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Abstract

We present a pedagogical construction of three-quark wave functions
making use of particle interchange symmetry properties. We consider
spatial, spin and isospin degrees of freedom. Color is introduced to
obtain completely antisymmetric wave functions. We also analyze the
general structure of the spatial part of the wave functions both in
coordinate and momentum space.
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Nobody knows if the white is white,
neither if the red is red,
nobody knows in his intimate painful conscience
scared of his own inhuman transcendence
what is truth in what is really truth.

Fragment from ”Dios, el alma la muerte”,
Fernando Paz Castillo

1 Introduction

The general study of the wave functions for three identical spin 1/2 particles
is of great interest both in nuclear and in subnuclear physics, more precisely,
for investigating the properties of 3H and 3He and for constructing three-
quark models for the nucleon and its resonances [1]. The latter point will be
the main objective of these notes.

In this work we present a pedagogical introduction to the three-body, equal
mass, quantum mechanical problem, by using, as starting point, standard
concepts of nonrelativistic quantum mechanics. After studying this note,
an advanced student should be able to construct complete three-quark wave
functions and to calculate physical observables. In this way, he should be
ready to face actual investigation problems in this field, as, for example, the
relativistic calculation of approximate solutions for effective quark Hamiltoni-
ans and of electroweak matrix-elements (form factors) for baryonic particles.
Many points analyzed in the present work can be also found in standard
texbooks [2], [3], [4] and in specialized articles [1]. Aim of these notes is to
gather in a concise and pedagogical text all the relevant information, writ-
ing explicitly the expressions of the wave functions that are needed for the
calculations. As a specific application of the formalism, in the last section
we study the calculation of the nucleon magnetic moment in the constituent
quark model.

This work should be self-consistent. Cited papers are not strictly necessary
for its comprehension but should help the reader to gain a deeper insight in
this field of investigation.

Considering the physical problem at a dynamical level, we recall that one
possible way to understand low-energy baryonic phenomenology is presently
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based on the Relativistic Hamiltonian Dynamics (RHD), that represents a
consistent theoretical framework for the study of composite systems with a
fixed number of strongly interacting particles [5, 6]. RHD satisfies both quan-
tum mechanics and relativistic covariance introducing as generators of the
space-time symmetries, quantum-mechanical operators (Hamiltonian, three-
momentum, angular momentum and Lorentz boost), that fulfill the commu-
tation rules of the Poincaré algebra. The form of these operators is different
from that of the nonrelativistic ones but all the computational rules and the
structure of the wave functions, remain the same as in the nonrelativistic
quantum mechanics. This point explains the interest of the present study as
an introduction to the investigation on baryonic systems.

At pedagogical level the construction of antisymmetric wave functions for in-
teracting identical fermions is usually studied in standard courses of quantum
mechanics, but, in that case, the interest is focussed on problems of atomic
physics, in which the electrons mainly interact with the nucleus, considered
as a fixed source of potential. On the other hand, the study of the few-body
nuclear and subnuclear systems, in which the constituent identical particles
only interact among them, strictly requires the separation of the Center of
Mass motion from the intrinsic one.

To this aim, specific techniques must be introduced, in particular the def-
inition of mixed symmetric (MS) an mixed antisymmetric (MA) functions,
besides the symmetric (S) and antisymmetric (A) ones, that are used to con-
struct the total, completely antisymmetric, wave functions, as required by
the Pauli exclusion principle. We point out that, in the study of two-body
systems, the MS and MA functions do not appear. In fact, they represent
an original aspect of the three-body problems.

Furthermore, we give a phenomenological and historical introduction to the
concepts of Isospin and Color, explicitly constructing the corresponding wave
functions and studying their symmetry properties.

As for the spatial part of the wave functions, we shall initially consider, as
the most transparent pedagogical introduction to our three-body problem,
the nonrelativistic harmonic oscillator (NR HO) model. In this case, simple,
analytic solutions can be obtained. We point out that the completeness
of such set of states really allows to use it in research problems, also for
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the variational solution of relativistic Hamiltonians. Furthermore, one can
straightforwardly perform their Fourier Transform in order to obtain the
corresponding momentum space wave functions, that are stricly necessary
to calculate the electroweak form factors in the recent models based on the
RHD.
We explain that other spatial wave functions can be also advantageously
implemented for the variational calculations. These new spatial functions
are obtained leaving the same symmetry structure of the NR HO ones, but
introducing a different asymptotic behavior. In this way we suggest to the
interested student a possible field of investigation.

2 General symmetry properties

We previously recall the fundamental properties of the operator P̂ij, that
interchanges the particle i with the particle j (being obviously i 6= j). It de-
termines if a state function is symmetric, or not, under particles interchange.
This operator satisfies the property P̂ 2

ij = 1 and therefore, P̂ †
ij = P̂ij = P̂−1

ij .
In consequence, the eigenvalues of this operator are

P̂ij =

{
+1 for symmetric states,

−1 for antisymmetric states.

We now consider an operator Ôij for the composite system, that depends on
the variables of the particles i and j. We have

P̂ijÔij|Ψ〉 = ÔjiP̂ij|Ψ〉 (1)

that holds for an arbitrary |Ψ〉. Then, the operator transformation is

P̂ijÔijP̂ij = Ôji (2)

2.1 Jacobi variables and mixed-symmetry quantities

The definition of the spatial variables represents the starting point for the
construction of the wave functions of a composite system [1]. Furthermore,
in our case, the use of the Jacobi variables allows to introduce in a natural
way the pairs of mixed symmetry quantities.

5



For three identical particles, one can choose as standard spatial variables the
position vectors ~ri or their conjugated momenta ~pi. Here and in the following
i = 1, 2, 3. In order to separate the Center of Mass wave function (that, for a
bound system without external interactions, is simply represented by a plane
wave of momentum ~P ) from the intrinsic one and to display the symmetry
properties of the latter, an adequate treatment is obtained introducing the
so-called Jacobi variables. In our case they are defined as

~ρ =
1√
2
(~r1 − ~r2) (3a)

~λ =
1√
6
(~r1 + ~r2 − 2~r3) (3b)

~R =
1

3
(~r1 + ~r2 + ~r3) (3c)

where ~ρ y ~λ represent variables for the internal motion, and ~R the position of
the Center of Mass of the system. The transformations (3) can be inverted,
giving

~r1 = +
1√
2
~ρ +

1√
6
~λ + ~R (4a)

~r2 = − 1√
2
~ρ +

1√
6
~λ + ~R (4b)

~r3 = −
√

2

3
~λ + ~R (4c)

In coordinate space, by using the standard chain rule

∂

∂~ri

=
∂~ρ

∂~ri

∂

∂~ρ
+

∂~λ

∂~ri

∂

∂~λ
+

∂ ~R

∂~ri

∂

∂ ~R
(5)

we can express the particle momentum operators by means of the conjugated
Jacobi momenta ~pρ, ~pλ and ~P , as

~p1 = +
1√
2
~pρ +

1√
6
~pλ +

1

3
~P (6a)

~p2 = − 1√
2
~pρ +

1√
6
~pλ +

1

3
~P (6b)

~p3 = −
√

2

3
~pλ +

1

3
~P (6c)
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being ~pρ = −i~ ∂
∂~ρ

, ~pλ = −i~ ∂

∂~λ
and ~P = −i~ ∂

∂ ~R
.

Finally, inverting the previous equations (6), we obtain the definitions of the
Jacobi momenta

~pρ =
1√
2
~p1 − 1√

2
~p2 (7a)

~pλ =
1√
6
~p1 +

1√
6
~p2 −

√
2

3
~p3 (7b)

~P = ~p1 + ~p2 + ~p3 (7c)

When studying relativistic quark models by means of RHD, the rest reference
frame, is used for the calculations. In consequence, eqs.(6) with ~P = 0 are
taken to define the relation between the three rest frame (not independent)
particle momenta and the two (independent) Jacobi momenta ~pρ and ~pλ.
The rest frame wave functions are determined as the eigenfunctions of the
corresponding mass operator that will be discussed in sect. 8. Then, these
wave functions are boosted (by means of the RHD boost operator) to any
generic reference frame to study the scattering processes of the bound system.

We now explain some remarkable properties of the Jacobi variables with
respect to the interchange operators. By using their definitions in eqs.(3),
the reader can easily verify that

P̂ij
~R P̂ij = ~R for all ij pairs (8)

and

P̂12 ~ρ P̂12 = −~ρ P̂13 ~ρ P̂13 =
1

2
~ρ−

√
3

2
~λ (9)

P̂12
~λ P̂12 = ~λ P̂13

~λ P̂13 = −
√

3

2
~ρ− 1

2
~λ (10)

As it could be expected, the Center of Mass coordinate ~R is a completely sym-
metric (S) quantity. On the other hand, due to the transformation properties

shown in eqs.(9) and (10), ~ρ and ~λ represent a pair of a mixed antisymmetric
(MA) quantity and a mixed symmetric (MS) one, respectively.

Also, note that the conjugated momenta ~pρ, ~pλ and ~P given in eqs.(7) have
the same symmetry properties as the corresponding Jacobi position variables.
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The following point is of fundamental importance for the construction of
three-quark wave functions: we shall introduce other pairs of quantities, (in
particular, some factors that appear will in the total the wave functions) with

the same transformation properties as ~ρ and ~λ. Such pairs of quantities will
be also denoted as MA MS.
Furthermore, two pairs of MA MS quantities can be combined, according to
the rules of eq.(21), for constructing four new quantities with the following
transformation properties: S, A and a pair MA MS.
Finally, wave functions with different symmetry properties are mutually or-
thogonal.

3 The Spin

The quarks are spin 1/2 particles. This property is strictly necessary to
reproduce the observed values of the angular momenta of the nucleon and of
the other resonances. The well-known spin composition rules will be used to
construct the total spin functions. Their transformation properties will be
analyzed.

3.1 Three-fermion spin functions and their symmetry
properties

We now build the coupled spin functions for three spin 1/2 particles. We
shall adopt the following standard angular momentum coupling notation:

[ϕj1 ⊗ ϕj2 ]J,M =
∑

m1,m2

ϕj1,m1ϕj2,m2 〈j1m1; j2m2|JM〉

where the last factor is the appropriate the Clebsch-Gordan coefficient.
The standard procedure consists in coupling the spins of the particles 1 and
2 to S12 and then this last quantity to the spin of the particle 3. It gives

χS12

S,M =

[[
χ 1

2
(1)⊗χ 1

2
(2)

]
S12

⊗χ 1
2
(3)

]

S,M

(11)

Due to triangular inequality, the only possible values are S12 = 0, 1 and
S = 1/2, 3/2.
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By using the standard notation χ 1
2
, 1
2

=↑ and χ 1
2
,− 1

2
=↓, for spin up and spin

down one-particle functions, we can write in a more explicit way the previous
equation (11) for all the possible values of S12, S and M . It takes the form:

χ0
1
2
,+ 1

2
=

1√
2
(↑↓↑ − ↓↑↑) (12a)

χ0
1
2
,− 1

2
=

1√
2
(↑↓↓ − ↓↑↓) (12b)

χ1
1
2
,+ 1

2
= − 1√

6
(↑↓↑ + ↓↑↑ −2 ↑↑↓) (12c)

χ1
1
2
,− 1

2
=

1√
6
(↑↓↓ + ↓↑↓ −2 ↓↓↑) (12d)

χ1
3
2
,+ 3

2
=↑↑↑ (12e)

χ1
3
2
,+ 1

2
=

1√
3
(↑↑↓ + ↑↓↑ + ↓↑↑) (12f)

χ1
3
2
,− 1

2
=

1√
3
(↑↓↓ + ↓↑↓ + ↓↓↑) (12g)

χ1
3
2
,− 3

2
=↓↓↓ (12h)

In all the terms, the arrows represent, in the order, the spin projection (on
the z-axis) of the particle 1, 2 and 3.
By applying the permutation operators P̂ij to the previous spin functions
(12), one can directly verify that, for a given spin projection M , χ0

1
2
,M

and

χ1
1
2
,M

represent a pair of MA and MS quantities, respectively. Finally the

χ1
3
2
,M

are all completely symmetric (S) functions.

Note the following general property: all the members of a spin multiplet, that
is, all the functions with given values of S12 and S but different values of the
third component M , have the same permutational symmetry.
The symmetry properties of eqs.(12) will be used in subsect. 2.1 to construct
spin-isospin wave functions with definite symmetry.

9



4 The Isospin

Before introducing the isospin for the quarks, it is useful to recall its general
features in the context of nuclear physics, where it was introduced for the
first time. Historically, isospin represents the first example of a quantum
number of an internal symmetry, not related to space-time transformations.

4.1 Isospin and nuclear interactions

To study the isospin formalism, we briefly recall some general phenomeno-
logical properties of the nuclear particle interactions.

1) The proton and the neutron have approximately the same mass, being
mpc

2 = 938.27 MeV and mnc
2 = 939.57 MeV .

2) In the nuclei their interactions give rise to binding energies of the order
of 8 MeV = 8 × 106 eV per nucleon, justifying the definition of strong
interactions.

3) These interactions have a short range in the sense that if the distance d
between the two nucleons is d ≥ 2 fm = 2 × 10−13cm their interaction is
vanishing. Note that the presence of this cutoff in the range is completely
different with respect to the case of the electromagnetic interactions, where
the Coulomb potential VC = e1e2/r is a long range one, that is, decreases
continously with no cutoff.

4) For a given set of quantum numbers of the state of the system, the strong
interaction is the same for all kinds of nucleons, no matter if they are protons
or neutrons.

The properties 1) and 4) allow to introduce the formalism of isospin. As
a first step, one has to consider the proton and the neutron as two (quasi)
degenerate states of the same particle, the nucleon, with different electric
charge. In this sense, the property 4) can be rephrased, saying that the
strong interactions are charge independent.
Formally the two nucleon states can be represented by means of the following
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spinors: (
1
0

)
for the proton and

(
0
1

)
for the neutron.

These two states are eigenstates of the following operator

τ3 =

(
1 0
0 −1

)
(13)

so that the nucleon charge operator (without the numerical value of the
elementary charge | e|) is defined as

Q̂N =
1

2
τ3 +

1

2
(14)

with eigenvalues Qp = 1 and Qn = 0.
We can now introduce all the three Pauli isospin matrices ~τ = (τ1, τ2, τ3) and
define the isospin operator as ~t = ~τ/2, satisfying the standard commutation
rules

[ti, tj] = iεijktk (15)

where εijk is the Levi-Civita tensor. This formalism is exactly the same as
that of spin 1/2.
We can make the following question: is the isospin formalim really useful to
describe the nuclear systems ?
The answer is yes if the strong interaction Hamiltonian is invariant under
rotations in the abstract isospin space. In this case, defining for a nucleus
with A nucleons the total isospin operator as

~̂T =
A∑

i=1

~t(i) (16)

one can diagonalize, simultaneously with the strong Hamiltonian Hstr, ~̂T 2

and the third component T̂3, that are conserved quantities :

[Hstr, T̂3] = 0 [Hstr, ~̂T 2] = 0

Furthermore, systems with the same T but different values of T3 belong to
degenerate multiplets, i.e. they have the same rest energy.
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Formally, to satisfy the previous commutation rules, a two-body (i, j) strong
interaction operator can only contain the following operators

1, ~τ(i)~τ(j)

The physical consequences of the isospin space rotation invariance are ex-
perimentally verified with great accuracy in nuclear physics and in the scat-
tering processes of hadronic particles. The discrepancies (for example the
breakdown of the multiplet degeneracy) are due to the presence of the elec-
tromagnetic (and weak) interaction. In fact one has

[Hem, T̂3] = 0 but [Hem, ~̂T 2] 6= 0

However, the effects due to Hem can be, in general, calculated perturbatively,
obtaining a good agreement with the experimental data.

As for the presence of multiplets in nuclear physics, we recall that the nucleon
is an iso-doublet (T = 1/2), the Deuteron 2H is an iso-singlet (T = 0) because
it is the only bound state of two nucleons (pp and nn are not bound), the 3H
and 3He form an iso-doublet (T = 1/2) because they have almost the same
binding energy (apart from the small repulsive electromagnetic contribution
in the 3He), the 4He is an iso-singlet ....
As an exercise, the reader is suggested to obtain the values of T of the above
multiplets by using the composition rules of isospin 1/2 objects. Recall that,
due to the commutation rules of eq.(15), all the mathematical properties of
isospin, in particular the composition rule, are exactly the same as those of
the spin.
Finally, in the general case of A nucleons, note that T is integer for A even
and semi-integer for A odd.

Up to this point we have considered strong interacting particles with semi-
integer spin (in particular the nucleons). This kind of particles are called
baryons. There are other strong interacting particles with integer spin. These
particles are called mesons. Among them, the most important for the study
of the nuclear processes, is the pion. Really, there are three pions: π+, π0

and π− of charge +1, 0 and −1, respectively. Their masses are mπ+c2 =
mπ−c2 = 139.57MeV and mπ0c2 = 134.97MeV . For our study, it is relevant
to recall that the strong interactions of the pions are invariant under isospin
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rotations and that the three pions (obviously) belong to an iso-triplet: T = 1
gives 2T +1 = 3 degenerate isospin states. The charge of the three pions can
be expressed in terms of the third component of the isospin by means of the
simple equation

Q̂π = T̂3 (17)

We note that, with respect to eq.(14) the last term 1/2 is missing. To explain
in very simple words this difference between nucleons and pions (or, more
generally, between baryons and mesons) we observe that, in a reaction, a
single meson can appear or disappear, while a baryon cannot. A new con-
served quantum number is introduced, that is the baryon number B. For the
nucleon (and in general for a baryon) we have B = 1, while for the pion (and
in general for a meson) we have B = 0.
Baryons and mesons, that is all the particles with strong interactions, are
called hadrons.
By means of the baryon number we can unify eqs.(14) and (17) in the form

Q̂ = T̂3 +
B

2
(18)

that works for both baryons and mesons.

4.2 Isospin of the quarks up and down

We can now make the following question. Are the hadrons really elementary
particles or composite systems, like the atoms and the nuclei?
The answer relies on the experimental data about their static electromagnetic
properties (in particular, the nucleon magnetic moment, that will be studied
in sect. 9) and about the elastic and inelastic electron scattering. All the
data clearly indicate that some constituent particles are present inside the
hadrons.
The most successfull way to describe the experimental data of the hadronic
particles is to introduce, as constituents, the quarks whose properties will be
discussed in the following. Without entering into the details, we observe that,
starting from the concept of quarks, it has been developed a fundamental
quantum field theory for the study of the quarks and of their interactions.
This theory is the Quantum Chromo-Dynamics (QCD). However, the same
properties of this theory do not allow for a direct calculation of many low-
energy observables of the hadronic particles, as, for example, their masses and
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their form factors, that are measured by means of electron (or, in general,
lepton) scattering processes.
For this reason, effective quark models (to which is directed the main in-
terst of the present work) have been introduced. These models represent a
practical and fruitful way to investigate the properties of the hadrons con-
sidered as bound systems of strongly interacting quarks. Quark models were
firstly developed in the framework of the nonrelativistic quantum mechanics.
Nowadays RHD is currently used.

Going to the quark properties, actually it is accepted the existence of six kinds
of quarks (up, down, strange, charm, bottom, top). Only the quarks up (u)
and down (d) are relevant (at least in a first approximation) for studying the
nucleon and the pion.
We summarize here some important properties.
1) All the quarks have spin 1/2.
2) The nucleon and the baryons are made up of three quarks. The mesons
are made up by a quark and an antiquark.
3) The charge of the quarks u and d are respectively 2/3 and −1/3, so that
the correct values for the nucleon charge are obtained. The quark content of
the proton is uud and that of the neutron is udd.
4) The quarks u and d are assumed to have (almost) equal masses. In con-
sequence, they can be assigned to an isodoublet and are represented by the
same isospinors used for the proton and the neutron, respectively.
5) Their charge is obtained in terms of the isospin by means of eq.(18) setting
Bq = 1/3. It means that, instead of eq.(14), one has

Q̂q =
1

2
τ3 +

1

6
(19)

We stress that the choice Bq = 1/3 correctly gives the nucleon baryon number
BN = 1 simply summing the baryon numbers of the three quarks.
As for the mesons, their vanishing baryon number is obtained recalling that
the antiquark baryon number is Bq̄ = −1/3.

Remembering that the spin and the isospin have the same algebraic proper-
ties, we can construct the isospin functions for three particles with isospin
1/2 exactly in the same way as the spin functions of eq.(11). We have

ΦT12
T,MT

=

[[
Φ 1

2
(1)⊗ Φ 1

2
(2)

]
T12

⊗ Φ 1
2
(3)

]

T,MT

(20)
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Their explicit expressions are the same as those obtained in the equations
(12), by replacing ↑ with u and ↓ with d. In passing, for the analysis of the
three nucleon systems, as 3He and 3H, instead of u and d one has to replace
p and n, respectively.

4.3 Linear combinations of the spin and isospin func-
tions

The objective of this subsection is to construct spin-isospin wave functions
with definite permutational symmetry. To this aim, consider the following
general procedure. Take two pairs of mixed-symmetry functions: f(MS),
f(MA) and g(MS), g(MA). One can build a symmetric function FS, an anti-
symmetric one FA and a pair of mixed-symmetry functions FMA FMS in the
following way:

FS = +
1√
2

(f(MS)g(MS) + f(MA)g(MA)) (21a)

FA = +
1√
2

(f(MS)g(MA)− f(MA)g(MS)) (21b)

FMA = +
1√
2

(f(MS)g(MA)− f(MA)g(MS)) (21c)

FMS = − 1√
2

(f(MS)g(MS)− f(MA)g(MA)) (21d)

The reader should check, as an exercise, the symmetry properties of the pre-
vious functions. Finally, for further applications, we recall that the symmetry
properties of a quantity are not modified when this quantity is multiplied by
a completely symmetric function.
Taking into account these rules, the following combinations can be made with
spin and isospin functions. We write the result as

Gσ
T,T3;S,MS

where σ denotes the total symmetry (S,A,MS,MA); T, T3 and S, MS represent
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the total isospin and spin quantum numbers, respectively. We have

G
S

3
2
,T3; 3

2
,MS

= Φ
1

3
2
,T3

χ1

3
2
,MS

(22a)

G
S

1
2
,T3; 1

2
,MS

=
1√
2

[
Φ

1

1
2
,T3

χ1

1
2
,MS

+ Φ
0

1
2
,T3

χ0

1
2
,MS

]
(22b)

G
MS

1
2
,T3; 1

2
,MS

= − 1√
2

[
Φ

1

1
2
,T3

χ1

1
2
,MS

− Φ
0

1
2
,T3

χ0

1
2
,MS

]
(22c)

G
MA

1
2
,T3; 1

2
,MA

=
1√
2

[
Φ

1

1
2
,T3

χ0

1
2
,MS

+ Φ
0

1
2
,T3

χ1

1
2
,MS

]
(22d)

G
MS

3
2
,T3; 1

2
,MS

= Φ
1

3
2
,T3

χ1

1
2
,MS

(22e)

G
MA

3
2
,T3; 1

2
,MS

= Φ
1

3
2
,T3

χ0

1
2
,MS

(22f)

G
MS

1
2
,T3; 3

2
,MS

= Φ
1

1
2
,T3

χ1

3
2
,MS

(22g)

G
MA

1
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=
1√
2

[
Φ

1

1
2
,T3

χ0

1
2
,MS

− Φ
0

1
2
,T3

χ1

1
2
,MS

]
(22i)

5 The Color

All the machinery discussed above, that is the quark spin and isospin, and the
spatial part of the wave functions, that will be analyzed in detail in sect. 6,
are not sufficient to describe baryons according to the fundamental principles
of quantum mechanics. A new quantum number must be introduced for the
quarks: the Color. In the following subsection we give a historical argument
based on the symmetry properties of the ∆ resonance wave function.

5.1 The puzzle of the ∆ resonance wave function

Before facing the problem of the ∆ resonance wave function, we must give
some general explanations about the baryonic resonances.
We have seen that the nucleon can be modelized as a bound system made
up of three quarks. In the same way as other composite bound systems
(like atoms and nuclei, for example), it has excited states. These states are
unstable: it means that, due to the strong interaction, they decay very fast
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to the nucleon ground state. Denoting as ∆t the lifetime of such a state, the
so-called time-energy uncertainty relation

∆t∆E ' ~

says that these states, also called resonances, do not have a fixed energy but,
rather, present an energy distribution of width ∆E. (The quark models are
not able, up to now, to reproduce the width of the distribution but predict
its peak value that is assumed to be the energy of the resonance).
In any case, by means of experimental measurements one determines the
energy value of the resonance, its spin (that is the total angular momentum
of the state in its rest frame), its parity and its isospin [7]. The same concepts
also hold for the mesonic resonant states.
The lowest-lying nucleon resonance is the ∆

3/2 +
3/2 (1232) where the numeri-

cal value in parenthesis represents the peak value of its rest energy, that is
M∆c2 = 1232MeV . The other indices represent its spin and isospin values
and the positive parity of the resonance. Due to the isospin value, four al-
most degenerate charge states are possible, see eq.(18) with B = 1, that are
∆++, ∆+, ∆0 and ∆−.
The ∆ resonance can be excited by means of π N → ∆ scattering experi-
ments. When the Center of Mass energy (

√
s) of the π N system is equal to

the peak value of the ∆ mass, the scattering cross section reaches a maxi-
mum, highlighting to the resonant character of the process.
For the introduction of the color we are interested here in the wave function
of the ∆ resonance. For simplicity we consider initially the ∆++ charge
state. Due to this charge value, the isospin part of its wave function, must
be |uuu >. Analogously, taking the maximum projection angular momentum
state MS = J = 3/2 and assuming that the spatial part of the wave function
has orbital angular momentum L = 0, one has that the spin function must
be | ↑↑↑>.
We obtain the important result that the product of the spin and isospin parts
of the wave fuction is symmetric under particle interchange.

Let us examine in more detail our assumption about the spatial part of the
wave function. The data of the electromagnetic N → ∆ transitions indicate
that this wave function must be very similar to that of the nucleon. Further-
more, the N ∆ mass difference (relatively small with respect to the baryonic
excitation energies) can be explained in terms of a spin-spin interaction, that
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will be shown in eq.(58) of subsect. 8.2. In fact, the matrix elements of this
interaction are different for the ∆ (aligned spins with J = 3/2 ) and for the
Nucleon (non-aligned spins with J = 1/2) state. Summarizing, the spatial
part of the ∆ wave function must be very similar to the nucleon one, that,
representing a ground state is, in general, a symmetric wave function with
L = 0 , as we shall see in eq.(39) for the harmonic oscillator model.

We obtain the result that the total wave function given by our quark model
is completely symmetric, clearly violating the Pauli exclusion principle. One
can repeat this construction for the general case of MS and T3 not equal to
3/2. The quantum numbers of the ∆ with the spin and isospin wave functions
of the previous sections require:

Ψ∆(1232) = G
S

3
2
,T3; 3

2
,MS

· ϕspace (23)

The reader can easily check that this result generalizes in a straightforward
way the maximum projection case of MS = T3 = 3/2. Recall that in a given
spin (or isospin) multiplet all the members have the same permutational
symmetry!

5.2 The Introduction of Color

The color idea was suggested by O.W.Greenberg of the Maryland University
almost to the same time that the quarks model appeared in 1964. One makes
the hypothesis that the quarks have a new (hidden) quantum number, the
color, that analogously to the isospin, gives rise to a new factor in the total
wave function. To fulfill Pauli priciple, this factor is required to be completely
antisymmetric under particle interchange. Exact invariance with respect to
rotations in this new space is also assumed.
Looking at three-body spin functions of eqs.(12) one sees that no completely
antisymmetric function can be found. It means that the SU(2) algebra (that
is used for spin and isospin) is not able to solve our problem. It is necessary
to introduce the SU(3) algebra, in which each quark can be found in three
color states, conventionally denoted as red(r), green (g) and blue (b).
Without entering into the formal details, all the baryons are in a colorless
(white) state, represented by the following antisymmetric wave function:

ΨBar
color =

1√
6

∑

a,b,c

εabcψa(1)ψb(2)ψc(3) (24)
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where εabc is the (antisymmetric) Levi-Civita tensor and the sum is performed
over the color indices of each quark. In this way the color wave function of
the previous equation can be also written as

ΨBar
color =

1√
6

[r(gb− bg)− b(gr − rg)− g(rb− br)] (25)

For completeness we also give the meson color wave function, that has the
form

ΨMes
color =

1√
3

(
rr̄ + gḡ + bb̄

)
(26)

that also represents a colorless state. The notation r̄, ḡ, b̄ stands for the
anticolor associated to the antiquarks of the meson.
We stress that the color represents an exact symmetry of the hadronic sys-
tems. For this reason, analogously to the isospin case, the quark-quark (i, j)
interaction can only contain the operators

1, ~λ(i)~λ(j) =
8∑

a=1

λa(i)λa(j)

where the ~λ represent the eight 3 × 3 Gell-Mann matrices. These matrices,
being the generators of SU(3), play the same role as the three Pauli matrices
in SU(2).

For quark model calculations, the relevant matrix elements of ~λ(i)~λ(j) are
are easily calculated for the baryonic and mesonic particles whose color states
are represented by eq.(25) and eq.(26), respectively.

5.3 Final comments and remarks

Other proofs of the existence of color are given by the properties of the
π0 → 2γ decay and by the study of the cross-section ratio

R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−)

that allow to count the number of the quark states.

The global invariance under rotations in color space is brought at local level
constructing the gauge field theory denoted as Quantum Chromo-Dynamics
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(QCD) that is the fundamental theory of strong interactions. In this the-
ory, the Gluon exchange (analogously to the Photon exchange in QED), is
responsible of the quark interactions.

All the observed hadrons are in a colorless state. In other words, colored
particles, in particular free quarks, are not observed. This property is called
color confinement.

As for the following developments, the total wave function of the nucleon
and of all the baryonic resonances is given by a symmetric spin-space-isospin
term multiplied by the antisymmetric color function of eq.(25). When not
strictly necessary, the color function will not be explicitly written.

6 The spatial part of the wave function

In order to determine the spatial part of the wave functions it is necessary to
to fix the dynamics of the system by means of a model for its Hamiltonian
operator. The starting point is, for its simplicity, a nonrelativistic Hamilto-
nian with a Harmonic Oscillator potential, that will be denoted as NR HO
model.

6.1 The NR HO model

This model is characterized by the following Hamiltonian

H = T + V (27a)

T = TNR =
∑

i

p2
i

2m
(27b)

V = VHO =
1

2
k

∑
i>j

(~ri − ~rj)
2 (27c)

where the sums are performed over the three constituent quarks.
According to the nonrelativistic picture, we introduce the nucleon mass M =
3m. For brevity, we shall not explicitly write its additive contribution to the
quark nonrelativistic Hamiltonian.

20



By using eqs.(6) one can express the nonrelativistic kinetic energy in terms
of the Jacobi momenta:

TNR =
P 2

2M
+

1

2m
(p 2

ρ + p 2
λ ) (28)

this quantity contains two contributions: the first term represents the Center
of Mass motion and the second one the intrinsic quark motion. The latter
term is relevant to determine the masses of the nucleon and of the resonant
excited states. Note that only in the nonrelativistic approximation one has
three independent quadratic terms in P 2, p2

ρ and p2
λ.

Analogously, by means of eqs.(4), it is possible to express the Harmonic
Oscillator potential in terms of the Jacobi coordinates:

VHO =
3

2
k(ρ2 + λ2) (29)

Note that the use of the Jacobi variables allows to separate VHO into two
independent contributions in ~ρ and ~λ. This property, that only holds for the
Harmonic Oscillator potential, greatly simplifies the solution of the Hamil-
tonian eigenvalue problem. At phenomenological level, the potential VHO is
able to represent the quark confinement inside the baryon. We can write the
total NR HO Hamiltonian in the form

H =
P 2

2M
+ M̂NR

HO (30)

with the NR HO mass operator written as

M̂NR
HO =

1

2m
(p 2

ρ + p 2
λ ) +

3

2
k(ρ 2 + λ 2) (31)

Such definition is not usual in a nonrelativistic context but is intended to
help the reader to pass to the study of relativistic quark models.
The first term of eq.(30) gives rise, in the total wave function of the system, to
a standard plane wave factor (completely symmetric with respect to particle
interchange) of the form

(2π~)−3/2 exp

(
i

~
~P ~R

)

normalized in a unitary volume. In general we shall neglect this factor and
concentrate our attention on finding the eigenstates and the eigenvalues of
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M̂NR
HO . This operator can be written as

M̂NR
HO = H

(λ)
HO + H

(ρ)
HO (32)

with

H
(x)
HO =

~p 2
x

2m
+

3

2
k~x 2 (33)

The solutions for the single oscillator Hamiltonian have an analytic form

H
(x)
HOΨn,l,m(~x) =

(
n +

3

2

)
ωΨn,l,m(~x) (34)

From now on, unless otherwise stated, we set ~ = 1. In the previous equation
ω =

√
3k/m, n represents quantum number of the energy and l,m those of

the orbital angular momentum. In more detail, the wave functions are

Ψn,l,m(~x) = α3/2Qn,l(ξ)Yl,m(Ωx) exp(−1

2
ξ2) (35)

with ξ = αx and α =
√

mω.
The Yl,m(Ωx) are the standard spherical harmonics of the angles of ~x. We
introduce the following polinomials

Qn,l(ξ) =

[
2[(n− l)/2]!

Γ[(n + l + 3)/2]

]1/2

ξl L
l+1/2
(n−l)/2(ξ

2) (36)

The last factor of the previous equation represents the Laguerre polinomials
defined as in the tables [8]. A thorough analysis of the quantum-mechanical
HO is given by a specialized text [9]. We highlight here only some relevant
properties of its solutions.

1) The asymptotic behaviour (the same for all the states) is given by the
Gaussian factor of eq.(35).

2) The solutions of the single nonrelativistic harmonic oscillator eigenvalue
problem present an accidental degeneration. In fact, for a given n, the angular
momentum eigenvalue l takes all the values with the same parity of n, from
0, or 1, to n.

3) The behavior of the wave functions for ξ → 0 is ξl, as shown in eq.(36).

22



Another important and very useful property of the HO wave functions is
that their Fourier Transforms (that means: the wave functions in momentum
space) can be calculated analytically and, apart from the phase factor (−i)n,
have the same form of eqs.(35) and (36). More precisely, they are

Ψn,l,m(~p) = (−i)nα−3/2Qn,l(χ)Yl,m(Ωp) exp(−1

2
χ2) (37)

with χ = p/α

6.2 Spatial wave functions with definite symmetry

Given the separated form of M̂NR
HO of eq.(30), we observe that any product

of two HO wave functions of ~ρ and ~λ is an eigenfunction of M̂NR
HO with the

energy eigenvalue EN = (N + 3)ω, being N = nρ + nλ. The task is now to
construct eigenfunctions not only of the rest energy , but also of the total
orbital angular momentum ~L = ~lρ+~lλ (with eigenvalues L,M) and, moreover,
with definite symmetry.
As for the angular momentum one has perform a standard tensor coupling
of the spherical harmonics Ylρ,mρ(Ωρ) and Ylλ,mλ

(Ωλ).
The complete results for the spatial wave functions up to N = 2 have been
found in different works [1] and take the form that is given in the following
by using the compact notation

Ψσ,π
N,L,M

where σ, π respectively represent the symmetry and parity indices.
By means of the transformation properties of ~ρ and ~λ, the reader should
verify the symmetry properties of those wave functions. For convenience we
also previously introduce the completely symmetric asymptotic factor

EHO = exp

[
−1

2
α2(ρ2 + λ2)

]
(38)

? For the ground state, that is N = 0, the wave function is completely
symmetric with L = 0

ΨS,+
0,00 =

α3

π3/2
EHO = Ψ00(~ρ)Ψ00(~λ) (39)
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? For the level with N = 1 one has a pair of mixed symmetry wave functions
with L = 1 and negative parity

ΨMA,−
1,1M =

√
8

3

α4

π
ρY1,M(Ωρ)EHO = Ψ00(~λ)Ψ1,1M(~ρ) (40a)

ΨMS,−
1,1M =

√
8

3

α4

π
λY1,M(Ωλ)EHO = Ψ1,1M(~λ)Ψ0,0(~ρ) (40b)

For the level with N = 2 one has seven possible combinations. In particular:
? a symmetric wave function with L = 0

ΨS,+
2,00 =

1√
3

α5

π3/2
(ρ2 + λ2 − 3α−2)EHO

= − 1√
2
[Ψ0,0(~ρ)Ψ2,0(~λ) + Ψ0,0(~λ)Ψ2,0(~ρ)] (41)

? a mixed symmetry pair with L = 0

ΨMA,+
2,00 =

2√
3

α5

π3/2
(~ρ~λ)EHO = −[Ψ1,1(~ρ)⊗Ψ1,1(~λ)]0,0

(42a)

ΨMS,+
2,00 =

1√
3

α5

π3/2
(ρ2 − λ2)EHO =

1√
2
[Ψ0,0(~ρ)Ψ2,0(~λ)−Ψ0,0(~λ)Ψ2,0(~ρ)]

(42b)

? a symmetric wave function with L = 2

ΨS,+
2,2M =

8√
15

α5

π
[ρ2Y2M(Ωρ) + λ2Y2M(Ωλ)]EHO

=
1√
2
[Ψ2,2M(~λ)Ψ0,0(~ρ) + Ψ2,2M(~ρ)Ψ0,0( ~λ)] (43)
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? a mixed symmetry pair with L = 2

ΨMA+
2,2M =

8

3

α5

π1/2
ρλ[Y1(Ωρ)⊗ Y1(Ωλ)]2,MEHO = [Ψ1,1(~ρ)⊗Ψ1,1(~λ)]2,M (44)

ΨMS+
2,2M =

8√
15

α5

π
[ρ2Y2M(Ωρ)− λ2Y2M(Ωλ)]EHO

=
1√
2
[−Ψ2,2M(~λ)Ψ0,0(~ρ) + Ψ2,2M(~ρ)Ψ0,0( ~λ)] (45)

? and finally a completely antisymmetric wave function with L = 1

ΨA+
2,2M =

√
2

π3/2
iα5[~λ× ~ρ]1,MEHO = [Ψ1,1(~λ)⊗Ψ1,1(~ρ)]1,M (46)

It is very useful to determine the Fourier Transform of the previous wave
functions. To this aim one can use eq.(37) for the ~ρ and ~λ oscillator wave
functions.
Considering the expressions after the first “ = ” sign in eqs.(39)-(46), the
corresponding Fourier Transformed functions can be obtained by inserting
the phase factor

(−i)N

and making everywhere the replacements

~ρ → ~pρ , ~λ → ~pλ (47a)

α → α−1 (47b)

On the other hand, in the expressions after the second “ = ” sign, one has
only to replace the corresponding momentum space HO wave functions of
eq.(37).

6.3 Comments and developments

In the next section, with standard techniques, we shall construct the total
wave functions with the spatial, spin, isospin (and color) terms.
Considering that the spin dependent interaction is usually considered as a
perturbation and most models are isospin independent or, in any case, weakly
isospin dependent, the values of the energy levels, (with the corresponding
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angular momentum and parity quantum numbers) would be roughly given
by the results of the previous subsection. Note that for this model the only
free parameter is the HO quantum ω. A constant term is also frequently
added to parametrize the unknown quantum effects for the bound states.
But such results are in poor agreement with the experimental data. The
origin of this discrepancy is clearly due to the unphysical character of M̂NR

HO

of eq.(32) that is not able to represent in an effective way the complexity of
the bound system quark dynamics.
Some details about more realistic quark Hamiltonians will be given in sect.8.
We stress here that, for those Hamiltonians, an analytic solution cannot be
found. One can use a variational diagonalization-minimization procedure
possibly taking (as a starting point) the NR HO wave functions of the pre-
vious section as the base states.
In this respect one can obtain a better accuracy of the variational solutions
by:
a) using a larger set of base states;
b) modifying the asymptotic behavior EHO.

Let us first examine point (b). With the exception of ΨS,+
2,00 of eq.(41), all the

other wave functions listed in the previous subsection are mutually orthog-
onal due to the different symmetry (σ), parity (π) and angular momentum
(L) values. (On the other hand the ortogonality of ΨS,+

0,00 and ΨS,+
2,00, given by

eqs. (39) and (41), is due to the factor ρ2 +λ2− 3α−2 in the latter function).
As a consequence, in those functions, whose orthogonality is due to the dif-
ferent values of σ, π and L, it is possible to replace EHO with any symmetric,
L = 0, normalizable, function. In this way one still obtains a set of mutually
orthogonal wave functions with the same σ, π, L,M of the HO ones.
As for the point (a), one can construct new orthogonal wave functions with
the same σ and L, by means of multiplicative symmetric terms. If EHO is
used, these terms are represented by standard Laguerre polynomials.
For example, ρ2 + λ2 − 3α−2 in ΨS,+

2,00 is the lowest degree polynomial, after
the constant one, for the σ = S (symmetric), L = 0 case.
The construction of these new spatial wave functions will be studied in a
forthcoming work introducing the formalism of the hyperspherical variables.
Exactly the same arguments also hold for the wave functions in momentum
space.
Finally, we recall that our wave functions (also the modified ones) do not
represent in any case a complete set of states. For example, one inmediately
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recognizes that states with lρ, lλ > 2 and different symmetry structure are
not included in the present analysis and should be also inserted to enlarge the
base states and give a more accurate description of the baryonic structure.

7 Construction of the total wave function

The procedure for constructing the total wave functions consists in making
combinations of the spatial functions of eqs.(39)-(46) with the spin-isospin
ones of eqs.(22). Standard tensor coupling is performed to obtain the total
angular angular momentum J of the baryonic state. The symmetry rules of
eqs.(21) are also used. A completely symmetric wave function is obtained.
We shall omit everywhere the antisymmetric color factor.
In passing, we recall that a similar procedure is used when studying the wave
functions of the three-nucleon systems, i.e. 3H and 3He. But, in this case,
there is no color factor and one has to construct a completely antisymmetric
spin-isospin-spatial wave function.

7.1 The low-lying states wave functions

To explain the procedure, we give here four relevant examples for the nucleon
and the first (low-lying) excited states of the resonance spectrum.
For simplicity we shall not write the angular momentum quantum numbers
in the l.h.s. of the following equations.

Assuming exactly the NR HO model of the previous section, one has for the
(ground) nucleon state

ΨN(940) = GS
1
2
T3, 1

2
M
·ΨS+

00 (48)

and for the N(1440), that is a resonance with the same quantum numbers of
the nucleon

ΨN(1440) = GS
1
2
T3, 1

2
M
·ΨS+

20 (49)

As discussed when introducing the color, the wave function of the ∆(1232)
is

Ψ∆(1232) = GS
3
2
T3, 3

2
M
·ΨS+

00 (50)
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Note that the nucleon and the ∆(1232) would be degenerate in the NR HO
model. This degeneracy is removed by the spin-spin interaction that will be
briefly discussed in the next section.

For the negative parity N(1520) resonance, the wave function is

ΨN(1520) =
1√
2
[[ΨMS,−

1,1 ⊗GMS
1
2
T3, 1

2
] 1
2
,M + [ΨMA,−

1,1 ⊗GMA
1
2
T3, 3

2
] 1
2
,M ] (51)

where the spatial wave functions of eqs.(40) have been used. Note that, ac-
cording to the NR HO model, this state would have an energy (ω) lower than
that (2ω) of the state given eq.(49), in disagreement with the experimental
data.

8 Quark model Hamiltonians

One of the most relevant constraint on the quark Hamiltonian is represented
by special relativity. This issue is very important not only for the spectrum
of the resonat states, but, even more, for the study of the form factors by
means of scattering processes in which the struck hadronic particle adquires
a relativistic velocity.
Given that it is not possible to solve QCD, that is the appropriate relativistic
quantum field theory for these systems, one constructs effective relativistic
models that reproduce the main symmetries of the underlying field theory.
As anticipated in the introduction, the so-called Relativistic Hamiltonian
Dynamics (RHD)[5, 6], with different formulations, allows to construct rela-
tivistic models for systems with a fixed number of constituents. The starting
point of this construction is the definition of a (relativistic) mass operator in
the rest frame of the hadron. This mass operator M̂ replaces the nonrela-
tivistic one introduced in subsect. 6.1. The eigenfunctions of this operator
are then boosted to a different reference frame to calculate the electroweak
form factors.
As for the structure of M̂ (analogously to the nonrelativistic models), it
is given by the sum of a relativistic kinetic operator K and an interaction
operator W :

M̂ = K + W (52)
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8.1 The relativistic kinetic energy

The relativistic kinetic energy term is of the form

K =
∑

i

√
~pi
∗2 + m2 (53)

where for the ~pi
∗ one has to use the expressions (6) in terms of ~pρ and ~pλ

setting ~P = 0, given that the invariant mass operator M is defined in the
hadronic rest frame.
With such kinetic term it does not seem possible to find analytic eigen-
functions for M̂ . One can search for approximate solutions by means of a
variational minimization-diagonalization procedure. In this context, using
antisymmetric wave functions, it is possible to take the contribution of one
quark (the #3 for convenience) multiplying by 3 the result:

< K >→ 3 < K3 >= 3 <

√
2

3
~p 2

λ + m2 > (54)

In this way a remarkable simplification of the calculations is obtained.

8.2 The interaction operator

As for the interaction term W , it is conventionally divided in two contribu-
tions: a Confining (C) term and a Gluon Exchange (GE) one:

W = WC + WGE (55)

The confining term, rather than quadratic in the interquark distance, as in
the HO model, is taken as a linear function of |~ri − ~rj| as suggested by
numerical approximate solutions of lattice QCD.

Moreover, introducing the hyperradius x =

√
~ρ2 + ~λ2, an hyperlinear confin-

ing potential WC
hl = αx has been also successfully proposed [10]. In fact,

a) this potential physically represents the three-body correlations of the
quark strong interactions;
b) its matrix-elements are easily calculated with spatial wave functions of
the kind of sect. 7;
c) it helps to put in the correct order the energies of the N(1440) and of the
N(1520) (negative parity) resonances.
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As for the GE term, it is usually inspired by the Fermi-Breit (FB) nonrela-
tivistic reduction of the one-gluon exchange Feynman diagram for the case
of quark-quark interaction. The total result is obtained summing over all the
(i, j) quark pairs.
In principle, the procedure of this reduction is the same as those of Quantum
Electro-Dynamics, where the interaction is produced by the photon exchange
(see for example ref. [11]) but replacing the electromagnetic coupling con-
stant αem = e2/~c = 1/137.0359 with the (phenomenological) strong one αs

and inserting the color operator ~λ(i)~λ(j)

WGE = αs

∑
i>j

~λ(i)~λ(j)W FB
ij (56)

One finds the following contributions to W FB
ij

? A short distance, Coulombic term

WCoul
ij =

1

|~ri − ~rj| (57)

that is also replaced by a 1/x hypercoulombic interaction [10]. Phenomeno-
logically, this term is important for the correct positioning of the low-lying
resonances.
? A spin-spin interaction of the kind

W SS
ij = − π

m2

2

3
~σi~σjδ(~ri − ~rj) (58)

where the delta function can be conveniently replaced by a more physical
and formally less pathological finite range spatial function. This spin-spin
interaction is strictly necessary to remove the N −∆ degeneracy.
? A tensor interaction of the form

W T
ij =

1

4m2
[~σi~σj − 3(σir̂ij)(σj r̂ij)]

1

|~ri − ~rj|3 (59)

A spin orbit contribution also appears in the Fermi-Breit reduction, but it is
omitted in the quark model Hamiltonians because it is not beneficial for the
reproduction of the resonance spectrum. It has been argued that the effec-
tive quark-quark interaction is produced not only by the gluon interchange
but also by other (effective) mesons of pseudoscalar and scalar nature. A

30



reduction procedure, similar to the FB one, can be performed. A suitable
choice of the parameters could finally cancel the spin-orbit terms.
Summarizing, from the previous equations, the FB interaction is

W FB
ij = WCoul

ij + W SS
ij + W T

ij (60)

An important task for the current investigation is to implement in the quark
model Hamiltonian a fully relativistic interaction operator obtained by sat-
urating different Dirac current terms and then to solve, with the the best
possible accuracy, the corresponding eigenvalue problem.

9 The magnetic moment of the nucleon

As an example of a very simple calculation that involves the quark model
wave functions, we take the nucleon magnetic moment. The experimental
value of this observable clearly shows that the nucleon is not a point-like
Dirac particle. We show that quark model allows to predict its value with
good accuracy. For clarity, in this section we explicitly write the Planck
constant ~.

9.1 The magnetic moment of spin 1/2 particles

Recall that, according to the Dirac equation, the magnetic dipole operator,
associated to the spin ~s = ~

2
~σ, is

~µs =
e

mc
~s =

e~
2mc

~σ (61)

Here m represents the mass and e the charge of a (generic) spin 1/2 particle.

If the particle is in motion and the orbital angular momentum is ~l 6= 0 the
total magnetic dipole (as well known in atomic physics) is

~µt = ~µs + ~µl =
e

2mc
(2~s + ~~l) =

e~
2mc

(~σ +~l) (62)

where ~l is measured in units of ~.
In order to test the prediction of the Dirac equation, it is necessary to mea-
sure the spin magnetic dipole of a particle, or, more exactly, the factor that
multiplies the Pauli matrices ~σ in eqs.(61) and (62).
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First, recall that the interaction with an external magnetic field ~B is

Hint = −~µt
~B (63)

Second, take a magnetic field of known intensity directed along the z-axis,
that is ~B = (0, 0, Bz).
Third, consider a particle with l = lz = 0 and the spin polarized along the
z-axis, that is with sz = +~/2. One conveniently introduces the Dirac spin
magnetic moment

µD =<↑ |µz| ↑>=<↑ | e~
2mc

σz| ↑>=
e~

2mc
(64)

so that
<↑ |Hint| ↑>= −Bzµ

D (65)

that shows how to obtain µD from an energy measurement.
Apart from very small radiative corrections, the numerical measured values
of µD for the electron and for the muon (that are point-like particles) are in
agreement with the prediction of the Dirac equation that is represented by
the last expression of eq.(64).

In the nucleon case, the situation is completely different. For practical rea-
sons, it has been introduced the numerical quantity denoted as the nuclear
magneton: µN = |e|~/(2Mc), being M the nucleon mass and |e| the elemen-
tary charge. As shown by eq.(64), the prediction of the Dirac equation, using
the nucleon mass and charge, would give

µD
p = µN (66a)

µD
n = 0 (66b)

for the proton and the neutron, respectively.
On the contrary, the experimental values are

µExp
p = +2.793µN (67a)

µExp
n = −1.913µN (67b)

Dirac equation is not able to reproduce these experimental data because the
nucleon is not a point-like particle.
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9.2 The quark model calculation

We can calculate the magnetic moment of the nucleon by means of the quark
model.
First, in order to write the magnetic dipole operator, we assume that the
quarks are point-like Dirac particles, so that in the nonrelativistic approx-
imation, we can sum up the contributions given by eq.(62) for each quark.
We have

~µ =
| e|~
2mc

3∑
i=1

Q̂i

(
~σi +~l∗i

)
(68)

where m is here the quark mass, Q̂i is the i-th quark (fractionary) charge

operator of eq.(19) and ~l∗i represents the intrinsic orbital angular momentum
(in units of ~) due to the movement of the i-th quark inside the nucleon. As
before, the measurable quantity µ is defined as

µ =<↑ |µz| ↑> (69)

(For brevity we do not write any index to distinguish proton and neutron).
The result will be different from the Dirac one, due to the composite character
of the system.
In the previous equation the nucleon state | ↑> is represented by a completely
antisymmetric three-quark state. Due to antisymmetry we can simplify the
calculations taking three times the contribution of one quark, say the #3.
By means of eq.(68) one finds

µ =
3|e|~
2mc

<↑ |Q̂3 (σz
3 + l∗z3 ) | ↑> (70)

We take for the nucleon wave function the expression given by eq.(48), ob-
viously with spin up and T3 = +/ − 1

2
for p/n, respectively. As usual, the

color wave functions give 1 when calculating the matrix element.
In what follows we shall not use the specific HO form of the spatial part of
the wave function. Our result is more general and always holds when this
spatial part is a completely symmetric, L = 0 state.
Due to the latter condition the contribution of l∗z3 to the matrix element is
vanishing and, taking into account eq.(48), eq.(70) can be rewritten as

µ =
3|e|~
2mc

< GS
1
2
T3, 1

2
1
2
|Q̂3σ

z
3|GS

1
2
T3, 1

2
1
2

> (71)
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Now GS
1
2
T3, 1

2
1
2

of eq.(22b) must be expressed in terms of of the spin and isospin

parts given in eq.(12). The relevant spin matrix elements are

< χ1
1
2
, 1
2
|σz

3|χ1
1
2
, 1
2

>= −1

3
(72a)

< χ0
1
2
, 1
2
|σz

3|χ0
1
2
, 1
2

>= +1 (72b)

The charge matrix elements with isospin wave functions are

< Φ1
1
2
,+ 1

2
|Q̂3|Φ1

1
2
,+ 1

2
>= 0 (73a)

< Φ1
1
2
,− 1

2
|Q̂3|Φ1

1
2
,− 1

2
>=

1

3
(73b)

< Φ0
1
2
,+ 1

2
|Q̂3|Φ0

1
2
,+ 1

2
>= +

2

3
(73c)

< Φ0
1
2
,− 1

2
|Q̂3|Φ0

1
2
,− 1

2
>= −1

3
(73d)

Obviously, the nondiagonal matrix elements are vanishing.
Using the previous results in eq.(71) one finally finds the following values for
the nucleon magnetic moment

µp =
|e|~
2mc

= 3µN µn = − |e|~
3mc

= −2µN (74)

where the expressions in terms of µN have been obtained assuming, for the
quark mass, the value m = M/3, according to the nonrelativistic approxi-
mation. Note that a good agreement with the experimental data of eq.(67)
is obtained.
Moreover, the quark model gives the ratio µp/µn = −3/2 = −1.5 indepen-
dently of the (unknown) value of the quark mass, to be compared with the
experimental ratio obtained from eq.(67), that is µExp

p /µExp
n = −1.460.

? ? ? ?

Concluding, we point out that the previous results for the nucleon magnetic
moment µ (that can be measured in static experiments) have suggested to
use quark model to investigate also the dynamic electromagnetic observables
of the nucleon.
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In more detail, the nucleon magnetic moment can be considered as the static
limit of the magnetic form factor GM(Q2), where Q2 represents the squared
momentum transfer in an elastic electron scattering process. It means that
GM(Q2 = 0) = µ.
The electric form factor GE(Q2) and the magnetic one GM(Q2), represent,
roughly speaking, the electric and magnetic internal structure of the nu-
cleon. These quantities are being measured with high accuracy by means of
polarized electron scattering processes at the Jefferson Laboratory. From the
theoretical point of view, their calculation strictly requires relativity, because
the nucleon, in the initial and/or final state of the scattering process, is found
in a relativistic motion with respect to a generic reference frame.
The form of the electromagnetic current and of the Lorentz boost operators
is studied in the context of RHD, using the wave functions introduced in the
present work.
Both theoretically and experimentally, interesting and unexpected results
have been obtained, encouraging further investigations. In particular, accu-
rate and reliable expressions for the wave functions are needed.

References

[1] M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991) and the references
quoted therein.

[2] F.E. Close, An Introduction to Quarks and Leptons, (Academic Press,
London and New York, 1979).

[3] Ta-Pei Cheng, Ling-Fong Li, Gauge Theory of Elementary Particle
Physics: Problems and Solutions, (Oxford University Press, 2000).

[4] W. Greiner, B. Müller, Quantum Mechanics: Symmetries, (Springer,
1994).

[5] B.D. Keister, W.N. Polyzou, Advanced Nuclear Physics, edited by J.W.
Negele and E.W. Vogt (Plenum, New York, 1991), Vol. 20, p. 225.

[6] M. De Sanctis, Eur. Phys. J. A 33, 71 (2007).

[7] Particle Data Group, Particle Physics Booklet, available from LBNL and
CERN in http://pdg.lbl.gov

35



[8] I.S. Gradshteyn, I.M. Ryzhik Table of Integrals, Series and Products
(Academic Press 1980) eq.(8.970).

[9] M. Moshinsky, Y.F. Smirnov,The Harmonic Oscillator in Modern
Physics, in Contemporary Concepts in Physics, Vol.9, (Harwood academic
publishers Amsterdam, The Netherlands 1996).

[10] M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys.
Lett. B 364, 231 (1995).

[11] E.M. Lifshitz, L. P. Pitaevskii, V. B. Berestetskii, Quantum Electrody-
namics, in Course of theoretical Physics, Vol.4, Second Edition, (Elsevier,
Butterworth Heinemann, 1982).

36


	caratula.pdf
	Page 1




