
+ 2145<2<1<2

)
(8.25)

"53 =
88�2

405
(
@2 − <2) (

5922<2<1<2 log
(
−<

2

@2

)
+ 85<2<1<2

)
(8.26)

We can then Fourier transform the expression to get the quantum contribution to the
potential

+52 = −
35968�2<2<1<2

405

∫
33@

(2c)3
48q·r

log
(
−@2)(

@2 − <2) + 286
27c

�2<2<1<24
−<A

A

(8.27)

+53 = −
47376�2<2<1<2

405

∫
33@

(2c)3
48q·r

log
(
−@2)(

@2 − <2) + 34
81c

�2<2<1<24
−<A

A

(8.28)

Adding the two potentials together, we get

+52+53 = −
83344�2<2<1<2

405

∫
33@

(2c)3
48q·r

log
(
−@2)(

@2 − <2) + 892
81c

�2<2<1<24
−<A

A

(8.29)

The Vacuum Polarization Diagrams
Now for the vacuum polarization diagrams, we are no longer able to use the vacuum
polarization tensor as we did for the massless case. Instead, we separately calculate
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the two vacuum polarization diagrams with a graviton and ghost loop, respectively
(see 6.5). For the ghost loop diagram, we use the massless ghost propagator and the
2ghost-graviton vertex factor gotten from Holstein as seen in Appendix A [21]. The
uncontracted amplitudes take the form seen below

"60 (@) =
1
2!

∫
34

(2c)4
g
df

1 (:1, :2, <1)g _[UV

3 qn
(−ℓ,−@)g `akb

3 ]\
(;, @)gWX1 (:3, :4, <2)

×
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8%<df_[

@2 − <2

] [
8%<UVkb
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]
(8.30)

"61 (@) =
1
2!
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(−ℓ,−@)g `aVn
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(8.31)

After undergoing contraction and simplification, we integrate and Taylor expand.
We note that the ghost is massless, so we use the integrals from [5] instead of our
newly calculated ones. The simplified version of the amplitudes take the form

8"60 =
8�2

405
(
@2 − <2) (

54469<2<1<2 log
(
−<

2

@2

)
+ 4124<2<1<2

)
(8.32)

8"61 = −
568�2<2<1<2

45
(
@2 − <2) log

(
−@2

)
(8.33)

With a Fourier transform, these expressions become the expected potential terms
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(2c)3
48q·r

log
(
−@2)(
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+61 = −
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∫
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log
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@2 − <2) (8.35)
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C h a p t e r 9

FUTURE WORK

While we have found a satisfying end to this project, there are many more avenues
down which it can be taken in the future. While we do not expect the quantum
terms to contribute majorly to calculations of black hole inspirals, it is possible that
they could be larger than expected. It is thus important to finish running all of the
quantum diagrams through our Mathematica pipeline. In order to finish the last
two diagrams, the box and cross box, we would need to calculate all the integrals
which we could not find before. This would probably require a computer with
more processing power and memory than the one we were using. By finishing this
calculation, we would thus be able to compare both the classical and quantum terms
to those in the massless graviton case and see how their dynamics differ.

Once this calculation is finished, the next step would be to create inspiral
models from these potential terms and apply them to LIGO data. By comparing
their predictions, it is possible to test the theory of massive gravity against general
relativity to see which one fits the physical data better.

Oneway to confirm our results would be to rederive these amplitudes and thereby
potentials via color-kinematic duality between gluons and gravitons. This provides
a method to simplify the calculation, while also independently confirm our results.
We discussed this option further in Appendix E.

Another possible path forward would be to include extra interactions that would
be suggested by the massive graviton theory. Since a massive graviton is predicted
in multiple theories beyond the Standard Model, it could be important to add the
other particle interactions and see how that might change the resultant potential. It
would thereby produce a good means of testing some of these theories in addition
to the basic massive gravity theory.
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A p p e n d i x A

VERTICES AND PROPAGATORS

Below we list the Feynman rules that were used in our calculation. For a derivation, see
[4, 11, 12].

A.1 Massive Scalar Propogator

=
8

@2 − <2 + 8n
(A.1)

A.2 Massless Graviton Propogator

=
8%UVWX

@2 + 8n
(A.2)

where
%UVWX =

1
2
[[UW[VX + [UX[VW − 2

� − 2
[UV[WX] (A.3)

A.3 Massive Graviton Propagator

=
8%

UVWX
< (@, <)
@2 + 8n

(A.4)

where

%
UVWX
< (@, <) = 1

2

[
�
UW
< (@, <)�VX< (@, <) + �UX< (@, <)�

VW
< (@, <) −

2
� − 1

�
UV
< (@, <)�WX< (@, <)

]
(A.5)

and
�
UV
< (@, <) = [UV +

@U@V

<2 (A.6)

A.4 Massless Ghost Propagator

=
8[UV

?2 + 8n
(A.7)
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A.5 2 Scalar, 1 Graviton Vertex Factor

= g
`a

1 (?, ?
′, <)

where
g
`a

1 (?, ?
′, <) = −8^

2
[
?`?′a + ?′`?a − [`a ((? · ?′) − <2)

]
(A.8)

A.6 2 Scalar, 2 Graviton Vertex Factor

= g
`adf

2 (?, ?′, <)

where

g
`adf

2 (?, ?′, <) = 8^2
[(
�`aUX �

dfV

X
− 1

4
[
[`a �dfUV + [df �`aUV

] )
(?U?′V + ?′U?V)

− 1
2

(
�`adf − 1

2
[`a[df

)
[(? · ?′) − <2]

]
(A.9)

and
�UVWX =

1
2
([UW[VX + [UX[VW) (A.10)
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A.7 3 Graviton Vertex Factor

= g3
`a

UVWX
(:, @)

where

g3
`a

UVWX
(:, @) = −8^

2

(
%UVWX

[
:`:a + (: + @)` (: + @)a + @`@a − 3

2
[`a@2

]
+ 2@_@f

[
� f_
UV �

`a

WX
+ � f_

WX �
`a

UV
− � `f

UV
� a_
WX − � `f

WX
� a_
UV

]
+

[
@_@

`
(
[UV�

a_
WX + [WX� a_

UV

)
+ @_@a

(
[UV�

`_

WX
+ [WX� `_

UV

)
− @2

(
[UV�

`a

WX
+ [WX� `a

UV

)
− [`a@_@f

(
[UV�

f_
WX + [WX� f_

UV

)]
+

[
2@_

(
� _f
UV � a

WXf (: − @)
` + � _f

UV �
`

WXf
(: − @)a − � _f

WX � a
UVf :` − � _f

WX �
`

UVf
:a

)
+ @2

(
�

`

UVf
� af
WX + � `

WXf
� af
UV

)
+ [`a@f@_

(
�

_d

UV
� f
WXd + �

_d

WX
� f
UVd

)]
+
[
(:2+(:−@)2)

[
�

`f

UV
� a
WXf + �

`f

WX
� a
UVf −

1
2
[`a%UVWX

]
−
(
�

`a

WX
[UV:

2+� `a

UV
[WX (:−@)2

)])
(A.11)

A.8 2 Ghost, 1 Graviton Vertex Factor

= g
`a

6 UV
(:, @)

where

g6
`a

UV
(:, @) = 8^

2

[
(:2 + (: + @)2 + @2)� `a

UV
+ 2[UV:_ (: + @)f% `a

_f

+ 2@U:_ � `a

V_
− 2@V (: + @)_ � `a

U_
+ @U@V[`a

]
(A.12)
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A p p e n d i x B

INTEGRALS USED IN THE MASSLESS CASE

We recreate the integrals used in the massless case here due to some copy errors noted in the
integrals given by [5].

B.1 Bubble Integrals

� =

∫
34ℓ

(2c)4
1

ℓ2(ℓ + @)2
=

8

16c2 [−!] + ... (B.1)

�` =

∫
34ℓ

(2c)4
ℓ`

ℓ2(ℓ + @)2
=

8

16c2

[
1
2
@`!

]
+ ... (B.2)

�`a =

∫
34ℓ

(2c)4
ℓ`ℓa

ℓ2(ℓ + @)2
=

8

16c2

[
1
12
!@2[`a −

1
3
!@`@a

]
+ ... (B.3)

�`aU =

∫
34ℓ

(2c)4
ℓ`ℓaℓU

ℓ2(ℓ + @)2
=

8

16c2

[
− 1

24
!@23[(`a@U) +

1
4
!@`@a@U

]
+ ... (B.4)

�`aUV =

∫
34ℓ

(2c)4
ℓ`ℓaℓUℓV

ℓ2(ℓ + @)2
=

8

16c2

[
− 1

240
!@43[(`a[UV)

+ 1
40
!@26[(`a@U@V) −

1
5
!@`@a@U@V + ... (B.5)

where ! = ;>6(−@2) and ( = c2√
−@2

, and analytic and higher order nonanalytic terms are
represented by the elipses.

B.2 Triangle Integrals

� =

∫
34ℓ

(2c)4
1

ℓ2(ℓ + @)2((ℓ + :)2 − <2
1)

=
8

32c2<2
1
[−! − (] + ... (B.6)

�` =

∫
34ℓ

(2c)4
ℓ`

ℓ2(ℓ + @)2((ℓ + :)2 − <2
1)

=
8

32c2<2
1

[
:`

( (
− 1 − 1

2
@2

<2
1

)
! − 1

4
@2

<2
1
(

)
+ @`@a

(
! + 1

2
(

)]
+ ... (B.7)
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�`a =

∫
34ℓ

(2c)4
ℓ`ℓa

ℓ2(ℓ + @)2((ℓ + :)2 − <2
1)

=
8

32c2<2
1

[
:`:a

(
− 1

2
@2

<2
1
! − 1

8
@2

<2
1
(

)
+ @`

(
− ! − 3

8
(

)
+ 2@(`:a)

( (1
2
+ 1

2
@2

<2
1

)
! + 3

16
@2

<2
1
(

)
+ @2[`a

(1
4
! + 1

8
(
) )]
+ ... (B.8)

�`aU =

∫
34ℓ

(2c)4
ℓ`ℓaℓU

ℓ2(ℓ + @)2((ℓ + :)2 − <2
1)

=
8

32c2<2
1

[
:`:a:U

(
− 1

6
@2

<2
1
!

)
+ @`@a@U

(
! + 5

16
(

)
+ 3@(`:a:U)

(1
3
@2

<2
1
! + 1

16
@2

<2
1
(

)
+ 3@(`@a:U)

( (
− 1

3
− 1

2
@2

<2
1

)
! − 5

32
@2

<2
1
(

)
+ 3[(`a:U)

(
@2 1

12
@2!

)
+ 3[(`a@U)

(
− 1

6
@2! − 1

16
@2(

)]
+ ... (B.9)

where ! = ;>6(−@2) and ( = c2√
−@2

, and analytic and higher order non-analytic terms are
represented by the ellipses. We utilize the symmetrization convention used by [20] where

�(`1`2`3...`==
1
=!

(
�(`1`2`3...`=+�(`2`1`3...`=+...

)
(B.10)

For example, this means that 3[(`a@U) = [`a@U + [`U@a + [Ua@`.

B.3 Box and Cross Box Integrals

 =

∫
34ℓ

(2c)4
1

ℓ2(ℓ + @)2((ℓ + :1)2 − <2
1) ((ℓ − :3)2 − <2

2)

=
8

16c2<1<2

[
!

@2
(
1 − B − B0

6<1<2

)
− 82c !

@2
1

2√<1<2
√
B − B0

(
1 − B − B0

8<1<2

) ]
(B.11)

 ′ =

∫
34ℓ

(2c)4
1

ℓ2(ℓ + @)2((ℓ + :1)2 − <2
1) ((ℓ + :4)2 − <2

2)

=
8

16c2<1<2

[
− !
@2

(
1 − B − B0

6<1<2

) ]
(B.12)
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A p p e n d i x C

INTEGRALS USED IN THE MASSIVE CASE

C.1 Tadpole and Bubble Integrals

�0(<) =
∫

34ℓ

(2c)4
1

(ℓ2 − <2)
= 0 (C.1)

�0 =

∫
34ℓ

(2c)4
1

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

=
8

16c2
1
@2

(
−
<2

1 − <
2
2

2
log (<12

<2
2
) + (! (@, <1, <2)

)
(C.2)

�` =

∫
34ℓ

(2c)4
ℓ`

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

=
8

32c2 @`

(
− 1
@2 −

1
@4 (<

2
1 − <

2
2)

)
(! (@, <1, <2)

+ 8

64c2@4 @`

(
(<2

1 − <
2
2)

2
)

log
(<2

1

<2
2

)
(C.3)

�`a =

∫
34ℓ

(2c)4
ℓ`ℓa

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

=
8

16c2

[(<2
1 + <

2
2

6
1
@2 −

1
12

)
[`a +

(<2
1 − 2<2

2
3

1
@4 +

1
3

1
@2

)
@`@a

]
(! (@, <1, <2)

+ 8

16c2 (<
2
1 − <

2
2)

3
[( 1

24
1
@4

)
[`a +

(
− 1

6
1
@6

)
@`@a

]
log
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1

<2
2

)
+ 8

16c2 (<
2
1 − <

2
2)

2
[(
− 1

12
1
@4

)
[`a +

(1
3

1
@6

)
@`@a

]
(! (@, <1, <2) (C.4)

�`aU =

∫
34ℓ

(2c)4
ℓ`ℓaℓU

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)

=
8

16c2

[(
−
<2

1 + 3<2
2

24
1
@2 +

1
24

)
3[(`a@U) −

(<2
1 − 3<2

2
4

1
@4

+ 1
4

1
@2

)
@`@a@U

]
(! (@, <1, <2)

+ 8

16c2 (<
2
1 − <

2
2)

4
[(
− 1

48
1
@6

)
3[(`a@U) +

(1
8

1
@8

)
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]
log

(<2
1

<2
2
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+ 8

16c2 (<
2
1 − <

2
2)

3
[( 1

24
1
@6

)
[(`a@U) +

(
− 1

4
1
@8

)
@`@a@U

]
(! (@, <1, <2)

+ 8

16c2 (<
2
1 − <

2
2)

[(
−
<2

1 + 3<2
2

24
1
@4

)
[(`a@U)

+
(
−
<2

1 − 3<2
2

4
1
@6

)
@`@a@U

]
(! (@, <1, <2) (C.5)

�`aUV =

∫
34ℓ

(2c)4
ℓ`ℓaℓUℓV

(ℓ2 − <2
1) ((ℓ + @)2 − <

2
2)
=

=
8

16c2

[(3<4
1 + 2<2

1<
2
2 + 3<4

2
120

1
@2 −

<2
1 + <

2
2

60
+ @2

240

)
6[(`a[UV)

+
(<4

1 + 4<2
1<

2
2 − 9<4

2
60

1
@4 +

<2
1 + 6<2

2
60

− 1
40
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+
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1 − 6<2
1<

2
2 + 6<4

2
5

1
@6 +
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2
5

1
@2 +

1
5

1
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]
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+ 8
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1 − <
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5
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− 1
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1
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6[(`a[UV) +

( 1
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1
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− 1
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1
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log
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1 − <
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1
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2
1 − <
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(<2
1 + 6<2

2
60

1
@6

)
6[(`a@U@V)

+
(<2

1 − 4<2
2

5
1
@8

)
@`@a@U@V

]
(! (@, <1, <2) (C.6)

�`aUVW =

∫
34ℓ

(2c)4
ℓ`ℓaℓUℓVℓW
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C.2 Triangle Integrals
We used the �0 integral as defined by [10]
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where
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All other non-scalar triangle integrals used were decomposed in terms of the �0, �0, and �0

integrals. Each integral has the inputs � (@, :1, <, <, <1). We have Taylor expanded the
expressions with respect to the graviton mass < up to order 2 and the exchanged momentum @

up to order 4. We also only record the nonanalytic terms of these expressions.
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C.3 Box and Cross Box Integrals
We used the �0 integral as defined by [10]
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where
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(C.28)

All other non-scalar triangle integrals used were decomposed in terms of the �0, �0, �0, and
�0 integrals
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A p p e n d i x D

FOURIER TRANSFORMS

In this thesis, we make use of many 3D fourier transforms. We have accumulated
these from several resources. The three that we use for the massless graviton
calculations are listed below [5]:∫
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For the massive graviton calculations, we reference [27] and use their transforms as
shown below
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A p p e n d i x E

COLOR-KINEMATICS DUALITY

Figure E.1: A tree level gluon inter-
action

At one point in this thesis, we were consid-
ering exploring the usefulness of utilizing
color-kinematic duality as a way to check
our answers. This duality interchanges the
color and kinematic structures of the S-
matrix. In practice, this means that the
amplitudes of various particle interactions
can be "squared" to produce an equivalent
amplitude for interactions in other theories
[24]. We were specifically interested in one
such relation, that of "graviton = gluon2"
[7]. This means that if we took the expres-
sion for the scattering amplitude for fig. E.1 before integration and squared it, we
would get the desired amplitude for the diagram in fig. E.2 Since great progress has
already been made with the strong force, we originally thought we could rederive the
amplitudes for our project through this independent method. We hoped that enough
research would had been done in the field of massive gluons that this could be rea-
sonably simple method to check our conclusions through an independent process.
However, after searching into the work done with massive gluons, we realized that
while this procedure should work [25], it would require more calculation and effort
than expected, since we would have had to calculate the majority of the massive
gluon amplitudes that we needed. We expect that this process could be the source
of an entirely new project or thesis and suggest this as a possibility to any interested
readers.
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Figure E.2: A tree level
graviton interaction


