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Abstract
Our goal is the study of identification problems in the framework of transport equations with
fractional derivatives. We consider time fractional diffusion equations and space fractional
advection dispersion equations. The majority of inverse problems are ill-posed and require
regularization. In this thesis we implement one and two dimensional discrete mollification
as regularization procedures.
The main original results are located in chapters 4 and 5 but chapter 2 and the appendices
contain other material studied for the thesis, including several original proofs.
The selected software tool is MATLAB and all the routines for numerical examples are
original. Thus, the routines are part of the original results of the thesis.
Chapters 1, 2 and 3 are introductions to the thesis, inverse problems and fractional derivatives
respectively. They are survey chapters written specifically for this thesis.

Keywords: Fractional Derivatives, Mollification, Inverse Problems, Differential Equa-
tions.

Resumen
Nuestro objetivo es el estudio de problemas de identificación en el marco de ecuaciones
de transporte con derivadas fraccionarias. Consideramos ecuaciones difusivas con derivada
temporal fraccionaria y ecuaciones de advección dispersión con derivada espacial fraccionaria.
La mayoría de los problemas inversos son mal condicionados y requieren regularización. En
esta tesis implementamos procedimientos de regularización basados en molificación discreta
en una y dos dimensiones.
Los principales resultados originales se encuentran en los capítulos 4 y 5 pero el capítulo 2 y
los apéndices contienen material adicional estudiado para la tesis incluídas varias demostra-
ciones originales.
La herramienta de software escogida es MATLAB y todas las rutinas para los ejemplos
numéricos son originales, de manera que las rutinas son parte de los resultados originales de
la tesis.
Los capítulos 1, 2 y 3 son introductorios a la tesis, a los problemas inversos y a las derivadas
fraccionarias respectivamente. Se trata de capítulos monográficos escritos especialmente para
esta tesis.

Palabras clave: Derivadas Fraccionarias, Molificación, Problemas Inversos, Ecuaciones
Diferenciales.
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1. Introduction

In this thesis we consider some interactions between two current and challenging topics of
applied mathematics: fractional differential equations and inverse problems. Both topics
are known since long time ago but only recently, let’s say since personal computers became
widely available around 1985, research on both subjects show remarkable activity.
In this introduction we start with some historical notes and follow with short presentations
of the results obtained in the Thesis.

1.1. Historical development

1.1.1. Fractional derivatives

Fractional derivatives are as old as derivatives of integer order and many remarkable math-
ematicians participate in the development of the concept. All began with a 1695 letter from
Leibniz to L’Hospital, asking him about what happens in dn/dxn, if n = 1/2.
Some decades latter (1730) Riemann mentioned the same idea for any real number. Lagrange
(1772) made advances in differential operators and Laplace (1812) provided some of the first
formulae for fractional derivatives, for instance, he showed that the fractional derivative of
function y = xm is

dny

dxn
=

Γ(m− 1)

Γ(m− n+ 1)
xm−n, m ≥ n. (1-1)

Some time later, a general approach was made, and the Riemann-Liouville fractional deriva-
tive was defined as

RLD
α
xf(a) =

dm

dxm

[
1

Γ(m− α)

∫ a

0

f (m)(τ)

(a− τ)α+1−mdτ

]
,m− 1 < α < m. (1-2)

A drawback of this definition is that the derivative of a constant is not zero. Fortunately
other definitions appear later on, for instance, the Caputo fractional derivative, for any α,
given by

Dα
xf(a) =

1

Γ(m− α)

∫ a

0

f (m)(τ)

(a− τ)α+1−mdτ. (1-3)

where m is a positive integer and f (m)(τ) is the standard derivative of order m in τ .
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The first specialized conference on fractional calculus took place at the University of New
Haven in West Haven, Connecticut, USA in 1974 and the first monograph in the field is Old-
ham and Spanier 1974 ([37]), published the same year. Other monographs worth mentioning
are the books Miller and Ross 1993 [33] and Podlubny 1999 [38] and the papers Gorenflo
and Mainardi 2008 [19], Sun et al. 2018 [46] and the specialized Benson, Meerschaert and
Revielle 2013 [10].

1.1.2. Inverse problems

According to Groetsch, (Groetsch 1993 [20]) inverse problems are as old as the greek philoso-
pher Plato, whose Allegory of the cave consists on reconstructing "reality" from observations
of shadows cast upon a wall. The definition of an inverse problem is based on the definition
of other problem, the so called direct problem. Thus, most of the time, we consider particular
instances of inverse problems rather than considering them in general.
In the beginning of the twentieth century, the french mathematician Jacques Hadamard
established the three defining conditions for a well-posed problem: Existence of a solution,
uniqueness of the solution and stability of the solution. Problems that do not satisfy at least
one of the three conditions are called ill-posed problems.
In general, inverse problems are ill-posed in the sense of Hadamard, that is:

1. They may not have a solution.

2. They may have more than one solution.

3. The solution is not continuous with respect to perturbations in the data.

In order to numerically solve an inverse problem, there are two main factors:

1. A direct problem solver: Very often the solution of the inverse problem is based on an
iterative procedure that in each step requires the solution of the direct problem.

2. A regularization method: The objective is to recover stability with respect to pertur-
bations in the data. The idea is to solve a different but stable problem whose solution
approximates the solution of the original problem. The construction of the stable
problem is known as regularization.

Among the monographs on inverse problems, we mention Groetsch 1993 [20], Murio 1993
[34], Hansen 2010 [22] and Hansen 1998 [21].
Among the available regularization methods, the more common is Tikhonov regularization
([20, 21]) and the selected regularization procedure for this thesis is the mollification method
([6, 34]).
In this thesis we develop new methodology for multidimensional discrete mollification. It
resembles Acosta and Burger 2012 [5] but we provide a new insight and more details.
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1.2. Motivation

Inverse problems arise in several branches of engineering, environmental sciences and other
subjects. When based on differential equations, they are basically of two types:

1. The direct problem requires boundary data. If some part of the boundary data is
missing, an inverse problem arises. In order to solve it, some overposed data on the
rest of the boundary is required.

Example Mejía Piedrahita 2017 [31] The direct problem is

D
(α)
t u+ aux = duxx, x > 0, t > 0,

u(x, 0) = 0, x > 0,

u(0, t) = ρ(t), t ≥ 0, u(x, t) bounded as x→∞,

(1-4)

where u is the solute concentration, ux is the dispersion flux, the constants a > 0,
d > 0 represent the average fluid velocity and the dispersion coefficient, respectively,
and D(α)

t u denotes the Caputo fractional derivative of order α, 0 < α < 1.

The time fractional inverse advection-dispersion problem (TFIADP) is

D
(α)
t u(x, t) + aux(x, t) = duxx(x, t), x > 0, t > 0,

u(1, t) = ρ(t), t > 0, data,

ux(1, t) = σ(t), t > 0, data,

u(0, t) = ξ(t), t ≥ 0, unknown,

ux(0, t) = β(t), t ≥ 0, unknown,

u(x, 0) = 0, x > 0.

(1-5)

The distributed interior data functions ρ and σ are not known exactly. Moreover,
their measured approximations ρε and σε satisfy the estimates ‖ρ− σε‖∞ < ε and
‖ρ− σε‖∞ < ε for a prescribed maximum level of noise in the data ε > 0. For the
examples is added noise with normal distribution.

The numerical identification process of ξ and β is based on the overdetermined interior
data ρε and σε.

2. The direct problem requires the knowledge of all coefficients and forcing terms in the
equation. If some of them are missing, there is an inverse problem. In this case, the
overposed data is generally of two types: The solution of the differential equation is
known at a particular point of the domain for all times or a final time distribution of
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the solution is known.

This thesis deals with inverse problems of this type. There are identifications of forcing
term factors and other parameter estimation problems.

The time fractional differential operators are operators with memory and the space fractional
differential operators are nonlocal operators. Some models of science and engineering require
the combination of both, that is, time and space fractional differential operators.
Of paramount importance is the modeling of anomalous diffusion [17] in porous media by
fractional differential equations.
We deal with function or parameter identification inverse problems in the framework of time
fractional and space fractional differential equations. The associated direct problems are
based on diffusion equations or advection-dispersion equations. The solved inverse problems
are potentially useful in particular instances of flow in porous media.

1.3. The interactions

1.3.1. Time fractional differential equations

Time fractional differential equations are models for a variety of situations in engineering
and sciences ([27, 53]). Based on time fractional differential equations (tFDE), there are
ill-posed problems, namely, the problems investigated in [31, 50] and there are well-posed
problems, for instance [13].
Our concern is a time fractional diffusion equation. More precisely, we are interested in an
initial/boundary value problem, in which the time derivative is a Caputo fractional derivative
of order α, 0 < α < 1.

We are interested in the following initial/boundary value problem:

Dα
t u(z, t)− (Lu)(z, t) = p(t)f(z), z ∈ Ω t ∈ (0, T )

u(z, t) = 0, z ∈ ∂Ω t ∈ (0, T )

u(z, 0) = 0, z ∈ Ω̄

 (1-6)

where Ω ⊂ Rd and:

Lu(z) =
d∑
i=1

∂

∂zi

(
d∑
j=1

aij(z)
∂

∂zj
u(z)

)
+ c(z)u(z), z ∈ Ω. (1-7)

If we think of this problem as the model for a contaminant diffusion in groundwater, then
f(z) plays the role of contaminant discharge intensity and p(t) is an attenuation coefficient.
In this thesis we implement the regularization method known as discrete mollification to
solve the following inverse problems:



1.4 The contents 5

1. Identification of the unknown source factor f(z) in Equation (1-6) based on the over-
posed data u(z, T ) = q(z). Time T is a final time and the data q(t) are not known
exactly; what is known is a measurement qε so that ‖q − qε‖∞ < ε.

2. Identification of the unknown time dependent factor p(t) of the forcing term in equation
(1-6) based on the overposed data given by a complete history of u at a specific point
of the domain.

1.3.2. Space fractional differential equations

There are many applications of space fractional differential equations in science and engi-
neering ([11, 17]) and generally correspond to the modeling of anomalous diffusion in porous
media.
Based on space fractional differential equations, there are parameter estimation problems
that are well-posed, namely [7, 23] and there are other estimation problems that are numer-
ically solved by a history matching method combined with Tikhonov regularization. Among
them, we mention [48] and [52].
We are interested in several simultaneous coefficient identification problems based on the
following direct problem related to the tracing of a non reactive contaminant in groundwater:

∂C

∂t
= −v∂C

∂x
+D

∂αC

∂xα
+ f(x, t) (1-8)

Here C is the solute concentration, v is the pore-water velocity, D is the dispersion coefficient,
0 < t, x ∈ [0, L], ∂αC

∂xα
is the Caputo fractional derivative of the concentration C of order α

with 1 < α ≤ 2 and f(x, t) is a forcing term.
Together with equation (5-1) there are an initial condition and a set of boundary conditions.
Examples of them are (see [48]):

C(x, 0) = 0 initial condition (1-9)

C(0, t) = C0 left boundary condition, Dirichlet type (1-10)
∂C

∂x
|x=L = 0 right boundary condition, Neumann type (1-11)

The direct problem consists on finding C that satisfies (5-1)-(5-4) assuming all parameters
are known.
We solve several coefficient identification problems based on two kinds of overposed data:
A complete history of the concentration at a specific point of the domain or a final time
distribution of the concentration.

1.4. The contents

The rest of the thesis is organized as follows:
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Chapter 2 is an introduction to inverse problems and the regularization method known
as discrete mollification. Fractional derivatives are introduced in chapter 3. This chapter
contains several definitions of fractional derivatives but the problems solved in this thesis are
based on Caputo fractional derivatives. The two inverse problems related to time fractional
differential equations are presented in chapter 4 and chapter 5 deals with the inverse problems
associated to space fractional differential equations. The conclusions and final remarks are
in chapter 6 and there is an appendix which contains some other related material.

Contributions of this Thesis

This thesis has original review sections on inverse problems, fractional calculus and 2D
discrete mollification. The 2D mollification operator was introduced by Acosta and Bürger
in [5] but they do not consider enough details. This thesis contains a detailed description of
this operator and it includes several original proofs.
Our original work on space dependent source term identification, the subject of section 4.2,
was published in [16].
The results on time dependent source term identification included in section 4.3 are original.
On this subject, we have further work in a preprint whose title is Identification of a time-
dependent source factor for a time-fractional diffusion equation.
Our work on parameter estimation in the framework of space fractional advection dispersion
equations, the subject of Chapter 5, is contained in a work in progress whose title is Efficient
parameter estimation in a solute transport model.
Our MATLAB routines are original but they include calls to mollification routines prepared
by C.D. Acosta.



2. Inverse Problems and Discrete
Mollification

2.1. Inverse Problems

When the orbit of Uranus was observed, it seemed to be anomalous considering the Laws
for the stellar motions. Then, independently and almost at the same time, Adams and
Le Verrier, as is mentioned in [9, pp. 373, 401], trying to explain the discrepancies in the
transit, and considering the Newton’s Laws, established the necessity of the existence of
another planet passing nearly the first one. They did not just predicted the presence of the
celestial body, moreover, they calculated the circuit of it. And, as it is mentioned in [20],
basically, they solved an inverse problem, in the sense that they found the cause given the
effect, considering the Laws of Newton as the right model for the behavior of satellites. Soon
after the considerations made by them, the new planet was found and was given the name of
Neptune. This fact was fascinating and motivates some considerations that will be discussed
bellow.
The general framework is illustrated in figure 2-1

input

cause

x →

process

K

model

→ y

effect

output

Figure 2-1.:

We are interested in the problem concerning the search for the process from output and
input, or, what is more often wanted, the input from the output and the process. These
problems are called inverse and the methods involving the search of their solutions, will be
the core of the following study.
Hadamard, in the beginning of the century, established the idea of well-posed problems by
the following conditions:
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• Existence: there exists a solution for the problem.

• Uniqueness: that solution has to be unique.

• Continuity: the solution depends continuously on the data.

If at least one of the conditions is not satisfied, the problem is called ill-posed. Hadamard
though that any problem that is ill-posed does not come from a rightly well formulated
physical question. Later, that proved to be false since many ill-posed problems come from
applications.
As an example of an inverse problem, we exhibit a linear system of equations Ax = b, in
which the requesting datum is x since A and b are known. Depending on the properties of
the matrix, the problem will be ill-posed. Illustrating this, consider the system(

1 1

1.0001 1

)
x =

(
0

0.0001

)
(2-1)

Ax = b, (2-2)

The solution is x = (−1, 1)ᵀ, but if the vector (0, 0.0001)ᵀ is changed to (0, 0)ᵀ, then the
solution will be (0, 0)ᵀ, which is highly different to the original one. Then, for a little noise,
this problem carries big changes in the solution.

Not all inverse problems come from linear algebra, some very interesting ones are posed in
the way ∫

Ω

input× system dΩ = output, (2-3)

which can be seen as a direct problem if the output is computed from the input, but in some
cases, the input is the target. One notable ill-posed problem to be addressed in this way, is
a Fredholm integral equation of the first kind with a square integrable kernel [26], which can
be written as follow ∫ 1

0

K(s, t)f(t)dt = g(s), 0 ≤ s ≤ 1, (2-4)

where the functions K and g are known, and f is the unknown. This task happens to be full
of issues, because this kind of equations do not satisfy any of the Hadamard conditions of
well-posing. This is addressed in [20], from where it is taken the next example to illustrate
the ill-posedness that these problems could exhibit. If g satisfies

g(s) =

∫ 1

0

K(s, t)f(t)dt, (2-5)

with

K(s, t) =

{
t(1− s), 0 ≤ t ≤ s,

s(1− t), s ≤ t ≤ 1,
(2-6)
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then, it can be shown that g is the solution of the boundary value problem

g′′(s) + f(s) = 0, 0 < s < 1 (2-7)

g(0) = g(1) = 0. (2-8)

Now, taking gε(s) = ε(s− 1)sin(s/ε), for ε� 1, function f takes the form

f(s) = 2cos
(s
ε

)
− (1− s)

ε
sin
(s
ε

)
(2-9)

which experiences a large perturbation.
When kernel K is square integrable, i.e.

‖K‖2
2 :=

∫ 1

0

∫ 1

0

K(s, t)2dsdt <∞, (2-10)

then

K(s, t) =
∞∑
i=1

µiui(s)vi(t). (2-11)

The functions ui and vi are called the singular functions of K, and the numbers µi are the
singular values of it. These functions are orthonormal with respect the inner product 〈·, ·〉
defined by

〈φ, ψ〉 =

∫ 1

0

φ(t)ψ(t)dt (2-12)

The singular values of K are nonnegative and satisfy
∑∞

i=1 µ
2
i = ‖K‖2

2.
Now, returning to the Fredholm equation, we obtain

∞∑
i=1

µi〈vi, f〉ui =
∞∑
i=1

〈ui, g〉ui, (2-13)

and, since these functions are orthonormal, the solution of the equation takes the form

f(t) =
∞∑
i=1

〈ui, g〉
µi

vi. (2-14)

Remark. It is needed that the function g, as is established above, satisfy the following rela-
tion

∞∑
i=1

(
〈ui, g〉
µi

)2

<∞. (2-15)

This relation is known as The Picard Condition, and is important to ensure the solution
f to be square integrable. In other words, the coefficients 〈ui, g〉 must decay faster to zero
than the singular values µi.
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Returning to 2-1, the problems we are dealing with can be written in the way Kf = g,
where seeking f will be the target, since K and g are given. The experimental data is often
to have some level of noise and that leads to issues to approximate a solution of the problem.
For dealing with that inconveniences it is possible to consider the finding of the function f ,
as an optimization process, in which the functional taken is

ρ(f) = ‖Kf − g‖2 . (2-16)

The ill-conditioning of some well-established problems creates the necessity of finding a way
to figure out a solution of them. There are some approximations to solve the inconveniences,
and we point them out as in [21]

• Minimize ρ(f) restricting the search of the solution to a subset Sf .

• Minimize ρ(f) subject to the constraint that ω(f) < δ, being ω(·) a measure of the
size of f .

• Minimize ω(f), restricted to ρ(f) < α.

• Minimize a linear combination of ρ(f)2 and ω(f)2, i.e.:

min
{
ρ(f)2 + λ2ω(f)2

}
, (2-17)

where λ is a penalty factor.

The values, α, δ and λ are known as the regularization parameters, and function ω is often
called the "smoothing norm".

2.2. Discrete Mollification

As a regularization tool, the mollification was developed in the decade of the 1980’s and is
exposed thoroughly in the texts [34] and [6]. It consists on convolution with a truncated
gaussian kernels.
Given δ > 0, p > 0 in R, we define

Aδp =

(∫
Bp/δ

exp(−x2)dx

)−1

(2-18)

where
Br := {x ∈ R/|x| < r} (2-19)

Now, we take a truncated Gaussian kernel:

κδp(x, y) =

{
Aδpδ

−2exp(−x2/δ2), |x| ≤ p

0, |x| > p
(2-20)
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Theorem 2.2.1. This kernel satisfies

• κ ≥ 0.

• κ ∈ C∞(Bp).

• κ ≡ 0 outside B̄p.

•
∫
Rn κδp = 1

Let y = {yj}j∈Z a discrete function which may consist of evaluations or cell averages of a
real function y = y(x) at equidistant grid points xj = x0 + j∆x, ∆x > 0, j ∈ Z.
The discrete mollification operator, applied to the discrete function y, is defined by the
discrete convolution

[Jηy]j =

η∑
i=−η

wiyj−i, j ∈ Z.

The support parameter η ∈ Z+ indicates the width of the mollification stencil, and the
weights wi satisfy wi = w−i and 0 ≤ wi ≤ wi−1 for i = 1, . . . , η along with

∑η
i=−η wi = 1.

Discrete mollification is a convolution operator and as such, it requires η values to the right
and to the left of any given point. For points close to the boundary, some extensions to
exterior points of the domain are required. Several interesting options are presented in [4].
The weights wi are defined in a precise way by integration of a certain truncated gaussian
kernel ([6, 31]). Some weights are shown in Table 2-1.

η w0 w1 w2 w3 w4 w5

1 8.4272e-1 7.8640e-2
2 6.0387e-1 1.9262e-1 5.4438e-3
3 4.5556e-1 2.3772e-1 3.3291e-2 1.2099e-3
4 3.6266e-1 2.4003e-1 6.9440e-2 8.7275e-3 4.7268e-4
5 3.0028e-1 2.2625e-1 9.6723e-2 2.3430e-2 3.2095e-3 2.4798e-4

Table 2-1.: Mollification weights

The discrete mollification operator satisfies the following useful estimates.

Theorem 2.2.2. (Theorem 2.2 of [1]) Let g ∈ C4(R) with g(4) bounded on R, and set
yj = g(xj), where {xj}j∈Z is a uniform grid with discretization parameter ∆x. If the data
{yεj}j∈Z satisfy ∣∣yεj − yj∣∣ ≤ ε for all j ∈ Z,
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then ∣∣[Jηyε]j − [Jηy]j
∣∣ ≤ ε for all j ∈ Z.

Additionally, for each compact set K = [a, b] there exists a constant C = C(K) such that∣∣∣∣[Jηy]j − g(xj)−
∆x2

2Cη
g′′(xj)

∣∣∣∣ ≤ C∆x4 for all j ∈ Z. (2-21)

where Cη := [2(η2wη + (η − 1)2wη−1 + · · ·+ w1) + w0]−1.

Moreover, the following inequalities hold for all j ∈ Z, where C is a different constant in
each inequality:∣∣[Jηy]j − g(xj)

∣∣ ≤ C(∆x)2,∣∣D+ [Jηy]j − (∆x)g′(xj)
∣∣ ≤ C(∆x)2,

∣∣D0 [Jηy]j − (∆x)g′(xj)
∣∣ ≤ C(∆x)3,∣∣D−D+ [Jηy]j − (∆x)2g′′(xj)
∣∣ ≤ C(∆x)4.

Where D0, D+ and D− are the centered, forward and backward finite differences operators
respectively.
The construction of a 2D kernel is analogous and details follow. However, we acknowledge
the definition of 2D mollification by Acosta and Burger 2012 [5]. In this thesis we provide a
new insight and more details.
Given δ > 0, p > 0 in R, we define

Cδp =

(∫
Rp/δ

exp(−‖s‖2)dx

)−1

(2-22)

where
Rr := {s ∈ R2/‖s‖∞ < r} (2-23)

Now, we take a truncated Gaussian kernel:

φδp(s1, s2) =

{
Cδpδ

−2exp(−(s2
1 + s2

2)/δ2), ‖(s1, s2)‖∞ ≤ p

0, ‖(s1, s2)‖∞ > p
(2-24)

Theorem 2.2.3. This kernel satisfies

• φ ≥ 0.

• φ ∈ C∞(Rp).

• φ ≡ 0 outside R̄p.

•
∫
R2 φδp = 1
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Definition 2.2.4. Set f : R2 7→ R locally integrable, we define its δp-mollification in any t,
denoted Jδpf(t), as the convolution of f with φδp in t. That is,

Jδpf(t) = (φδp ∗ f)(t) (2-25)

=

∫
R2

φδp(t− s)f(s)ds (2-26)

=

∫
Rp(t)

φδp(t− s)f(s)ds (2-27)

=

∫
Rp

φδp(−s)f(t+ s)ds. (2-28)

Let Ω ⊂ R2 a rectangle, X = {Xij/Xij = h(i, j), (i, j) ∈ Z2} ∩ Ω, a rectangular grid in Ω

with step size h ∈ R+, and G : X 7→ R. Now we define some sets that will be of importance

Sij(1) =
1

2

([
xi−1

yj

]
+

[
xi
yj

])
(2-29)

Sij(2) =
1

2

([
xi
yj−1

]
+

[
xi
yj

])
(2-30)

Iij = [Sij(1), Si+1,j(1))× [Sij(2), Si,j+1(2)) (2-31)

We extend the function G to whole Ω, defining the function G̃ as follow

G̃(t) =
∑

(i,j)∈Z2

χij(t)G(Xij) (2-32)

with χij the characteristic function of the rectangle Iij. Then for δ > 0 and η a non negative
integer, we define the δη-mollification of G as the δp- mollification of G̃ with

p = (η + 1/2)h (2-33)

that is,
JδηG(t) = JδpG̃(t). (2-34)

Henceforth, p = 3δ. Notice that the function G̃ is constant over each of the rectangles Iij,
then the last definition can be written as follow

JδηG(t) = JδpG̃(t) (2-35)

=

∫
Rp

φδp(−s)G̃(t+ s)ds (2-36)

=

∫
Rp

φδp(−s)
∑

(i,j)∈Z2

χij(t+ s)G(Xij)ds (2-37)

=
∑

(i,j)∈Z2

G(Xij)

∫
Rp

φδp(−s)χij(t+ s)ds (2-38)
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We are interested on the mollification in the points of X, given a point Xij, the mollification
of G in it will be

JδηG(Xij) = JδpG̃(Xij) (2-39)

=

∫
Rp

φδp(−s)G̃(Xij + s)ds (2-40)

=

∫
Rp

φδp(−s)
∑

(m,n)∈Z2

χmn(Xij + s)G(Xmn)ds (2-41)

=
∑

(m,n)∈Z2

G(Xmn)

∫
Rp

φδp(−s)χmn(Xij + s)ds (2-42)

The term φδp(−s)χij(Xij + s) will be different from zero only when ‖s‖∞ ≤ p and Xij + s ∈
Imn, then basically we are taking the integral around the position Xij over all intersections
of the square of radius p and the rectangles Imn, i.e. max{|i−m|, |j − n|} ≤ η. The figure
2.2 illustrates this issue:

Xij

︸ ︷︷ ︸
p

Figure 2-2.: The gray zones indicate where the integral is not zero.
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Let k = m− i and l = n− j, then

JδηG(Xij) =
∑

(m,n)∈Z2

G(Xmn)

∫
Rp

φδp(−s)χmn(Xij + s)ds (2-43)

=
∑

(k,l)∈Z2

max{|k|,|l|}≤η

G(Xi+k,j+l)

∫
Rp

φδp(−s)χij(t+ s)ds (2-44)

=
∑

(k,l)∈Z2

max{|k|,|l|}≤η

wklG(Xi+k,l+j) (2-45)

where

wkl =

∫
Ikl

φδp(−s)ds (2-46)

=

∫ Xl+h/2

Xk−h/2

∫ yl+h/2

yl−h/2
φδp(x, y)dxdy (2-47)

=

∫ Xl+h/2

Xk−h/2

∫ yl+h/2

yl−h/2
Cδpδ

−2exp(−(x2 + y2)/δ2)dxdy (2-48)

= Cδpδ
−2

∫ xl+h/2

xk−h/2

∫ yl+h/2

yl−h/2
exp(−x2/δ2)exp(−y2/δ2)dxdy (2-49)

= Cδpδ
−2

∫ xk+h/2

xk−h/2
exp(−x2/δ2)dx

∫ yl+h/2

yl−h/2
exp(−y2/δ2)dy (2-50)

= ωlωk (2-51)

and

ωk =
1

2

(
erf

(
xk + h

2

δ

)
− erf

(
xk − h

2

δ

))
(2-52)

ωl =
1

2

(
erf

(
yl + h

2

δ

)
− erf

(
yl − h

2

δ

))
(2-53)

Lemma 2.2.5. ∑
max{|k|,|l|}≤η

kwkl = 0 and
∑

max{|k|,|l|}≤η

lwkl = 0. (2-54)

Proof. ∑
max{|k|,|l|}≤η

kwkl =
∑

max{|k|,|l|}≤η

kwkl (2-55)

=
∑

max{|k|,|l|}≤η

kwkwl (2-56)

=

η∑
l=−η

(
η∑

k=−η

kwk

)
wl = 0. (2-57)
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Figure 2-3.: The w’s for h = 0.01, δ = 0.2 and η = 4
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Definition 2.2.6. A function g is called Lipschitz continuous, if there exists a constant CLip
such that

‖g(x1)− g(x2)‖ ≤ CLip‖x1 − x2‖ (2-58)

Remark. From now on, the function g will be assumed Lipschitz continuous.

Theorem 2.2.7. If gx ∈ C0,1(R2) in the x variable. Then there exists a constant C, inde-
pendent of δ, such that

‖(JδηG)x − gx‖∞ ≤ C

(
δ +

h

δ

)
, (2-59)

where h and δ are independent.

Proof. By the triangle inequality,

‖(JδηG)x − gx‖∞ ≤ ‖(Jδηg)x − (JδηG)x‖∞ + ‖(Jδηg)x − gx‖∞ (2-60)

We estimate each term separately. Then, for the first one

|(Jδηg(x, y))x − (JδηG(x, y))x| =
∣∣∣∣ ∂∂x (Jδηg(x, y)− JδηG(x, y))

∣∣∣∣ (2-61)

=

∣∣∣∣∣ ∂∂x
(∫

Rp(x,y)

φδp(x− s1, y − s2)(g(s)−G(s))ds

)∣∣∣∣∣
=

∣∣∣∣∣ ∂∂x
(∫

Rp(x,y)

φδp(x− s1, y − s2)(g(s)−G(s))ds

)∣∣∣∣∣
=

∣∣∣∣ ∂∂x
(∫ y+p

y−p

∫ x+p

x−p
φδp(x− s1, y − s2)(g(s)−G(s))ds

)∣∣∣∣
=

∣∣∣∣∫ y+p

y−p

∂

∂x

(∫ x+p

x−p
φδp(x− s1, y − s2)(g(s)−G(s))ds

)∣∣∣∣
=

∣∣∣∣∫ y+p

y−p

∫ x+p

x−p

∂

∂x
(φδp(x− s1, y − s2)) (g(s)−G(s))ds

+

∫ y+p

y−p
φδp(−p, y − s2)(g(x+ p, s2)−G(x+ p, s2))ds2

−
∫ y+p

y−p
φδp(p, y − s2)(g(x− p, s2)−G(x− p, s2))ds2

∣∣∣∣
≤
∫ y+p

y−p

∫ x+p

x−p

∣∣∣∣ ∂∂x (φδp(x− s1, y − s2)) (g(s)−G(s))

∣∣∣∣ ds (2-62)

+

∫ y+p

y−p
|φδp(−p, y − s2)(g(x+ p, s2)−G(x+ p, s2))| ds2 (2-63)

+

∫ y+p

y−p
|φδp(p, y − s2)(g(x− p, s2)−G(x− p, s2))| ds2 (2-64)
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Taking (2-62) term we have∫ y+p

y−p

∫ x+p

x−p

∣∣∣∣ ∂∂x (φδp(x− s1, y − s2)) (g(s)−G(s))

∣∣∣∣ ds ≤
≤ CLiph

∫ y+p

y−p

∫ x+p

x−p

Cδp
δ2

∣∣∣∣−2(x− s1)

δ2
exp

(
−(x− s1)2 − (y − s2)2

δ2

)∣∣∣∣ ds1ds2

=
2CLiphCδp

δ2

∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

∫ x+p

x−p

∣∣∣∣−2(x− s1)

δ2
exp

(
−(x− s1)2

δ2

)∣∣∣∣ ds1

=
2CLiphCδp

δ2

∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

(
2

∫ x+p

x

−2(x− s1)

δ2
exp

(
−(x− s1)2

δ2

)
ds1

)
=

2CLiphCδp
δ2

∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

(
2

∫ p2/δ2

0

exp(−t)dt

)

=
4CLiphCδp

δ2

(
1− exp(−p2/δ2)

) ∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

=
4CLiphCδp

δ2

(
1− exp(−p2/δ2)

)
δ

∫ p/δ

−p/δ
exp

(
t2
)
dt

=
4CLiph

δ

(1− exp(−p2/δ2))∫ p/δ
−p/δ exp(−x2)dx

·

∫ p/δ
−p/δ exp(−t

2)dt∫ p/δ
−p/δ exp(−y2)dy

≤ 4CLipAδph

δ
.

where Aδp = 1/
∫ p/δ
−p/δ exp(−x

2)dx as it was defined in the one dimensional sense.
For (2-63) + (2-64) we have∫ y+p

y−p
|φδp(−p, y − s2)(g(x+ p, s2)−G(x+ p, s2))| ds2+

+

∫ y+p

y−p
|φδp(p, y − s2)(g(x− p, s2)−G(x− p, s2))| ds2 ≤

≤ 4CLiph

∫ y+p

y−p

Cδp
δ2
exp

(
−p2 − (y − s2)2

δ2

)
ds2

=
4CLiphCδp

δ2
exp(−p2/δ2)

∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

=
4CLiphAδp

δ2
exp(−p2/δ2) ·

δ
∫ p/δ
−p/δ exp(−t

2)dt∫ p/δ
−p/δ exp(−y2)dy

≤ 4CLipAδph

δ
.

Then, we have that

‖(Jδηg)x − (JδηG)x‖∞ ≤
8CLipAδph

δ
. (2-65)
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Now, if f = gx, then

|Jδpf(x, y)− f(x, y)| =

∣∣∣∣∣
∫
Rp

φ(−s) (f(x+ s1, y + s2)− f(x, y)) ds

∣∣∣∣∣
≤

∫ p

−p

∫ p

−p

Cδp
δ2
exp

(
−s2

1 − s2
2

δ2

)
|f(x+ s1, y + s2)− f(x, y)|

≤ CLipCδp
δ2

∫ p

−p

∫ p

−p
(|s1|+ |s2|)exp

(
−s2

1 − s2
2

δ2

)
ds1ds2

=
CLipCδp
δ2

∫ p

−p

∫ p

−p
|s1|exp

(
−s2

1 − s2
2

δ2

)
+ |s2|exp

(
−s2

1 − s2
2

δ2

)
ds1ds2

=
CLipCδp
δ2

[∫ p

−p
|s1|exp

(
−s2

1

δ2

)
ds1

∫ p

−p
exp

(
−s2

2

δ2

)
ds2

+

∫ p

−p
|s2|exp

(
−s2

2

δ2

)
ds2

∫ p

−p
exp

(
−s2

1

δ2

)
ds1

]
≤ CLipCδp

δ2

(
δ

Aδp
δ2 +

δ

Aδp
δ2

)
= 2CLipAδpδ

We conclude

‖(JδpG)x − gx‖∞ ≤ C

(
δ +

h

δ

)
(2-66)

Theorem 2.2.8. Given G and Gε are defined on K, and satisfy ‖G−Gε‖∞ ≤ ε, then

‖(JδpG)x − (JδpG
ε)x‖∞ ≤ C

ε

δ

Proof.

|(JδpG)x − (JδpG
ε)x| =

∣∣∣∣∣ ∂∂x
∫
Rp(x,y)

φδp(x− s1, y − s2)(G(s1, s2)−Gε(s1, s2))ds1d2

∣∣∣∣∣
=

∣∣∣∣∫ y+p

y−p

∂

∂x

∫ x+p

x−p
φδp(x− s1, y − s2)(G(s1, s2)−Gε(s1, s2))ds1d2

∣∣∣∣
=

∣∣∣∣∫ y+p

y−p
φδp(−p, y − s2)(G(x+ p, s2)−Gε(x+ p, s2))ds2

−
∫ y+p

y−p
φδp(p, y − s2)(G(x− p, s2)−Gε(x− p, s2))ds2

+

∫ y+p

y−p

∫ x+p

x−p

∂

∂x
(φδp(x− s1, y − s2)) (G(s1, s2)−Gε(s1, s2))ds1d2

∣∣∣∣
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≤ ε

∫ y+p

y−p
φδp(−p, y − s2)ds2 + ε

∫ y+p

y−p
φδp(p, y − s2)ds2

+
εCδp
δ2

∫ y+p

y−p

∫ x+p

x−p

∣∣∣∣−2(x− s1)

δ2
exp

(
−(x− s1)2 − (y − s2)2

δ2

)∣∣∣∣ ds1ds2

≤ 2εAδp
δ2

δ +
2εAδp
δ2

δ =
4εAδp
δ2

δ

We conclude

‖(JδpGε)x − (Jδpg)x‖∞ ≤ ‖(JδpGε)x − (JδpG)x‖∞ + ‖(JδpG)x − (Jδpg)x‖∞ (2-67)

≤ C

δ
(ε+ h) (2-68)

moreover

‖(JδpGε)x − gx‖∞ ≤ C

(
δ +

ε

δ
+
h

δ

)
(2-69)

From the last theorems, we obtain

‖D0(JδpG
ε)− gx‖∞ ≤ ‖(JδpGε)x − gx‖∞ + ‖D0(JδpG

ε)− (JδpG
ε)x‖∞ (2-70)

It is necessary that there exist a bound for the central difference, the next result establish
it.

Theorem 2.2.9. If G is a bounded function, then

‖D0(JδpG)‖∞ ≤ 2
Aδp
δ
‖G‖∞ (2-71)

Proof.

|D0(JδpG)(x, y)| =
1

2h
|JδpG(x+ h, y)− JδpG(x− h, y)|

=
1

2h

∣∣∣∣∫
R2

(φδp(x+ h− s1, y)− φδp(x− h− s1, y))G(s1, s2)ds1ds2

∣∣∣∣
≤ 1

2h

‖G‖∞Cδp
δ2

(∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

)
·

·
(∫ x+h+p

x−h−p

∣∣∣∣exp(−(x+ h− s1)2

δ2

)
− exp

(
−(x− h− s1)2

δ2

)∣∣∣∣ ds1

)
=
‖G‖∞Aδp

2hδ

∫ h+p

−h−p

∣∣∣∣exp(−(−z + h)2

δ2

)
− exp

(
−(−z − h)2

δ2

)∣∣∣∣ dz
=
‖G‖∞Aδp

2hδ

∫ h+p

−h−p

∣∣∣∣exp(−(z + h)2

δ2

)
− exp

(
−(z − h)2

δ2

)∣∣∣∣ dz
=
‖G‖∞Aδp

2hδ
2

∫ 0

−h−p
exp

(
−(z + h)2

δ2

)
− exp

(
−(z − h)2

δ2

)
dz
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Now, using a generalized mean value theorem: if f ∈ C[a−h, b+h], then there exist constants
θi, with |θi| ≤ 1, i = 1, 2, such that∫ b

a

(f(x+ h)− f(x− h))dx = 2h(f(b+ θ1h)− f(a− θ2h)) (2-72)

finally, we get

|D0(JδpG)(x, y)| ≤ 2Aδp‖G‖∞
δ

(
exp

(
−(θ1h)2

δ2

)
− exp

(
−(−h− p− θ2h)2

δ2

))
≤ 2Aδp‖G‖∞

δ

Theorem 2.2.10. If the function gxx ∈ C0,1Ω, then

‖(JδpGε)xx − gxx‖∞ ≤ C1δ +
24C2h

δ2
+

24C3ε

δ2
(2-73)

Proof.

‖(JδpGε)xx − gxx‖∞ ≤ ‖(JδpGε)xx − (JδpG)xx‖∞ + ‖(JδpG)xx − (Jδpg)xx‖∞
+‖(Jδpg)xx − gxx‖∞

For the last term, trivially

‖(Jδpg)xx − gxx‖∞ = ‖(Jδpgxx)− gxx‖∞ ≤ C1δ (2-74)

Then we take the middle one∣∣∣∣ ∂2

∂x2
(JδpG(x, y))− ∂2

∂x2
(Jδpg(x, y))

∣∣∣∣ =

∣∣∣∣ ∂∂x
(
∂

∂x
(Jδp(G− g)(x, y))

)∣∣∣∣ =

=

∣∣∣∣ ∂∂x
(∫ y+p

y−p
φδp(−p, y − s2)(G(x+ p, s2)− g(x+ p, s2))ds2

−
∫ y+p

y−p
φδp(p, y − s2)(G(x− p, s2)− g(x− p, s2))ds2

+

∫ y+p

y−p

∫ x+p

x−p

(
∂

∂x
φδp(x− s1, y − s2)

)
(G(s1, s2)− g(s1, s”2))s1ds2

)∣∣∣∣
The first two integrals vanished under the derivative and from the last one we get∣∣∣∣ ∂2

∂x2
(JδpG(x, y))− ∂2

∂x2
(Jδpg(x, y))

∣∣∣∣ =∣∣∣∣∫ y+p

y−p

(
∂

∂x
φδp(−p, y − s2)

)
(G(x+ p, s2)− g(x+ p, s2))ds2

−
∫ y+p

y−p

(
∂

∂x
φδp(p, y − s2)

)
(G(x− p, s2)− g(x− p, s2))ds2

+

∫ y+p

y−p

∫ x+p

x−p

(
∂2

∂x2
φδp(x− s1, y − s2)

)
(G(s1, s2)− g(s1, s2))ds1ds2

∣∣∣∣
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Again, we analyze these integrals separately∣∣∣∣∫ y+p

y−p

(
∂

∂x
φδp(−p, y − s2)

)
(G(x+ p, s2)− g(x+ p, s2))ds2

∣∣∣∣ ≤ (2-75)

≤ Cδp
δ2

∣∣∣∣∫ y+p

y−p

(
2p

δ2
exp

(
−p2 − (y − s2)2

δ2

))
(G(x+ p, s2)− g(x+ p, s2))ds2

∣∣∣∣ (2-76)

≤ 2pCδpCLiph

δ4
exp

(
−p2

δ2

)∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2 (2-77)

≤ 2pCδpCLiph

δ4

δ

Aδp
exp

(
−p2

δ2

)
≤ 2 · 3δCδpCLiph

δ4

δ

Aδp
≤ 6AδpCLiph

δ2
(2-78)

This inequality can be established as well for the term∣∣∣∣∫ y+p

y−p

(
∂

∂x
φδp(p, y − s2)

)
(G(x− p, s2)− g(x− p, s2))ds2

∣∣∣∣ ≤ 6AδpCLiph

δ2
(2-79)

The integral involving the second derivative∣∣∣∣∫ y+p

y−p

∫ x+p

x−p

(
∂2

∂x2
φδp(x− s1, y − s2)

)
(G(s1, s2)− g(s1, s2))ds1ds2

∣∣∣∣ ≤∫ y+p

y−p

∫ x+p

x−p

(
∂2

∂x2
φδp(x− s1, y − s2)

)
|G(s1, s2)− g(s1, s2)| ds1ds2 ≤

CLiph

∫ y+p

y−p

∫ x+p

x−p

∣∣∣∣ ∂2

∂x2
φδp(x− s1, y − s2)

∣∣∣∣ ds1ds2 ≤

CδpCLiph

δ2

(∫ y+p

y−p
exp

(
−(y − s2)2

δ2

)
ds2

)
·

·
(∫ x+p

x−p

∣∣∣∣exp(−(x− s1)2

δ2

)(
−2

δ2
+

4(x− s1)2

δ4

)∣∣∣∣ ds1

)
≤

CδpCLiph

δ2

δ

Aδp

(∫ p

−p

∣∣∣∣exp(−t2δ2

)(
−2

δ2
+

4t2

δ4

)∣∣∣∣ dt) ≤
AδpCLiph

δ

(
4t

δ2
exp

(
−t2

δ2

)∣∣∣∣p
0

=
4AδpCLiph

δ

p

δ2
=

4AδpCLiph

δ

3δ

δ2
=

12AδpCLiph

δ2

That implies

‖(JδpG)xx − (Jδpg)xx‖∞ ≤
24C2h

δ2
(2-80)

Now we need to estimate the first term. Following the same ideas bellow, we obtain∣∣∣∣ ∂2

∂x2
(JδpG

ε)(x, y)− ∂2

∂x2
(JδpG)(x, y)

∣∣∣∣ ≤ 24C3ε

δ2
(2-81)



2.2 Discrete Mollification 23

Theorem 2.2.11. Let g ∈ C4(R2) and M a bound for g and its derivatives up to fourth
order. Let G be the discrete version of g defined on X = {Xij/Xij = h(i, j), (i, j) ∈ Z2}∩Ω.
Stability and Consistency. If Gε is defined on X such that

|Gε(Xij)−G(Xij)| ≤ ε, Xij ∈ X, (2-82)

then for each compact set K = [a, b]× [c, d] there exist a constant CK such that if Xij ∈ K

|JδηGε(Xij)− JδηG(Xij)| ≤ ε, (2-83)

|JδηGε(Xij)− g(Xij)| ≤ CKh
2. (2-84)

Numerical Differentiation with mollification: Moreover:∣∣∣∣D+JδηG(Xij)−
∂

∂x
(Xij)

∣∣∣∣ ≤ Ch, (2-85)∣∣∣∣D0JδηG(Xij)−
∂

∂x
g(Xij)

∣∣∣∣ ≤ Ch2 (2-86)∣∣∣∣D−D+JδηG(Xij)−
∂2

∂x2
g(Xij)

∣∣∣∣ ≤ Ch2, (2-87)

where D+, D− and D0 are the forward, backward and central operators of discrete differen-
tiation in x respectively. The last inequalities are true for the second variable as well.

Proof. Stability:

|JδηGε(Xij)− JδηG(Xij)| =

∣∣∣∣∣∣
∑

max{|k|,|l|}≤η

wkl (G
ε(Xij)−G(Xij))

∣∣∣∣∣∣ (2-88)

≤
∑

max{|k|,|l|}≤η

wkl |Gε(Xij)−G(Xij)| (2-89)

= |Gε(Xij)−G(Xij)|
∑

max{|k|,|l|}≤η

wkl ≤ ε (2-90)

Consistency: letXij ∈ K then for Taylor’s Theorem, for each (k, l) ∈ Z2, with max{|k|, |l|} ≤
η, there exists Rkl ∈ [a+ p, b− p]× [c+ p, d− p] such that

g(Xi+k,j+l) = g(Xij) + hk
∂

∂x
g(Xij) + hl

∂

∂y
g(Xij) +

h2

2
Rkl (2-91)

Thus

JδηG(Xij) =
∑

max{|k|,|l|}≤η

wklg(Xi+k,j+l)

=
∑

max{|k|,|l|}≤η

wkl

(
g(Xij) + h

(
k
∂

∂x
g(Xij) + l

∂

∂y
g(Xij)

)
+
h2

2
Rkl

)

= g(Xij) +
h2

2

∑
max{|k|,|l|}≤η

wklRkl
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from the last lemma Here the term Rkl represents the remainder in Taylor’s Theorem for
multivariate functions.

Numerical Differentiation: If Xi−1,j, Xi+1,j ∈ K, there exist Rk,l and Qk,l, being the
remainders in Taylor’s Theorem of fourth order, such that

JδηG(Xi−1,j) = g(Xi−1,j) +
h4

24

η∑
l=−η

η∑
k=−η

wk,lRk,l

+
h2

2

η∑
l=−η

η∑
k=−η

wk,l

(
k2 ∂

2

∂x2
g(Xi−1,j) + kl

∂2

∂x∂y
g(Xi−1,j) + l2

∂2

∂y2
g(Xi−1,j)

)

JδηG(Xi+1,j) = g(Xi+1,j) +
h4

24

η∑
l=−η

η∑
k=−η

wk,lQk,l

+
h2

2

η∑
l=−η

η∑
k=−η

wk,l

(
k2 ∂

2

∂x2
g(Xi+1,j) + kl

∂2

∂x∂y
g(Xi+1,j) + l2

∂2

∂y2
g(Xi+1,j)

)
The last equations are consequence of Taylor’s Theorem for the variable x.
Now, for some υi and νi between Xi−1,j and Xi+1,j we have∣∣∣∣g(Xi+1,j)− g(Xi−1,j)

2h
− ∂

∂x
g(Xi,j)

∣∣∣∣ =
h2

12

∣∣∣∣ ∂3

∂x3
g(υi)

∣∣∣∣ ≤ h2

12
M (2-92)∣∣∣∣∣ ∂

2

∂x2
g(Xi+1,j)− ∂2

∂x2
g(Xi−1,j)

2h

∣∣∣∣∣ =

∣∣∣∣ ∂3

∂x3
g(νi)

∣∣∣∣ ≤ M (2-93)∣∣∣∣∣ ∂
4

∂x4
g(Xi+1,j)− ∂4

∂x4
g(Xi−1,j)

2h

∣∣∣∣∣ ≤ M

h
(2-94)

For these and other similar estimates, we have

JδηG(Xi+1,j)− JδηG(Xi−1,j)

2h
=

∂

∂x
g(Xi,j) +O(h2) (2-95)

The other estimates can be obtained in similar way.

Theorem 2.2.12. With the hypothesis of the theorem above, the next inequalities are ob-
tained ∣∣∣∣D+JδηG

ε(Xi,j)−
∂

∂x
g(Xi,j)

∣∣∣∣ ≤ 2
( ε
h

)
+ Ch (2-96)∣∣∣∣D0JδηG

ε(Xi,j)−
∂

∂x
g(Xi,j)

∣∣∣∣ ≤ ( ε
h

)
+ Ch2 (2-97)∣∣∣∣D−D+JδηG

ε(Xi,j)−
∂2

∂x2
g(Xi,j)

∣∣∣∣ ≤ 4
( ε
h2

)
+ Ch2 (2-98)
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Proof. Only one of the proofs is shown here:∣∣∣∣D+JδηG
ε(Xi,j)−

∂

∂x
g(Xi,j)

∣∣∣∣ ≤ |D+JδηG
ε(Xi,j)−D+JδηG(Xi,j)|+

∣∣∣∣D+JδηG(Xi,j)
∂

∂x
g(Xi,j)

∣∣∣∣
≤ 1

h
|JδηGε(Xi+1,j)− JδηG(Xi+1,j)|

+
1

h
|JδηGε(Xi−1,j)− JδηG(Xi−1,j)|

+

∣∣∣∣D+JδηG(Xi,j)
∂

∂x
g(Xi,j)

∣∣∣∣
≤ 2

( ε
h

)
+ Ch

Inverse problems and regularization play important roles in this thesis and so do fractional
derivatives, introduced in the next chapter.



3. Fractional Derivatives

In the classical calculus the derivatives play a fundamental role and their applications can
be found in many fields as physics, chemistry, economics, etc. The order of the derivatives
represents a core topic in any model concerning differential equations and the questioning
about the possibilities of that order for not being integer and its implications in the modelling,
will be the aim of this chapter.
In 1695 Leibniz wrote a letter to L’Hôpital putting on the table a possible generalization of
the concept of derivative introducing the non-integer order. Then L’Hôpital asked for the
results if the order was n = 1/2, which Leibniz later responded "one day, useful consequences
will be drawn" [29]. Those questions were addressed in works of mathematicians as Lacroix,
Abel and Fourier, lately the fractional calculus acquired relevancy for its applications in
engineering.
There are different definitions of fractional derivatives and some will be exposed below. The
comparison between these definitions and their properties will be in this chapter, but it is
necessary to introduce some important functions first.

3.1. Important Functions

The Euler Gamma Function, being a generalization of the factorial for real or even complex
numbers, is utterly relevant in the posterior definitions.

Definition 3.1.1. The Euler Gamma function, Γ, is given by

Γ(z) =

∫ ∞
0

xz−1e−xdx, z ∈ C. (3-1)

As we just mentioned this has a clear relation with factorial. Given n ∈ Z, then

n! = Γ(n− 1). (3-2)

The exponential function has wide importance in the calculus and the differential equations
in general, the Mittag-Leffler function is a generalization of it and it is very useful when
dealing with fractional derivatives.

Definition 3.1.2. A two parameter function of the Mittag-Leffler type is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, (3-3)

where α > 0, β > 0 are real constants and Γ is the Gamma function defined by (3-1).
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3.2. Fractional Derivatives

The goal in this section is to make sense of non integer orders of differentiation. For this we
will start pointing at some formulations made in [38].
The derivative of a function with suitable properties is defined as

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
, (3-4)

and similarly

f ′′(t) = lim
h→0

f ′(t+ h)− f ′(t)
h

(3-5)

= lim
h→0

f(t+ h)− 2f(t) + f(t− h)

h2
. (3-6)

Continuing with this idea we can get

f (n)(t) = lim
h→0

1

hn

n∑
r=0

(−1)r
(
n

r

)
f(t− rh), (3-7)

where (
n

r

)
=

n(n− 1)(n− 2) · · · (n− r + 1)

r!
. (3-8)

Generalizing these formulations, let us define

f
(p)
h (t) =

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh), (3-9)

for p, n ∈ Z. If p ≤ n, then
lim
h→0

f
(p)
h (t) = f (p)(t). (3-10)

We generalize the combinatorial operator as follow[
p

r

]
=
p(p+ 1) · · · (p+ r − 1)

r!
, (3-11)

which is available for negative integers and real numbers in general:(
−p
r

)
=
−p(−p− 1) · · · (−p− r + 1)

r!
= (−1)r

[
p

r

]
. (3-12)

Then, we expand the definition of f (.)
h

f
(−p)
h (t) =

1

hp

n∑
r=0

(−1)r
[
p

r

]
f(t− rh). (3-13)

Taking h = t−a
n
, where a ∈ R is the "initial point", a constant. Then, we establish the next

definition as the limit.



28 3 Fractional Derivatives

Definition 3.2.1. For a function u, its Grünwald-Letnikov derivative of order α is defined
by

GL
a Dα

t f(t) = lim
h→0

nh=t−a

f
(α)
h (t) (3-14)

= lim
h→0

nh=t−a

1

hα

n∑
r=0

(−1)r
[
α

r

]
f(t− rh) (3-15)

From this definition, we can perform the special case α = −1

GL
a D−1

t f(t) = lim
h→0

nh=t−a

f
(−1)
h (t) = lim

n→∞

1

h

n∑
r=0

f(t− rh) (3-16)

=

∫ t

a

f(τ)dτ. (3-17)

Similarly, if α = −2

GL
a D−2

t f(t) =

∫ t

a

(t− τ)f(τ)dτ. (3-18)

For a positive integer p, the Cauchy’s Integral Rule, which can be proved through repeated
integrations by parts, is given by

1

(p− 1)!

∫ t

a

(t− τ)p−1f(τ)dτ =

∫ t

a

(∫ t

a

. . .

(∫ t

a

f(t)dt

)
. . . dt

)
dt︸ ︷︷ ︸

p times

. (3-19)

Applying Theorem 2.1 from [38], we can conclude that for p ∈ R+

GL
a D−pt f(t) =

1

Γ(p)

∫ t

a

(t− τ)p−1f(τ)dτ (3-20)

Given these facts, we make the next definition.

Definition 3.2.2. For a function u its Riemann-Liouville derivative of order α is defined
by

RL
a Du

(α)
t (t) :=

1

Γ(n− α)

dn

dtn

∫ t

0

(t− ξ)n−1−αu(ξ) dξ, n− 1 ≤ α < n. (3-21)

This derivative has been widely studied through the view of the pure mathematics, but
advances in material science requires an update for a better description of the physical prop-
erties. Also, the rheological models involve fractional differential equations and the initial
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conditions need to be formulated properly in a interpretable way. In fractional differential
equations with Riemann-Liouville derivatives, the initial conditions must be in the form

lim
t→a

ut(t)
α−1 = b1, (3-22)

lim
t→a

ut(t)
α−2 = b2, (3-23)

. . . , (3-24)

lim
t→a

ut(t)
α−n = bn, (3-25)

But for physical problems another initial conditions are required and these often take the
form f(0), f ′(0), etc. Fortunately, the Caputo definition of fractional derivatives gives an
applicable approach.

Definition 3.2.3. For a function u its Caputo derivative of order α is defined by

u
(α)
t (t) :=


1

Γ(n− α)

∫ t

0

u(n)(ξ)

(t− ξ)α+1−n dξ, n− 1 < α < n,

u(n)(t), α = n,

(3-26)

with n ∈ Z+ and u with at least n derivatives.

3.3. The Laplace and Fourier Transforms of Fractional
Derivatives

3.3.1. Laplace Transform

Definition 3.3.1. A function f is said to be of exponential order γ, if there exist positive
constants M and T such that

e−γt|f(t)| ≤M, for all t > T. (3-27)

That is function f does not grow faster than a certain exponential function as t→∞.

Definition 3.3.2. Let f : [0,∞) → R a function of exponential order γ, its Laplace trans-
form, F (s), with s ∈ C, is defined by

F (s) = L{f(t); s} =

∫ ∞
0

e−stf(t)dt, (3-28)

as long as this integral exists.
The function f(t) can be restored from F (s) as follow

f(t) = L−1 {F (s); t} =

∫ c+i∞

c−i∞
estF (s)ds, c = Re(s) > c0, (3-29)
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where c0 ∈ R is in the right half plane of the absolute convergence set, which is the subset of
C where the integral below exists ∫ ∞

0

|e−stf(t)|dt. (3-30)

Remark. For the functions f and g and assuming its respective Laplace transforms F and
G exist, we get

L{f(t) ∗ g(t); s} = F (s)G(s). (3-31)

The next property of the Laplace transform for the derivative of integer order will be needed

L
{
f (n)(t); s

}
= snF (s)−

n−1∑
k=0

sn−k−1f (k)(0). (3-32)

Let α ∈ (0, 1), then for t ∈ R the Laplace transform

L{tα; s} =

∫ ∞
0

tαe−stdt (3-33)

=
Γ(α + 1)

sα+1
, (3-34)

and this implies that

L
{
tα−1

Γ(α)
; s

}
=

1

sα
. (3-35)

Theorem 3.3.3. Under suitable conditions and n− 1 < α < n

L
{
f

(α)
t (t); s

}
= sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0). (3-36)

Proof.

f
(α)
t (t) =

1

Γ(n− α)

∫ t

0

f (n)(ξ)

(t− ξ)α+1−n dξ (3-37)

=

∫ t

0

f (n)(ξ) · (t− ξ)(n−α)−1

Γ(n− α)
dξ (3-38)

=

(
f (n)(ξ) ∗ ξ

(n−α)−1

Γ(n− α)

)
(t) (3-39)
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Now,

L
{
f

(α)
t (t); s

}
= L

{(
f (n)(ξ) ∗ ξ

(n−α)−1

Γ(n− α)

)
(t); s

}
(3-40)

= L
{
t(n−α)−1

Γ(n− α)
; s

}
· L
{
f (n)(t); s

}
(3-41)

= s−(n−α) ·

(
snF (s)−

n−1∑
k=0

sn−k−1f (k)(0)

)
(3-42)

= sα · F (s)−
n−1∑
k=0

sα−k−1f (k)(0). (3-43)

3.3.2. Fourier Transform

Given a real function h(t) ∈ L2(R) we define its Fourier transform as follow

F {h(t); η} :=

∫
R
eiηth(t)dt. (3-44)

This transform has an inverse, and naming H(η) = F {h(t); η} applying the Fourier trans-
form in this problem to the variables y and t we get

h(t) :=
1

2π

∫
R
e−iηth(t)dη (3-45)

= F−1 {H(η); t} . (3-46)

Remark. For this definition of Fourier transform, if h(t) ∈ Hn(R), then

F
{
h(n)(t); η

}
= (iη)nH(η), (3-47)

with Hn(R) :=
{
f ∈ L2(R) :

∑n
k=0 ‖f (k)‖2

2

}
.

Replacing s = iη in 3-35 and defining h(t) to be

h(t) =

{
tα−1

Γ(α)
, t > 0

0, t ≤ 0
(3-48)

then

F {h(t); η} =

∫
R
eiηth(t)dt =

∫ ∞
0

e−st
tα−1

Γ(α)
dt = s−α (3-49)

= (iη)−α. (3-50)
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Now, given a function g ∈ L2(R) then

F {h(t) ∗ g(t); η} = (iη)αG(η), (3-51)

Since we established this behavior of the Fourier Transform, for a function g ∈ Hn(R) its
Caputo derivative of order α ∈ (n− 1, n)

g
(α)
t (t) =

1

Γ(n− α)

∫ t

0

g(n)(ξ)

(t− ξ)α+1−n dξ (3-52)

=

∫ t

0

g(n)(ξ) · (t− ξ)(n−α)−1

Γ(n− α)
dξ (3-53)

=

(
g(n)(ξ) ∗ ξ

(n−α)−1

Γ(n− α)

)
(t) (3-54)

and taking Fourier Transform,

F
{
g

(α)
t (t); η

}
= F

{(
g(n)(ξ) ∗ ξ

(n−α)−1

Γ(n− α)

)
(t); η

}
(3-55)

= (iη)α−n · F
{
g(n)(ξ); η

}
(3-56)

= (iη)α−n · (iη)n ·G(η) (3-57)

= (iη)α ·G(η) (3-58)

3.4. Existence and Uniqueness Theorems

Lets consider the next initial-value problem:

u
(α)
t (t) +

∑n
m=1 pn−m(t)u

(m−1)
t = f(t), 0 < t < T <∞
u(0) = b0,

u
(1)
t (0) = b1,

. . . ,

u
(n−1)
t (0) = bn−1,

(3-59)

where n− 1 < α < n and ∫ T

0

|f(t)|dt <∞. (3-60)

Theorem 3.4.1. If f(t) ∈ L1(0, T ), then the equation

u
(α)
t (t) = f(t) (3-61)

has a unique solution u(t) ∈ L1(0, T ), which satisfies the initial conditions 3-59.
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Proof. We will apply Laplace transform in both sides of the differential equation

sαU(s)−
n−1∑
k=0

sα−k−1bk = F (s) (3-62)

where U(s) and F (s) are the Laplace transforms of u(t) and f(t) respectively. Resolving for
U(s)

U(s) = s−αF (s) +
n−1∑
k=0

s−k−1bk (3-63)

and the inverse Laplace gives

u(t) =
1

Γ(α)

∫ t

0

(t− η)α−1f(η)dη +
n−1∑
k=0

bk
Γ(k + 1)

tk. (3-64)

From this equation, we conclude u(t) ∈ L1(0, T ). Now, if there were two solutions u1(t) and
u2(t) of the problem (3-59), then if z(t) = u1(t) − u2(t), this is a solution of the equation
z

(α)
t (t) = 0 and zero initial conditions. This last statement implies Z(s) = 0, and good
properties of the Laplace transform gives us z(t) = 0 almost everywhere, which proves the
solution is unique in L1(0, T ).

Theorem 3.4.2. If f(t) ∈ L1(0, T ), and pm(t), m = 1, . . . n are continuous functions in
the closed interval [0, T ], then the initial-value problem (3-59) has a unique solution u(t) ∈
L1(0, T ).

Proof. This proof follows the one in [38] modified for Caputo derivative. Lets assume 3-59
has a solution u(t) and denote

u
(α)
t (t) = φ(t). (3-65)

As a consequence of (3.4.1)

u(t) =
1

Γ(α)

∫ t

0

(t− η)α−1φ(t)dt+
n−1∑
k=0

bk
Γ(k + 1)

tk. (3-66)

Substituting this in the differential equation, we obtain the equation

φ(t) +

∫ t

0

K(t, τ)φ(τ)dτ = g(t), (3-67)

where

K(t, τ) =
n∑

m=1

pn−m(t)
(t− τ)m−1

Γ(m)
, (3-68)

g(t) = f(t)−
n∑

m=1

bm−1

Γ(m)
tm−1. (3-69)
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The continuity of the functions pj(t), j = 1, . . . , n implies that the kernel K(t, τ) is also
continuous for 0 ≤ t ≤ T , 0 ≤ τ ≤ T . Similarly g(t) is continuous in [0, T ], and that implies
there exist φ(t) ∈ L1(0, T ) the unique solution of (3-67) (Theorem 3.1 from [26]), therefore,
since Theorem 3.4.1, we can conclude u(t) exists and it is the unique solution for (3-59).

3.5. An Application of Fractional Calculus

To end this chapter, we show an application that can be found in the book of Diethelm
([15]). In mechanics the behavior of a solid in a stress setting is modeled by Hooke’s Law
which relates the stress σ and the strain ε. This is given by

σ(t) = Eε(t), (3-70)

being both functions of the time t and the number E is called the elasticity modulus.
For viscous liquids the Newton’s Law gives us a similar formulation between these quantities,
namely

σ(t) = ηD1ε(t). (3-71)

The constant η is the viscosity of the material. For convenience, we can rewrite Hooke’s Law
as follow

σ(t) = ED0ε(t). (3-72)

The appearance of materials that behave in "between" the solid and the viscous way, arose
to the model of Nutting ([35], [36]) derivatives play a fundamental role. This "interpolation"
takes the form

σ(t) = νDαε(t), (3-73)

with 0 < α < 1 and ν is a material constant. This approach is comonly called the Nutting’s
Law. The work of Scott Blair and Reiner [42] confirms the practical importance of this
model.
This chapter and chapter 2 introduce preliminary definitions and results of importance for the
thesis. The first interactions between inverse problems and fractional differential equations
appear in the next chapter.



4. Fractional Diffusion Equation and
Source Term Identification

In the first part of this chapter we consider a two-dimensional time fractional diffusion
equation and address the important inverse problem consisting on the identification of a
space dependent factor in the source term. The fractional derivative is in the sense of
Caputo. The necessary regularization procedure is provided by a two-dimensional discrete
mollification operator. Convergence results and illustrative numerical examples are included.
For this part we follow [16] closely. The second part of the chapter deals with the same
two dimensional time fractional differential equation with time derivative in the sense of
Caputo. The inverse problem consists on the recovery of a time dependent factor in the
source term. Error estimates and numerical examples are included. We begin with some
theoretical results.

4.1. Preliminaries

The Sobolev Space W k,p(Ω) (as is defined in [18]), with p ≥ 1 and k ∈ Z+, is given by

W k,p(Ω) =
{
u ∈ W k(Ω);Dβu ∈ Lp(Ω) for all multi-index β : |β| ≤ k

}
.

Here Dβ represents the derivatives operator Dβu = ∂ku

∂x
β1
1 ∂x

β2
2 ···∂x

βn
n

. In this space the norm
would be

‖u‖Wk,p(Ω) =

∫
Ω

∑
|β|≤k

|Dβu|p
1/p

.

Some of these sets are important for the next analysis and are established in Brezis [12] and
Salsa [41]. For 1 ≤ p < ∞, the closure of C1

c (Ω) in W 1,p is denoted by W 1,p
0 . Moreover, we

set

H1
0 (Ω) = W 1,2

0 ,

H2 =
{
u ∈ L2(Ω) : Dβu ∈ L2(Ω), for all multi-index β : |β| ≤ 2

}
.

We are particularly interested in the Uniformly Symmetric Elliptic Operator −L defined
below as in [18] and [40]



36 4 Fractional Diffusion Equation and Source Term Identification

Lu(z) =
d∑
i=1

∂

∂zi

(
d∑
j=1

aij(z)
∂

∂zj
u(z)

)
+ c(z)u(z), z ∈ Ω. (4-1)

The coefficients satisfy aij = aji ∈ C1(Ω̄),
∑d

i,j=1 aijζiζj > θ
∑d

i=1 |ζi|2 (θ > 0), c(z) ≤ 0,
c ∈ C(Ω̄). With these conditions −L is a symmetric uniformly elliptic operator defined on
D(−L) = H2(Ω)∩H1

0 (Ω). The eigenfunctions and eigenvalues of −L are denoted by {χn}n∈N
and {λn}n∈N, respectively. As in [40], (−L)γ is defined for γ ∈ R and the space

D ((−L)γ) =

{
ψ ∈ L2(Ω) :

∞∑
n=1

λ2γ
n |(ψ, χn)|2 <∞

}
, (4-2)

where (·, ·) is the inner product in L2(Ω), becomes a Hilbert space with the norm

‖ψ‖D((−L)γ) =

(
∞∑
n=1

λ2γ
n |(ψ, χn)|2

) 1
2

. (4-3)

The eigenvalues and eigenfunctions of operator −L will be used for solving the direct and
inverse problems based on the following set of equations.

Dα
t u(z, t)− (Lu)(z, t) = F (z, t), z ∈ Ω t ∈ (0, T )

u(z, t) = 0, z ∈ ∂Ω t ∈ (0, T )

u(z, 0) = 0, z ∈ Ω̄

 (4-4)

In Sakamoto-Yamamoto [40] the solution for this problem is given by

u(x, t) =
∞∑
n=1

(∫ t

0

〈F (·, τ), χn〉 (t− τ)α−1Eα,α (−λn(t− τ)α) dτ

)
χn(x),

if F ∈ L∞(0, T ;L2(Ω)).

4.2. Space dependent factor of the source term

We are interested in an initial/boundary value problem in which the time derivative is a
Caputo fractional derivative of order α, 0 < α < 1.
In this section we introduce the theoretical setting for an identification problem based on
the following initial/boundary value problem:

Dα
t u(z, t)− (Lu)(z, t) = p(t)f(z), z ∈ Ω t ∈ (0, T )

u(z, t) = 0, z ∈ ∂Ω t ∈ (0, T )

u(z, 0) = 0, z ∈ Ω̄

 (4-5)
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where Ω ⊂ Rd.
The identification problem based on (4-5) is:

p(t) known.
u(z, T ) = q(z), z ∈ Ω̊ known.
a, b, c, d defined on Ω× [0, T ] known.
u(z, 0) = 0, z ∈ Ω known.
u(z, t) = 0, (z, t) ∈ ∂Ω× (0, T ] known.
f(z) z ∈ Ω unknown.
u(z, t), (z, t) ∈ Ω̊× (0, T ) unknown.

Here Ω̊ means the interior of the domain Ω. Since we are dealing with an inverse problem,
some overposed data is mandatory. In our case the overposed data is a future time value of
the concentration u given by u(z, T ) = q(z). However, we do not know q exactly, there is a
noise level ε and a noisy version of q, denoted qε, satisfying ‖q − qε‖∞ < ε.

As in [40] and [28] it is possible to obtain a solution for the direct problem (1-6) in the
following form:

u(z, t) =
∞∑
n=1

fn

∫ t

0

p(τ) (t− τ)α−1Eα,α (−λn (t− τ)α) dτχn(z). (4-6)

where fn = 〈f, χn〉. Hence,

u(z, T ) =
∞∑
n=1

fn

∫ T

0

p(τ) (T − τ)α−1Eα,α (−λn (T − τ)α) dτχn(z), (4-7)

= q(z). (4-8)

Setting

Qn(t) =

∫ t

0

p(τ) (t− τ)α−1Eα,α (−λn (t− τ)α) dτ, (4-9)

with

Eα,α =
∞∑
k=0

zk

Γ(αk + α)
.

Thus,

q(z) =
∞∑
n=1

fnQn(T )χn(z), (4-10)

and its Fourier coefficients are qn = fnQn(T ). We conclude fn =
qn

Qn(T )
.
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4.2.1. Mollified Problem

The ill-posing of the classical diffusion problem (α = 1) is exposed in [24]. Now, if qε is a
noisy version of the exact data q such that ‖qε−q‖ ≤ ε, the convergence of qεn/Qn(T ) cannot
be ensured. We propose a mollified version of the problem as follows

Jδηp(t) known.
Jδηu(z, T ) = Jδηq(z), z ∈ Ω̊ known.
a, b, c, d defined on Ω× [0, T ] known.
Jδηu(z, 0) = 0, z ∈ Ω known.
Jδηu(z, t) = 0, (z, t) ∈ ∂Ω× (0, T ] known.
Jδηf(z) z ∈ Ω unknown.
Jδηu(z, t), (z, t) ∈ Ω̊× (0, T ) unknown.

We can formulate our problem in the framework of optimization. First, we define the operator

(Kf)(z) =
∞∑
n=1

fn

∫ t

0

p(τ) (t− τ)α−1Eα,α (−λn (t− τ)α) dτχn(z), (4-11)

then, our aim is to obtain a function f εδ that minimizes the functional

Hf = ‖Kf − Jδηqε‖2
2, (4-12)

where Jδpqε is the mollification of the noisy data qε.
Since K is a self-adjoint compact operator as is mentioned in [28], there exists a minimum
of H, f εδ , given by

f εδ (z) =
∞∑
n=1

(Jδηq
ε)n

Qn(T )

χn(z), where (Jδηq
ε)n = 〈Jδηqε, χn〉 . (4-13)

Theorem 4.2.1. Suppose p ∈ C[0, T ] satisfies p(t) ≥ p0 > 0, t ∈ [0, T ]. Moreover, suppose
‖qε − q‖∞ < ε and there exist m ∈ R+ and E a constant such that ‖f‖D((−L)

m
2 )
≤ E then

‖f εδ − f‖2 ≤ C1 (δ + ε)m/(m+2) , (4-14)

where C1 depends on α, T, λ1 and the measure of Ω.
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Proof.

‖f εδ‖2

D((−L)
m
2 )

=

∣∣∣∣∣
∞∑
n=1

λmn (f εδ , χn(z))2

∣∣∣∣∣ (4-15)

=

∣∣∣∣∣
∞∑
n=1

λmn (f εδ )
2
n

∣∣∣∣∣ (4-16)

=

∣∣∣∣∣
∞∑
n=1

λmn
(Jδηq

ε)2
n

Q2
n(T )

∣∣∣∣∣ (4-17)

≤

∣∣∣∣∣
∞∑
n=1

λm+2
n

C2p2
0

(Jδηq
ε, χn(z))2

∣∣∣∣∣ (4-18)

=
1

C2p2
0

∣∣∣∣∣
∞∑
n=1

λm+2
n (Jδηq

ε, χn(x, y))2

∣∣∣∣∣ (4-19)

=
1

C2p2
0

‖Jδηqε‖2

D((−L)
m
2 +1)

. (4-20)

But Jδηqε ∈ C∞(Ω), which implies f εδ ∈ D((−L)
m
2 ). TakingM = max{‖Jδηqε‖D((−L)

m
2 +1)

, E},
we obtain

‖Kf εδ − q‖2 ≤ ‖Kf εδ − Jδηqε‖2 + ‖Jδηqε − q‖2 (4-21)

≤ ‖Kf − Jδηqε‖2 + ‖Jδηqε − q‖2 = 2‖Jδηqε − q‖2 (4-22)

≤ C (δ + ε) . (4-23)

‖f εδ − f‖D((−L)m/2) ≤ |f εδ‖D((−L)m/2) + ‖f‖D((−L)m/2) (4-24)

≤ M

(
1 +

1

Cp0

)
. (4-25)

From last two inequalities we conclude that

‖f εδ − f‖2 ≤ (Cp0)−
m
m+2‖Kf εδ − q‖

m/(m+2)
2 ‖f εδ − f‖

2/(m+2)

D((−L)m/2)
(4-26)

≤ (Cp0)−
m
m+2

(
M

(
1 +

1

Cp0

))2/(m+2)

(C (δ + ε))m/(m+2) . (4-27)

This theorem establishes the convergence of the method.

4.2.2. Results

Numerical results for the identification of f(z) in the following time fractional diffusion
problem are shown in this section.

Dα
t u(z, t)− (Lu)(z, t) = p(t)f(z), z ∈ Ω t ∈ (0, T )

u(z, t) = 0, z ∈ ∂Ω t ∈ (0, T )

u(z, 0) = 0, z ∈ Ω̄ t ∈ (0, T )

 (4-28)
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where,

Lu(x, y) =
∂

∂x

(
a11(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
a22(x, y)

∂

∂y
u(x, y)

)
. (4-29)

The equation is discretized by the implicit finite difference scheme which is elaborated in
detail in [32]. The operator L is decomposed by its eigenvectors and eigenvalues and the
Qn’s are approximated by [28]

Qn = − 1

λn

(
Eα,1(−λnτα)p(T − τ)

∣∣∣
τ=T
− p(T − t)

∣∣∣
τ=0
−
∫ T

0

Eα,1(−λnτα)p′(T − τ)dτ

)
.

(4-30)
The integral above is approximated by composite trapezoidal rule.
The errors are measured by the weighted discrete l2 norm given by

‖f − f εδ‖2 =

(
1

NM

N∑
n=1

M∑
m=1

(fnm − (f εδ )nm)2

)1/2

. (4-31)

Where N and M are the grid sizes in the discretization of Ω.
The particular examples considered here are for:

f(x, y) = sin(3πx)sin(3πy) (4-32)

p(t) = 1 + exp(−(t+ α)) (4-33)

For the following examples, we use the same step sizes for x and y, h = 1/32, our final time
is T = 1 and ∆t = 1/10.

Example 4.2.2. Let a11(x, y) = x2 + 1, a22(x, y) = y2 + 1. First of all, we compute with-
out mollification. Table 4-1 indicates the ill-posedness of the problem and the need of a
regularization method.

Table 4-1.: Error norms without mollification, α = 0.7.
ε error

0,005 0,100268
0,01 0,192743
0,025 0,496786
0,05 0,496786

The error norm 4-31 of some identification experiments are shown in Tables 4-2 and 4-3
and in figure 4-1
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Figure 4-1.: Comparison between the approximation and the exact solution for h = 1/32,
η = 3

Table 4-2.: Error norms, ε = 0.025 and different values of η and α.
α\η 1 2 3 4
0,1 0,296105 0,114359 0,073857 0,096831
0,5 0,292845 0,119839 0,078034 0,096871
0,7 0,289358 0,116701 0,075705 0,097454
0,9 0,289503 0,118838 0,079958 0,101561

Table 4-3.: Error norms, α = 0.7 and different values of η and ε.
ε\η 1 2 3 4

0,005 0,068577 0,045929 0,057815 0,094482
0,01 0,12205 0,060636 0,061464 0,095757
0,025 0,289539 0,12113 0,078236 0,097298
0,05 0,289539 0,12113 0,078236 0,097298

Example 4.2.3. Let a11(x, y) ≡ 1 and a22(x, y) ≡ 1. Relative l2 errors for the identification
of the source term are shown in Tables 4-4 and 4-5.
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Table 4-4.: Error norms, ε = 0.025 and different values of η and α.
α\η 1 2 3 4
0,1 0,215196 0,085461 0,060851 0,091498
0,5 0,222888 0,088172 0,061884 0,092143
0,7 0,230786 0,089855 0,061206 0,091458
0,9 0,223325 0,088232 0,061837 0,092622

Table 4-5.: Error norms, α = 0.7 and different values of η and ε.
ε\η 1 2 3 4

0,005 0,045382 0,026522 0,046967 0,089274
0,01 0,090063 0,039821 0,048425 0,089084
0,025 0,219032 0,088232 0,064776 0,095143
0,05 0,43733 0,172126 0,09563 0,104285

As conclusions of our work in this section, we mention the following:

1. The proposed method can approximate the exact solution of this challenging inverse
problem.

2. The two dimensional discrete mollification, under an appropriate choosing of η, oper-
ator is effective as a regularization method.

Next section deals with a close inverse problem: Identification of the forcing term factor p(t)
known as attenuation coefficient.

4.3. Time dependent factor of the source term

In this section we profit from the theoretical developments of last section to solve other
challenging inverse problem: The identification of the time dependent factor p(t) of the
forcing term in the initial/boundary value problem:

Dα
t u(z, t)− (Lu)(z, t) = p(t)f(z), z ∈ Ω, t ∈ (0, T )

u(z, t) = 0, z ∈ ∂Ω, t ∈ (0, T )

u(z, 0) = 0, z ∈ Ω̄

 (4-34)

where Ω ⊂ R2. The discharge magnitude f(z) is known and so is an overposed data consisting
on a complete concentration history at an interior point z0 ∈ Ω for any time t ∈ [0, T ].
The solution for the direct problem ([40]) is given by

u(z, t) =
∞∑
n=1

fn

∫ t

0

p(τ) (t− τ)α−1Eα,α (−λn (t− τ)α) dτχn(z), (4-35)
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where
fn = 〈f, χn〉, n ∈ N, (4-36)

and {(λn, χn) : n = 1, 2, . . .} are the eigenvalues and eigenfunctions for the Sturm-Liouville
two point boundary problem:

Lχn := − ∂2

∂z2
= λnχn, on (0, 1), χn(0) = χ(1) = 0, (4-37)

as is addressed in [44].

4.3.1. Proposed Approximation

In [49] is solved a similar problem with a midpoint quadrature, we will develop a method
based on a rectangular quadrature with an exact calculation of the integration of the kernel
of this integral equation. First, we make a discretization in the interval [0, T ] with grid size
∆t = T/M and ti = i∆t. Naming

hi = u(z0, ti), i = 1 : M, (4-38)

we get

h1 =
∞∑
n=1

fn

∫ t1

0

p(τ) (t1 − τ)α−1Eα,α (−λn (t1 − τ)α) dτχn(z0). (4-39)

The numerical method will approximate the integral following the ideas bellow. If p(t1) is
estimated with P1, from the equation above the

h1 =
∞∑
n=1

fn

∫ t1

0

P1 (t1 − τ)α−1Eα,α (−λn (t1 − τ)α) dτχn(z0) (4-40)

=
∞∑
n=1

fnP1

∫ t1

0

(t1 − τ)α−1Eα,α (−λn (t1 − τ)α) dτχn(z0). (4-41)

We concentrate on the integral, namely∫ t1

0

(t1 − τ)α−1Eα,α (−λn (t1 − τ)α) dτ

=

∫ t1

0

(t1 − τ)α−1
∞∑
k=0

(−λn)k (t1 − τ)αk

Γ(αk + α)
dτ

=

∫ t1

0

∞∑
k=0

(−λn)k (t1 − τ)αk+α−1

Γ(αk + α)
dτ
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=
∞∑
k=0

∫ t1

0

(−λn)k (t1 − τ)αk+α−1

Γ(αk + α)
dτ

=
∞∑
k=0

(
−(−λn)k (t1 − τ)αk+α

Γ(αk + α)(αk + α)

∣∣∣∣∣
τ=t1

τ=0

=
∞∑
k=0

(−λn)k (t1)αk+α

Γ(αk + (α + 1))

= (t1)α
∞∑
k=0

(−λn)k (t1)αk

Γ(αk + (α + 1))

= (t1)αEα,α+1 (−λn (t1)α) .

The integral and the summation can be exchanged because the Mittag-Leffler function is
analytic. From above, we get

h1 = P1

∞∑
n=1

fn(t1)αEα,α+1 (−λn (t1)α)χn(z0) (4-42)

= P1

∞∑
n=1

fn(∆t)αEα,α+1 (−λn (∆t)α)χn(z0).

In a similar way, P2 is defined:

h2 = P2

∞∑
n=1

fn(t1)αEα,α+1 (−λn (t1)α)χn(z0) +

P1

∞∑
n=1

fn
(
(t2)αEα,α+1 (−λn (t2)α)− (t1)αEα,α+1 (−λn (t1)α)

)
χn(z0)

= P2

∞∑
n=1

fn(∆t)αEα,α+1 (−λn (∆t)α)χn(z0) +

P1

∞∑
n=1

fn
(
(2∆t)αEα,α+1 (−λn (2∆t)α)− (∆t)αEα,α+1 (−λn (∆t)α)

)
χn(z0).

In general,

hm = Pm

∞∑
n=1

fn(∆t)αEα,α+1 (−λn (∆t)α)χn(z0) + . . .

Pm−1

∞∑
n=1

fn
(
(2∆t)αEα,α+1 (−λn (2∆t)α)− (∆t)αEα,α+1 (−λn (∆t)α)

)
χn(z0) + . . .

P1

∞∑
n=1

fn
(
(m∆t)αEα,α+1 (−λn (m∆t)α)− ((m− 1)∆t)αEα,α+1 (−λn ((m− 1)∆t)α)

)
χn(z0).
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Calling

ai =
∞∑
n=1

fn ((i∆t)αEα,α+1 (−λn (i∆t)α)− ((i− 1)∆t)αEα,α+1 (−λn ((i− 1)∆t)α))χn(z0),

we can write the problem in matrix form as follows

b = AP (4-43)

with

b =


h1

h2

...
hM

 , A =


a1

a2 a1

...
... . . .

aM aM−1 · · · a1

 , P =


P1

P2

...
PM

 . (4-44)

The term Eα,α+1(0) 6= 0, then the matrix does not get singular when ∆t→ 0.

4.3.2. Theoretical Approach

If K(s, z) :=
∞∑
n=1

fn(s)α−1Eα,α (−λn (s)α)χn(z), then

u(z, t) =

∫ t

0

p(τ)K(t− τ, z)dτ, (4-45)

which we can write as follow

Kp(t) :=

∫ t

0

p(τ)K(t− τ, z)dτ. (4-46)

The P sequence defined above becomes

P1 =
h(t1)

a1

(4-47)

P2 =
h(t2)

a1

− a2P1

a1

(4-48)

. . . (4-49)

Pm =
h(tm)

a1

−
m−1∑
i=1

am−i+1Pi
a1

(4-50)

The goal is to have convergence of the P sequence to the function p. In the presence of noise,
regularization is mandatory. Our selected method is discrete mollification with regularization
parameter either δ or η. The maximum level of noise in the data is ε.
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Jδηp(t) unknown.
Jδηu(z0, t) = h(t), z0 ∈ Ω known.
aij, c, defined on Ω× [0, T ] known.
Jδηu(z, 0) = 0, z ∈ Ω known.
Jδηu(z, t) = 0, (z, t) ∈ ∂Ω× (0, T ] known.
Jδηf(z) z ∈ Ω known.
Jδηu(z, t), (z, t) ∈ Ω× (0, T ) unknown.

Then, the numerical method will find an approximation JδP ε which is expected to converge
to p as ε, δ and the step size tend to zero. That is what it is shown in the results bellow.
The general estimate is

‖p− JδP ε‖2 ≤ ‖p− Jδp‖2 + ‖Jδp− JδP ε‖2 (4-51)

≤ C1∆t+ ‖Jδp− JδP ε‖2. (4-52)

The proof goes as follows: We define ω as follow
m∑
i=1

am−i+1p(ti) = h(tm)− ω(∆t, tm), (4-53)

where

ω(∆t, tm) =

∫ tm

0

K(tm − s)p(s)ds−
m∑
i=1

am−i+1p(ti), (4-54)

and

h(tm) =
m∑
i=1

am−i+1Pi. (4-55)

Then

ω(∆t, tm) =
m∑
i=1

am−i+1 [Pi − p(ti)] =
m∑
i=1

am−i+1εi, (4-56)

with

εi = [Pi − p(ti)] (4-57)

Now

ω(∆t, tm)− ω(∆t, tm−1) =
m∑
i=1

am−i+1εi −
m−1∑
i=1

am−iεi (4-58)

= a1εm +
m−1∑
i=1

[am−i+1 − am−i] εi. (4-59)
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From that we got

a1εm = [ω(∆t, tm)− ω(∆t, tm−1)]−
m−1∑
i=1

[am−i+1 − am−i] εi. (4-60)

Our task will be to bound the quantities in the right hand side, in order to apply Theorem
7.1 of [26].

Theorem 4.3.1. Let the sequence ζ0, ζ1, . . . satisfy

|ζn| ≤ A
n−1∑
i=0

|ζi|+Bn, n = r, r + 1, . . . (4-61)

where

A > 0, |Bn| ≤ B,
r−1∑
i=0

|ζi| ≤ η. (4-62)

Then

|ζn| ≤ (1 + A)n−r(B + Aη), η = r, r + 1, . . . . (4-63)

It is necessary to find bounds for the terms:

max1≤m≤M |am+1 − am| , (4-64)

max1≤m≤M |ω(∆t, tm)− ω(∆t, tm−1)| (4-65)

and for the initial errors
r−1∑
i=0

|Pi − p(ti)|.

Taking the first expression if m 6= 1

|am+1 − am| =

∣∣∣∣∫ t1

0

K(tm+1 − τ)dτ −
∫ t1

0

K(tm − τ))dτ

∣∣∣∣
≤

∫ t1

0

|K(tm+1 − τ)−K(tm − τ))| dτ

≤ C1∆t

∫ t1

0

dτ = C1(∆t)2.
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If m = 1

|a2 − a1| =

∣∣∣∣∫ t1

0

K(t2 − τ)dτ −
∫ t1

0

K(t1 − τ))dτ

∣∣∣∣
≤

∣∣∣∣∫ t1

0

K(t2 − τ)dτ

∣∣∣∣+

∣∣∣∣∫ t1

0

K(t1 − τ))dτ

∣∣∣∣
=

∫ t1

0

K(t1 − τ)dτ +

∫ t2

t1

K(t2 − υ))dυ

=

∫ t2

0

K(t1 − τ)dτ

=
∞∑
n=1

fn(2∆t)αEα,α+1 (−λn (2∆t)α) .

Since that we get that

max
1≤m≤M

|am+1 − am| =
∞∑
n=1

fn(2∆t)αEα,α+1 (−λn (2∆t)α)χn(z0) = (2∆t)αC1.

Then, following the notation of the theorem above

0 <

(2∆t)α
∞∑
n=1

fnEα,α+1 (−λn (2∆t)α)χn(z0)

(∆t)α
∞∑
n=1

fnEα,α+1 (−λn (∆t)α)χn(z0)

≤ 2αC1 = A.

The second expression gives:

|ω(∆t, tm)− ω(∆t, tm−1)| =

∣∣∣∣∣
∫ tm

0

K(tm − s)p(s)ds−
m∑
i=1

am−i+1p(ti)

−
∫ tm−1

0

K(tm−1 − s)p(s)ds+
m−1∑
i=1

am−ip(ti)

∣∣∣∣∣
=

∣∣∣∣∣
∫ tm

0

K(tm − s)p(s)ds−
m∑
i=1

∫ ti

ti−1

K(tm − s)dsp(ti)

−
∫ tm−1

0

K(tm−1 − s)p(s)ds+
m−1∑
i=1

∫ ti

ti−1

K(tm−1 − s)dsp(ti)

∣∣∣∣∣
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=

∣∣∣∣∣
m∑
i=1

∫ ti

ti−1

K(tm − s) [p(s)− p(ti)] ds

−
m−1∑
i=1

∫ ti

ti−1

K(tm−1 − s) [p(s)− p(ti)] ds

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

∫ ti

ti−1

K(tm − s) [p(s)− p(ti)] ds

−
m−1∑
i=1

∫ ti+1

ti

K(tm−1 − (r −∆t)) [p(r −∆t)− p(ti)] dr

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

∫ ti

ti−1

K(tm − s) [p(s)− p(ti)] ds

−
m−1∑
i=1

∫ ti+1

ti

K(tm − r) [p(r −∆t)− p(ti)] dr

∣∣∣∣∣
=

∣∣∣∣∫ t1

0

K(tm − s) [p(s)− p(t1)] ds

+
m∑
i=2

∫ ti

ti−1

K(tm − r) [p(r)− p(ti)− p(r −∆t) + p(ti−1)] dr

∣∣∣∣∣
≤

∫ t1

0

K(tm − s) |p(s)− p(t1)| ds

+
m∑
i=2

∫ ti

ti−1

K(tm − r) |p(s)− p(ti)− p(r −∆t) + p(ti−1)| dr

≤ L∆t

∫ t1

0

K(tm − s)ds+ 2L∆t
m∑
i=2

∫ ti

ti−1

K(tm − r)dr

≤ 2L∆t

∫ t1

0

K(tm − s)ds+ 2L∆t
m∑
i=2

∫ ti

ti−1

K(tm − r)dr.

Since that, then

1

a1

|ω(∆t, tm)− ω(∆t, tm−1)| ≤ 2L∆t
1

a1

(∫ tm

0

K(tm − s)ds
)

= 2L∆t
1

a1

(
∞∑
n=1

fn
(
(m∆t)αEα,α+1 (−λn (m∆t)α)

)
χn(z0)

)

≤ 2L∆t
1

a1

(
∞∑
n=1

fn
(
(T )αEα,α+1 (−λn (T )α)

)
χn(z0)

)
= 2LC2(∆t)1−α.



50 4 Fractional Diffusion Equation and Source Term Identification

Theorem 4.3.2. Let p a Lipschitz continuous function in the interval [0, T ] and P obtained
form the numerical method described above, then for r fixed

|Pr − p(tr)| ≤ LCr∆t, (4-66)

with L being the Lipschitz constant of p and Cr a constant depending only on r.

Proof. We start with the case r = 1:

|P1 − p(t1)| =

∣∣∣∣h(t1)

a1

− p(t1)

∣∣∣∣
≤ 1

a1

∣∣∣∣∫ t1

0

p(τ)K(t1 − τ, z)dτ − p(t1)

∣∣∣∣
≤ 1

a1

∫ t1

0

|p(τ)− p(t1)|K(t1 − τ, z)dτ

≤ 1

a1

∫ t1

0

K(t1 − τ, z)dτ∆t

= L∆t

and, if m = 2

|P2 − p(t2)| =
1

a1

|h(t2)− a2P1 − a1p(t2)|

=
1

a1

∣∣∣∣∫ t2

0

p(τ)K(t2 − τ)dτ − a2P1 − a1p(t2)

∣∣∣∣
=

1

a1

∣∣∣∣∫ t1

0

[p(τ)− P1]K(t2 − τ)dτ +

∫ t1

0

[p(τ)− p(t2)]K(t2 − τ)dτ

∣∣∣∣
≤ 1

a1

C∆t

∣∣∣∣∫ t1

0

K(t2 − τ)dτ

∣∣∣∣+
1

a1

C∆t

∣∣∣∣∫ t2

t1

K(t2 − τ)dτ

∣∣∣∣
=

1

a1

L∆ta1 +
1

a1

L∆ta2

= L∆t
(2∆t)α

a1

∞∑
n=1

fn (Eα,α+1 (−λn (2∆t)α))χn(z0)

≤ LCr∆t
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Supposing the affirmation is true for r − 1, then

|Pr − p(tr)| =

∣∣∣∣∣h(tr)

a1

−
r−1∑
i=1

ar−i+1Pi
a1

− p(tr)

∣∣∣∣∣
=

∣∣∣∣∣
∫ tr

0

p(τ)K(tr − τ)dτ

a1

−
r−1∑
i=1

ar−i+1Pi
a1

− p(tr)

∣∣∣∣∣
=

∣∣∣∣∣
r−1∑
i=1

∫ tr

0

p(τ)K(tr − τ)dτ

a1

−
r−1∑
i=1

ar−i+1Pi
a1

− p(tr)

∣∣∣∣∣
=

1

a1

∣∣∣∣∣
r∑
i=1

∫ ti

ti−1

p(τ)K(tr − τ)dτ −
r−1∑
i=1

ar−i+1Pi − a1p(tr)

∣∣∣∣∣
=

1

a1

∣∣∣∣∣
r∑
i=1

∫ ti

ti−1

p(τ)K(tr − τ)dτ

−
r−1∑
i=1

∫ ti

ti−1

K(tr − τ, z)dτPi −
∫ tr

tr−1

K(tr − τ, z)dτp(tm)

∣∣∣∣∣
=

1

a1

∣∣∣∣∣
r−1∑
i=1

∫ ti

ti−1

[p(τ)− Pi]K(tr − τ)dτ

+

∫ tr

tr−1

[p(τ)− p(tr)]K(tr − τ)dτ

∣∣∣∣
≤ 1

a1

∣∣∣∣∣
r−1∑
i=1

∫ ti

ti−1

[p(τ)− Pi]K(tr − τ)dτ

∣∣∣∣∣
+

1

a1

∣∣∣∣∫ tr

tr−1

[p(τ)− p(tr)]K(tr − τ)dτ

∣∣∣∣
≤ L∆t

a1

r−1∑
i=1

∫ ti

ti−1

K(tr − τ)dτ +
L∆t

a1

∫ tr

tr−1

K(tr − τ, z)dτ

=
L∆t

a1

r∑
i=2

ai +
L∆t

a1

a1

=
L∆t

a1

∞∑
n=1

fn(r∆t)αEα,α+1 (−λn (r∆t)α)χ(z0)

≤ LCr∆t
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Returning to 4-60, and applying the result we just get, we obtain

|εm| =
1

|a1|

∣∣∣∣∣[ω(∆t, tm)− ω(∆t, tm−1)]−
m−1∑
i=1

[am−i+1 − am−i] εi

∣∣∣∣∣
≤ 1

|a1|
|ω(∆t, tm)− ω(∆t, tm−1)|+ 1

|a1|

m−1∑
i=1

|am−i+1 − am−i| |εi|

≤ 2LC2(∆t)1−α + A
m−1∑
i=1

|εi|.

Calling B = LC2(∆t)1−α and η = LCm∆t, that let us conclude from theorem (4.3.1)

|εm| ≤ (1 + A)n−r(LC2(∆t)1−α + ALCr∆t)
∆t−→0−−−−→ 0

4.3.3. Results

Our strategy is to implement the finite difference method of [32] and the estimation of p(t) by
the method explained above. Numerical results are shown for the following time-fractional
diffusion problem:

Dα
t u(z, t)− (Lu)(z, t) = p(t)f(z), z ∈ Ω t ∈ (0, T )

u(z, t) = 0, z ∈ ∂Ω t ∈ (0, T )

u(z, 0) = 0, z ∈ Ω̄ t ∈ (0, T )

 (4-67)

where,

Lu(x, y) =
∂

∂x

(
a11(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
a22(x, y)

∂

∂y
u(x, y)

)
. (4-68)

Example 1

For the diffusion operator, let a11(x, y) = 1 and a22(x, y) = 1. Moreover, let f = 100sin(πx)sin(πy)

and p = sin(5πt). Table 4-6 shows results for noisy data without mollification (η = 0) and
results with mollification with many η values, both with grid size in space h = 1/32 and in
time k = 1/64.
Figure 4-2 illustrates the difference in the identification.

Example 2

Let a11(x, y) = 1, a22(x, y) = 1, f = 100sin(πx)sin(πy) and p(t) = t2. Again, we compare
results with and without mollification.
Figure 4-3 illustrates the results for this example.
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Table 4-6.: Error norms with mollification, ε = 0.1 and different values of η and α.
α\η 0 1 2 3 4
0,1 0,01545 0,013749 0,011137 0,011152 0,011152
0,5 0,072285 0,063794 0,064744 0,064723 0,064723
0,7 0,09096 0,082511 0,083209 0,083188 0,083188
0,9 0,073896 0,068144 0,06647 0,066468 0,066468
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Figure 4-2.: Comparison between the approximation with and without mollification and
the exact solution for h = 1/16, k = 1/128 and α = 0.9

Table 4-7.: Error norms without mollification ε = 0.1 and different values of α.
α\η 0 1 2 3 4
0,1 0,01218 0,0079 0,00657 0,00615 0,00598
0,5 0,01603 0,01043 0,00942 0,00908 0,00914
0,7 0,01973 0,01174 0,01034 0,00943 0,00923
0,9 0,03686 0,01219 0,01366 0,01041 0,00921
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Figure 4-3.: Comparison between the approximation with and without mollification and
the exact solution for h = 1/16, k = 1/64 and α = 0.9

Example 3

Let a11(x, y) = 1, a22(x, y) = 1, f = 100sin(πx)sin(πy) and

p(t) =


t− 0.2, t ∈ [0.2, 0.5]

0.8− t, t ∈ [0.5, 0.8]

0 otherwise.

Again, we compare results with and without mollification in the table 4-8.

Table 4-8.: Error norms with mollification, ε = 0.1 and different values of η and α.
α\η 0 1 2 3 4
0,1 0,013321 0,009897 0,009312 0,009185 0,009206
0,5 0,029103 0,025445 0,024606 0,02444 0,0244
0,7 0,037986 0,031672 0,030359 0,029933 0,029842
0,9 0,062472 0,027119 0,021259 0,018064 0,017686

Figure 4-4 illustrates the results for this example.

As conclusions of our work in this chapter an in particular in this section, we mention the
following:
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Figure 4-4.: Left: Identification without mollification. Right: Identification with mollifica-
tion, h = 1/16, k = 1/128 and α = 0.9

1. The combination of finite difference methods and discrete mollification is a success-
ful procedure for the identification of forcing term factors in time fractional diffusion
equations.

2. If the factor is the space dependent factor, that is, the discharge intensity, the overposed
data is a complete distribution of the concentration at the final time.

3. If the factor is the time dependent factor, that is, the attenuation coefficient, the
overposed data is a complete history at an interior point.

4. We are confident that other forcing term identification problems are solvable by the
same strategy of finite difference and mollification. Actually we expect to work in other
problems of this kind in the near future.



5. Efficient parameter estimation in a
solute transport model

Our goal is the numerical identification of solute transport parameters in a one dimensional
space fractional advection dispersion equation for the concentration of the solute. The
unknown parameters are the fractional derivative order, the dispersion coefficient and the
average velocity. The direct problem is solved by a backward Euler method in which the
dispersion term consisting on a Caputo fractional derivative, is discretized by the classical
L2 finite difference method. The parameter estimation is implemented through a history
matching procedure enhanced by discrete mollification. We consider two different inverse
problems, characterized by two types of overposed data: The complete time distribution
of the concentration at a fixed interior location and the complete space distribution of the
concentration at the final time of the experiment. The ability of the proposed parameter
estimation procedure is verified by illustrative numerical examples.

5.1. Introduction

Contaminant transport in porous media and in rivers is one of the main topics of study in
hydrodynamic dispersion theory ([11, 48, 8]). The dispersion is of two types: Fickian, i.e.,
based on Fick’s law and non-Fickian or anomalous. The Fickian dispersion is associated
with advection dispersion equations (ADE) which include classical derivatives only and the
anomalous dispersion is modeled by fractional advection dispersion equations (FADE) which
include fractional derivatives and may include classical derivatives as well.
The time fractional differential operators are operators with memory and the space fractional
differential operators are nonlocal operators. Many models of science and engineering require
the combination of time and space fractional differential operators. A recent survey of real
world applications of fractional calculus is [45].
Many interesting and challenging inverse problems consist on estimating unknown parame-
ters in differential equations and there are different ways to solve them, many of which are
iterative in nature and require the solution of the associated direct problem in each iteration.
Some of these problems arise in the study of solute transport in soils or aquifers whose regime
is quite frequently of anomalous diffusion and the equations are space fractional dispersion
equations (sFADE).
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Based on time fractional differential equations (tFADE), there are ill-posed problems, namely,
the problems investigated in [31, 50] and there are well-posed problems, for instance [13].
Based on sFADE’s there are parameter estimation problems that are well-posed, namely
[7, 23] and there are other estimation problems that are numerically solved by a history
matching method combined with Tikhonov regularization. Among them, we mention [48]
and [52].
In [48] the authors consider a parameter estimation problem based on a one dimensional
sFADE defined on the interval [0, L]. The necessary overposed data is an interior point
concentration measurements for all time. They consider a Riemann-Liouville fractional
derivative, a history matching process based on a gradient iterative method of minimiza-
tion combined with Tikhonov regularization and boundary condition of Dirichlet type at
x = 0 and Neumann homogeneous at x = L. In [52] the authors solve a similar problem
by a history matching algorithm combined with Tikhonov regularization. The differences
are: The overposed data is a final concentration known for all x ∈ [0, L] and the boundary
conditions are Dirichlet homogeneous at both endpoints. Both papers implement Tikhonov
regularization without any proof of ill-conditioning.
Both authors include regularization without any proof of ill-posedness. Given an anomalous
transport equation consisting on a one dimensional space fractional advection dispersion
equation (sFADE), our goal is to solve several parameter identification problems by a history
matching procedure. The main features of our work are:

1. The fractional derivatives are Caputo fractional derivatives of order α ∈ (1, 2).

2. Our equations admit different types of initial and boundary conditions.

3. We have no proof of ill-posedness and suspect that, if it is ill-posed, it is only mildly
ill-posed.

4. Our method allows for the optional implementation of discrete mollification as in [2, 3].
The effect of this addition is stabilization and/or acceleration of computations.

5. Our history matching approaches are based on the Nelder Mead Simplex Method and,
unlike [48] and [52], the numerical method of solution of the direct problem is an
implicit backward Euler method together with the known L2 finite difference formula
for the Caputo fractional derivative ([30, 37, 43]).

On the one dimensional approach, common to the three works, it is appropriate to cite
[11]: A typical question that a contaminant hydrogeologist wishes to answer is: How far and
how fast will a tracer move? As a first approximation, this reduces most problems to one
spatial dimension. Moreover, in [8] one dimensional FADE show very well performance in
comparison with more complex methods for particle transport in rivers.
The rest of the chapter is organized as follows: The next section introduces the direct problem
and section 3 deals with the numerical solution of the direct problem and both parameter
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estimation problems based on history matching procedures. The numerical experiments
appear in section 4 and the section ends with some final remarks and conclusions.

5.2. Direct problem

We are interested in the following one dimensional FADE for the tracing of a non reactive
contaminant:

∂C

∂t
= −v∂C

∂x
+D

∂αC

∂xα
+ f(x, t) (5-1)

where C is the solute concentration, v is the pore-water velocity, D is the dispersion coef-
ficient, 0 < t, x ∈ [0, L], ∂αC

∂xα
is the Caputo fractional derivative of the concentration C of

order α with 1 < α ≤ 2 and f(x, t) is a forcing term.
Together with equation (5-1) there are an initial condition and a set of boundary conditions.
Examples of them are (see [48]):

C(x, 0) = 0 initial condition (5-2)

C(0, t) = C0 left boundary condition, Dirichlet type (5-3)
∂C

∂x
|x=L = 0 right boundary condition, Neumann type (5-4)

The direct problem consists on finding C that satisfies (5-1)-(5-4) assuming all parameters
are known. Our method of solution for all direct problems based on equation (5-1) is the L2
method. Other initial and boundary conditions will be consider in the numerical experiments.

5.3. The inverse problems

If any of the parameters present in equations (5-1)-(5-4) is unknown, an additional set of
measurements is required in order to identify the missing parameters. In this chapter we
consider two types of overposed data:

1. Measurements of concentration at a fixed interior location for all time. That is, we
assume an a priori knowledge of the concentration C at a particular observation point
x∗, that we denote Cobs(t) for all t ≥ 0.

2. Measurements of concentration at the final time for all space locations. At the final
time T the concentration Cobs(x) is known for all x ∈ [0, L].

Parameter estimation problems belong to the category of inverse problems. A given di-
rect problem may be associated to several inverse problems, depending on the part of data
information that is missing.
In order to solve our parameter identification problem we prepare the following setting:
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1. A vector P consisting on the unknown parameters to be approximated, for instance, if
v and α are the sought parameters, P = [v, α].

2. A finite difference method of solution of the direct problem (5-1)-(5-4).

3. An optional acceleration method, which in our case is the discrete mollification method.

4. A history matching procedure.

We show details for the first type of overposed data. The second case is similar.

5.3.1. Numerical solution of the direct problem

The selected method is a backward Euler finite difference method. Let {0 = x0, x1, x2, . . . , xM =

L} be a space grid with uniform discretization parameter h = L/M and k a time discretiza-
tion parameter so that the time grid is tn = nk, n = 0, 1, . . . Moreover, let T = Nk be the
last time of the experiment, that is, n = 0, 1, . . . , N.

By Cn
j we denote the aproximation of C(xj, tn) and, without loss of generality, we suppose

the observation point x∗ is xJ for some J ∈ {1, 2, . . . ,M − 1}.
Finally, we denote fni = f(xi, tn). Furthermore, for space dependent velocity v and dispersion
coefficient D we denote vj = v(xj) and Dj = D(xj), j = 0, 1, . . . ,M.

The discretized version of equation (5-1) consists on a combination of the backward Euler
method and the L2 finite difference formula for the fractional derivative ([30, 37, 43]). It is

Cn+1
i − Cn

i

k
= −vi

Cn+1
i − Cn+1

i−1

h
+DiI + fn+1

i (5-5)

where I is the approximation of the evaluation at grid points of the Caputo fractional
derivative ∂αC

∂xα
(xj+1, tn+1), which is given by

1

hαΓ(3− α)

i−1∑
j=0

bj
[
Cn+1
j − 2Cn+1

j+1 + Cn+1
j+2

]
(5-6)

where bj = (i− j)2−α − (i− j − 1)2−α.

5.3.2. History matching

We consider the case in which the overposed data is given by a time distribution of concen-
tration at a fixed interior location. Let P = [v, α] be the vector of unknown parameters.
This is an example, all other combinations of parameters are possible. Thus, in (5-1)-(5-4)
the parameters v and α are unknown. The inverse problem consists on identifying P based
on the set of equations (5-1)-(5-4) and the additional measurements of the concentration at
the observation point xJ , i.e. Cobs(tn) for n = 1, 2, . . .
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The history matching is based on the minimization of a cost functional. In our case it is

J(P ) =

(
1

N

N∑
n=1

[
Cn
J − Cobs(tn)

]2)1/2

where each numerical solution Cn
J is obtained from the sFADE with parameters taken from

the parameter vector P .
The subtle point is the introduction of the discrete mollification operator. For that matter we
follow [1] and apply mollification in the dispersion term, which in our case, is the fractional
derivative term. Estimate (2-21) of the previous theorem is crucial here.
For the case of overposed data given by a concentration for all locations at the final time,
the algorithm is analogous. In this case the additional measurements of the concentration
at the final time T are Cobs(x) for x ∈ [0, L]. In this case the cost functional is

J(P ) =

(
1

M

M∑
j=1

[
CN
j − Cobs(xj)

]2)1/2

where each numerical solution Cn
J is obtained from the sFADE with parameters taken from

the parameter vector P .
In the first case, the history matching algorithm with mollification is:

Algorithm: History Matching with mollification
Overposed data is given by a time distribution of concentration at a fixed interior location

1. Choose initial P , a maximum number of iterations maxiter and a tolerance ε.

2. Set iter = 0

3. While iter < maxiter

a) Choose a positive integer η as support parameter of mollification and prepare the
mollified direct problem corresponding to (5-5)-(5-6) given by

Cn+1
i − Cn

i

k
= −vi

Cn+1
i − Cn+1

i−1

h
+DiIη + fn+1

i (5-7)

where Iη is the mollified approximation of the evaluation at grid points of the
Caputo fractional derivative, that is, ∂αC

∂xα
(xj+1, tn+1), which is given by

1

hαΓ(3− α)

i−1∑
j=0

2Cηbj
[
[JηC

n+1]j+1 − Cn+1
j+1

]
(5-8)

where bj = (i− j)2−α − (i− j − 1)2−α.

b) Solve the mollified direct problem corresponding to parameter vector P
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c) Find Pm = arg min
P

J(P )

d) Set P = Pm

e) If J(P ) < ε

Print P, iter, Cn
J

Stop

f) Set iter = iter + 1

end While

4. Print P, iter, Cn
J and a failure message since a normal exit was not achieved.

The numerical implementation of the optimization procedure of step 3. (c) is based on a
restarted version of the Nelder-Mead Simplex Method (MATLAB fminsearch function.) See
[25] for details on the method. The history matching algorithm without mollification

is the same, except that steps 3. (a) and (b) are the following:

• 3 (a) State the numerical method for the direct problem given by equations (5-5)-(5-6).

• 3 (b) Solve the direct problem corresponding to parameter vector P .

The history matching algorithm in the case of overposed data given by a final concentration
at all locations, is analogous and we omit the details.

5.4. Numerical experiments

Example 5.4.1. This example is took from [39]. It confirms the validity of the schemes solving
the direct problem:

ut(x, t) = c(x)uαx(x, t) + q(x, t), x ∈ (0, 1), t > 0;

u(x, 0) = x2 − x3, x ∈ [0, 1];

u(0, t) = u(1, t) = 0, t > 0;

c(x) = Γ(1.2)x1.8, x ∈ [0, 1];

q(x, t) = (6x3 − 3x2)e−t, x ∈ [0, 1], t > 0.

The solution of this initial-boundary problem is u(x, t) = (x2 − x3)e−t. With both schemes
the solution is approximated satisfactorily. The errors corresponding to the mollified scheme
with η = 2 and the L2 scheme are shown in Table 5-1.

Example 5.4.2. Now we have homogeneous Dirichlet boundary conditions, initial data given
by u(x, 0) = x2 − x3 and source term q(x, t) = (6x3 − 3x2)e−t. Tables 5-2 and 5-3 show
results of the identification based on overposed data given by a complete history at the
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Table 5-1.: Solution of direct problem by Mollified scheme and scheme L2
h=k Mollified L2

1/8 0.00671 0.00564
1/16 0.00498 0.0035
1/32 0.00314 0.00204
1/64 0.0018 0.00114
1/128 0.00098 0.00062

Table 5-2.: Error for different values of η, α = 1.7 and h = k = 1/100.
η v D fval iter
0 0,500012535 1,500000987 3,77007E-08 74
2 0,499989387 1,500001585 2,7726E-08 73
5 0,499978474 1,500000692 1,91952E-08 72
8 0,499963412 1,500001648 3,54588E-08 67

Table 5-3.: Error for different values of α, η = 2 and h = k = 1/100.
α v D fval iter
1,1 0,499917954 1,499947596 1,24976E-06 60
1,5 0,499977265 1,499996713 5,32297E-08 75
1,7 0,499989387 1,500001585 2,7726E-08 73
1,9 0,500008618 1,500001769 4,56247E-08 62

interior point x = 0.5.
Here we show the error of the approximation using different values of α, taking η = 2 and
(v0, D0) = (0, 1) as the initial estimate.

Example 5.4.3. This example deals with overposed data given by a complete distribution at
the final time. Boundary conditions are a combination Dirichlet-Neumann given by

u(0, t) = exp(−t), ∂u

∂x
|x=1 = 0,

initial condition is u(x, 0) = (x− 1)2 and the source term is

q(x, t) = − e−t

Γ(3− α)

[
(x− 1)2 − 2v(x− 1) + 2D(x2−α)

]
Table 5-4 shows results for the simultaneous identification of v = 1, D = 0.5 and several
values of the order of differentiation α. No mollification is implemented and this is one of the
reasons we believe that if the problem is ill-posed, it is not very ill-posed. This is a subject
of further work.
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Table 5-4.: Error for different values of α and h = k = 1/100.
α αapprox v D fval iter
1,1 1,099981081 1,00004874 0,50004461 1,7816E-08 154
1,5 1,499944085 1,0000253 0,50002746 3,0331E-09 126
1,7 1,699955028 1,00002411 0,50002512 8,0513E-10 230
1,9 1,883730123 1,01416191 0,51159031 1,4001E-07 351

Final remarks and conclusions

1. Anomalous dispersion of solutes in soil is the subject of current research in several
fields, including numerical analysis.

2. It is possible to estimate parameters for one dimensional solute transport models based
on space fractional advection dispersion equations.

3. The overposed data can be of two types: An interior location distribution of concen-
tration at all times and the final time concentration for all space locations.

4. It is worth considering extensions of our method to other solute transport situations,
for instance, 2D and 3D models.



6. Conclusions and final remarks

Interactions between inverse problems and fractional derivatives are a huge research field in
which new results appear daily. In this thesis we could establish original, stable and efficient
methods to solve several inverse problems of interest in the vast area of flow in porous media
and anomalous diffusion. All the equations correspond to solute transport in porous media,
thus the dependent variable is solute concentration.
The main achievements in this thesis are:

1. For a two dimensional time fractional diffusion equation with a separable forcing term
f(z)p(t), we solved the inverse problem consisting on the estimation of the discharge
magnitude f(z). As overposed data a noisy version of the concentration distribution
at the final time is available. The regularization is achieved by discrete mollification.
Our results are published in [16].

2. For the same two dimensional time fractional diffusion equation with a separable forcing
term f(z)p(t), we solved an identification problem consisting on the estimation of
the attenuation coefficient p(t). The overposed data is a noisy solute concentration
distribution at the final time. Discrete mollification is the chosen regularization tool.

3. Parameter estimation problems in the framework of one dimensional space fractional
advection-dispersion equations are included in this thesis. There are simultaneous
identification of parameters for equations with different boundary conditions. The
selected procedure to solve the inverse problems is history matching coupled with
optimization by the Nelder-Mead Simplex method.

4. All MATLAB routines are original, except some mollification routines prepared by
C.D. Acosta. Our routines are part of the results obtained in this thesis.

There are other original ideas throughout the thesis, some of which constitute work in
progress. Some of these ideas come from fruitful conversations with professor Pep Mulet
of University of Valencia, Spain, who invited me for a six month visit. Comparison with
other regularization strategies as Tikhonov method, is an interesting approach to study
subsequently.
The MATLAB routines and three papers, two of which are work in progress, can be found
in
https://medellin.unal.edu.co/~cemejia/

https://medellin.unal.edu.co/~cemejia/
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Our current research work consists on the completion of the preprints related to the topics of
chapters 4 and 5 of the thesis and the addition of Tikhonov method as a second regularization
strategy. What about the not so immediate future? Fractional differential equations and
inverse problems constitute a successful pair. We expect they will stay together for many
years. It was very satisfying to work with this couple and we expect to keep working on this
subject for many more years.



A. The Mollification in Higher
Dimensions

A.1. General Case

Given δ > 0, p > 0 in R, we define

Aδp =

(∫
Bp/δ

exp(−‖x‖2)dx

)−1

(A-1)

where
Br := {x ∈ Rn/‖x‖ < r} (A-2)

Now, we take a truncated Gaussian kernel:

κδp(t) =

{
Aδpδ

−1exp(−‖t‖2/δ2), ‖t‖ ≤ p

0, ‖t‖ > p
(A-3)

This kernel satisfies

• κ ≥ 0.

• κ ∈ C∞(Bp).

• κ ≡ 0 outside B̄p.

•
∫
Rn κδp = 1

Definition A.1.1. Set f : Rn 7→ R locally integrable, we define its δp-mollification, denoted
Jδpf , as the convolution of f with κδp. That is,

Jδpf(t) = (κδp ∗ f)(t) (A-4)

=

∫
Rn
κδp(t− s)f(s)ds (A-5)

=

∫
Bp(t)

κδp(t− s)f(s)ds (A-6)

=

∫
Bp

κδp(−s)f(t+ s)ds (A-7)
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It will be taken p = 3δ, then

Aδp =

(∫
Bp/δ

exp(−‖x‖2)dx

)−1

=

(∫
B3

exp(−‖x‖2)dx

)−1

(A-8)

Definition A.1.2. Set X = {xα/Xα = X0 + αh, α ∈ Zn} a rectangular grid in Rn with step
size h ∈ R+. Set G : X 7→ R a function defined for G(Xα) = yα. Also, set

Sα(j) = (Xαj−1
+Xαj)/2 (A-9)

Iα =
n∏
j=1

[Sα(j), Sα(j + 1)) (A-10)

f(t) =
∑
α∈Zn

yαχα(t) (A-11)

with χα the characteristic function of the n-cell Iα. Then for δ > 0 and η a non negative
integer, we define the δη-mollification of G as the δp- mollification of f with

p = (η + 1/2)h (A-12)

that is,
JδηG(x) = Jδpf(x) (A-13)

We are interested on the value of JδηG in the discrete domain X. Let

tβ(j) = (βj − 1/2)h, β ∈ Zn (A-14)

Pβ =
n∏
j=1

[tβ(j), tβ(j + 1)) (A-15)

We can write

JδηG(Xα) = Jδηf(Xα) (A-16)

=

∫
Bp

κδp(−s)f(Xα + s)ds (A-17)

=
∑
|β|≤η

∫
Pβ

κδp(−s)f(Xα + s)ds (A-18)

and it satisfies

s ∈ Pβ if and only if Xα + s ∈ Iα+β. Later

JδηG(Xα) =
∑
|β|≤η

wβyα+β,where wβ =

∫
Pbeta

κδp(−s)ds (A-19)
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that is, a discrete convolution of a vector of data y and some vector of weights w. The vector
w satisfies

η∑
i=−η

wi = 1 (A-20)

η∑
i=−η

iwi = 0 (A-21)

Before formulate our principal theorem, it will reminded the Taylor’s Theorem for multivari-
ate functions.

Taylor’s TheoremIf f : Rn 7→ R is Ck+1 in the point b ∈ Rn. Then there exist hb : Rn 7→ R
such that

f(x) =
∑
|α≤k|

Dαf(b)

α!
(x− b)α +

∑
|α|=k

hb(x)(x− b)α (A-22)

and
lim
x7→b

hb(x) = 0 (A-23)

Theorem A.1.3. Set g a function defined on R2 with derivatives of order 4 continuous and
bounded in R. Let G the discrete version of g defined on X.

• Stability and Consistency: If Gε is another discrete function defined on X, such that

‖Gε −G‖∞ ≤ ε (A-24)

then for each compact set K ⊂ Rn there exists a constant CK such that for all x ∈ K

‖JδηGε − JδηG‖∞ ≤ ε, (A-25)

‖JδηGε − Jδηg‖∞ ≤ CKh
2. (A-26)

• Mollified Numerical Differentiation: Moreover,

... (A-27)

Proof. Stability:

|JδηGε(x)− JδηG(x)| =

∣∣∣∣∣∣
∑
|β|≤η

wβG
ε(x)−G(x)

∣∣∣∣∣∣ (A-28)

≤
∑
|β|≤η

wβ |Gε(x)−G(x)| (A-29)

= |Gε(x)−G(x)|
∑
|β|≤η

wβ ≤ ε (A-30)
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Consistency: let Xα ∈ K then for Taylor’s Theorem, for each β ∈ Zn, with |β| ≤ η, there
exists ζβ ∈ K̂ = {z ∈ K/d(z, ∂K) ≥ p} such that

g(Xα+β) = g(Xα) + hβ · ∇g(Xα) +
∑
|β|=2

Dβg(ζβ)

2
(hβ)β (A-31)

Thus

JδηG(Xα) =
∑
|β|≤η

wβg(Xα+β) (A-32)

=
∑
|β|≤η

wβ

g(Xα) + hβ · ∇g(Xα) +
∑
|γ|=2

Dγg(ζβ)

2
(hβ)γ

 (A-33)

= g(Xα) +
h2

2

∑
|β|=2

ββwβD
βg(ζβ) (A-34)



B. Time Fractional Inverse Heat
Conduction Problem

B.1. Direct Problem

Some discussion will be made about the direct problem, its outlining and theoretical consid-
erations will be made here.

B.2. Inverse Problem

The Inverse Heat Conduction Problem is a classic one where a boundary is unknown and the
determination of it, is the aim. Well, below a fractional version of this problem is presented
and a approximation of its solution is obtained using the the Total Variation regularization.
Our issue is given by

0D
α
t u(x, y, t)− uxx(x, y, t)− uyy(x, y, t) = 0 0 < x < 1, y > 0, t > 0,

0 < α ≤ 1,

u(1, y, t) = g(x, y) y ≥ 0, t ≥ 0

u(x, y, 0) = 0 x > 0, y ≥ 0

u(x, 0, t) = 0 x > 0, t ≥ 0

uy(x, y, 0) = 0 x > 0, y ≥ 0

u(x, y, t)|x→∞, bounded x > 0, y ≥ 0,

(B-1)

where the time derivative 0D
α
t u(x, y, t) is the Caputo fractional derivative of order α ∈ (0, 1],

defined by [38]

0D
α
t u(x, y, t) =

1

Γ(1− α)

∫ t

0

∂u(x, y, s)

∂s

ds

(t− s)α
, 0 < α < 1 , (B-2)

0D
α
t u(x, y, t) =

∂u(x, y, s)

∂s
, α = 1. (B-3)

We only have access to a noisy measurement gδ which satisfies

‖g − gδ‖L2 ≤ δ, (B-4)
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this problem is known to be ill-posed as it is proven in [50]. First of all we solve the problem
below 

0D
α
t u(x, y, t)− uxx(x, y, t)− uyy(x, y, t) = 0 0 < x < 1, y > 0, t > 0,

0 < α ≤ 1,

u(0, y, t) = f(x, y) y ≥ 0, t ≥ 0

u(x, y, 0) = 0 x > 0, y ≥ 0

u(x, 0, t) = 0 x > 0, t ≥ 0

uy(x, y, 0) = 0 x > 0, y ≥ 0

u(x, y, t)|x→∞, bounded x > 0, y ≥ 0,

(B-5)

applying the Fourier transform in this problem we get
(iη)αû− ûxx + ζ2û = 0 0 < x < 1,

û(0, ζ, η) = f̂(ζ, η),

û(x, ζ, η)|x→∞, bounded x > 0.

(B-6)

The solution of this differential equation takes the form

û(x, ζ, η) = exp
(
−x
√

(iη)α + ζ2
)
f̂(ζ, η). (B-7)

Thus the solution of the direct problem is

u(x, y, t) =
1

2π

∫
R2

e−x
√

(iη)α+ζ2 f̂(ζ, η)ei(ζy+ηt)dζdη. (B-8)

We define the operator K : L2 7→ L2 which takes the form

[Kf ](y, t) =
1

2π

∫
R2

e−
√

(iη)α+ζ2 f̂(ζ, η)ei(ζy+ηt)dζdη = (B-9)

1

2π

∫
R2

e−
√

(iη)α+ζ2ei(ζy+ηt)

(
1

2π

∫
R2

e−i(ζȳ+ηt̄)f(ȳ, t̄)dȳdt̄

)
dζdη = (B-10)∫

R2

(
1

4π2

∫
R2

e−
√

(iη)α+ζ2ei(ζy+ηt)e−i(ζȳ+ηt̄)dζdη

)
f(ȳ, t̄)dȳdt̄, (B-11)

the term

1

4π2

∫
R2

e−
√

(iη)α+ζ2ei(ζy+ηt)e−i(ζȳ+ηt̄)dζdη (B-12)

acts as the kernel of the operator which is wanted to be compact.

Claim.

k(y, t, ȳ, t̄) =

∫
R2

e−
√

(iη)α+ζ2ei(ζy+ηt)e−i(ζȳ+ηt̄)dζdη ∈ L2(R2 × R2). (B-13)
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Proof. We will establish first e−
√

(iη)α+ζ2 ∈ L2(R2). We define ω =
√

(iη)α + ζ2 and we can
write it in the form ω = a+ bi ([50]), where

a =

√√√√√|η|2αsin2
(
απ
2

)
+
(
ζ2 + |η|2αcos

(
απ
2

))2
+
(
ζ2 + |η|2αcos

(
απ
2

))
2

,

b = i sign
(
sign(η)sin

(απ
2

))
·√√√√√|η|2αsin2

(
απ
2

)
+
(
ζ2 + |η|2αcos

(
απ
2

))2 −
(
ζ2 + |η|2αcos

(
απ
2

))
2

.

It is important to notice a ≥ 0 for any η and ζ, providing α ∈ (0, 1), as well as a increasing
function of η and ζ. Making use of this fact and that a(ζ, η) ≥ (|η|α

√
cos
(
απ
2

)
+ |ζ|)/2, we

get ∫
R2

∣∣∣e−√(iη)α+ζ2
∣∣∣2 dζdη =

∫
R2

∣∣e−a−bi∣∣2 dζdη (B-14)

=

∫
R2

e−2adζdη (B-15)

≤
∫
R2

e
−|η|α

√
cos(απ2 )−|ζ|dζdη <∞, (B-16)

this implies there exits a function Φ ∈ L2(R2) which satisfy F{Φ} = e−
√

(iη)α+ζ2 . Since

k(y, t, ȳ, t̄) =
1

4π2

∫
R2

e−
√

(iη)α+ζ2ei(ζ(y−ȳ)+η(t−t̄))dζdη, (B-17)

=
1

2π
Φ(y − ȳ, t− t̄). (B-18)

Finally using the Plancherel’s Theorem ([51])

‖k(y, t, ȳ, t̄)‖2
L2 =

1

2π
‖Φ(y − ȳ, t− t̄)‖2

L2 =
1

2π
‖e−
√

(iη)α+ζ2‖2
L2 <∞

This fact impliesK to be compact because k is a Hilbert-Schmidt kernel. Our initial problem
was the inverse one, we want to find f from an observation of g but only have access to a
noisy data gδ. On that direction we establish the minimization problem as follow

argmin
f

{
1

2
‖Kf − gδ‖2

L2

}
. (B-19)
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This is known to be ill-posed ([50]) and we propose a regularization of it though the Total
Variation, then replace the original formulation for the next one

argmin
f

{
1

2
‖Kf − gδ‖2

L2 + γ

∫
R2

√
f 2
y + f 2

t + βdydt

}
, (B-20)

another regularization parameter is added as in [14] for ensure well behavior of the method.
A fixed point method as in [47] will be implemented as below

−γ∇ ·

(
∇fk+1√
|∇fk|2 + β

)
+K∗

(
Kfk+1 − gδ

)
= 0, (B-21)

we start with f 0 = gδ.

Claim.

[K∗h](ȳ, t̄) =

∫
R2

1

2π
Φ(y − ȳ, t− t̄)h(y, t)dydt (B-22)

Proof.

〈Kf, h〉 =

∫
R2

(∫
R2

1

2π
Φ(y − ȳ, t− t̄)f(ȳ, t̄)dȳdt̄

)
h(y, t)dydt

=

∫
R2

[∫
R2

(
1

4π2

∫
R2

e−
√

(iη)α+ζ2ei(ζy+ηt)e−i(ζȳ+ηt̄)dζdη

)
f(ȳ, t̄)dȳdt̄

]
h(y, t)dydt

=

∫
R2

[∫
R2

(
1

4π2

∫
R2

e−
√

(iη)α+ζ2ei(ζy+ηt)e−i(ζȳ+ηt̄)dζdη

)
h(y, t)dydt

]
f(ȳ, t̄)dȳdt̄

=

∫
R2

(∫
R2

1

2π
Φ(y − ȳ, t− t̄)h(y, t)dydt

)
f(ȳ, t̄)dȳdt̄

Remark. From the last proof we notice that K∗ is equivalent to take inverse Fourier Trans-
form of h then multiply by e−

√
(iη)α+ζ2, and finally take Fourier transform to obtain the

result.
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