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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48352128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00519009


Noname manuscript No.
(will be inserted by the editor)

Viable control of an epidemiological SIR model

Michel De Lara · Marie-Estelle Marjollet

17 September 2010

Abstract We consider vaccination control of the spread of an epidemy in a classical

SIR model. Our approach aims at controlling the number infected at the peak. It

differs from the widespread stationary vaccination control strategies, based upon having

control reproductive number stricly less than one to ensure convergence, and also from

cost minimization optimal control ones. Indeed, instead of aiming at an equilibrium

or optimizing, we look for policies able to maintain the number of infected individuals

below a threshold for all times. Thus doing, we focus both on transitories and on

asymptotics, in a robust way. We provide a formulation of an epidemy management as

a dynamic control under constraint problem, for which the constraint to maintain the

number of infected individuals below a threshold for all times has to be achieved by a

time-dependent vaccination strategy. The so-called viability kernel is the set of initial

states for which such a vaccination policy exists. We give an expression of the viability

kernel, and characterize viable policies. We exhibit policies that are both viable and

asymptotic, in that they both control the maximum number infected at the peak and

asymptotically drive the number of infected to zero.

Keywords control theory · viability · epidemiology · SIR model · vaccination control

Mathematics Subject Classification (2000) MSC 92D30

1 Introduction

We consider vaccination control of the spread of an epidemy in a classical SIR model.

Our approach aims at controlling the number infected at the peak. It differs from

the widespread stationary vaccination control strategies, based upon having control

M. De Lara
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reproductive number stricly less than one to ensure convergence, and also from cost

minimization optimal control ones.

In the SIR model (and in many other models), a significant quantity is the “basic

reproductive number” R0 which depends on parameters such as the transmission rate,

the death and birth rate, etc. Numerous works (see references in [26,17]) exhibit con-

ditions on R0 such that the number of infected individuals tends towards zero. With

this tool, different management strategies of the propagation of the infection – quar-

anteen, vaccination, etc. – are compared with respect to how they modify R0. Thus,

strategies are compared as to their capacity to drive the number of infected towards

zero, focusing on asymptotics rather than on the transitory phase.

Other works deal with the whole trajectory, as in dynamic optimization where

strategies are compared with respect to intertemporal costs and benefits [27], [30], [25],

[28], [13], etc. More recently, [22] studies controls that minimize the outbreak size (or

infectious burden) under the assumption that there are limited control resources.

Our approach focuses both on transitories and asymptotics, in a robust way. Instead

of aiming at an equilibrium or optimizing, we look for policies able to maintain the

number of infected individuals below a threshold for all times. To our knowledge, this

approach is new. We have only found it mentioned in passing in [27] as a constraint –

bounding above the maximum number infected at the peak – in a dynamic optimization

problem, solved numerically.

In this paper, we provide a formulation of an epidemy management as a dynamic

control under constraint problem, for which the constraint to maintain the number

of infected individuals below a threshold for all times has to be achieved by a time-

dependent vaccination strategy.

Dynamic control under constraints problems refers to viability [3] or invariance

[12] frameworks. In the control theory literature, problems of constrained control lead

to the study of positively invariant sets, particularly ellipsoidal and polyhedral ones

for linear systems (see[8], [20], [21] and the survey paper [9]); reachability of target

sets or tubes for nonlinear discrete time dynamics is examined in [7]. Such a viability

approach has been applied to models related to the sustainable management of fisheries

[6], [4], [14], [32], [18], to viable strategies to ensure survival of some species [11],

to secure the prey predator system [10], to value the contribution of biodiversity to

ecosystem performance [5], to forest management [34], to livestock management [35], or

to monetary policy control [29]. Different examples may be found in [16] for sustainable

management applications.

In Section 2, we present a classical SIR model with vaccination, then formulate a

control problem with constraint on the infected population abundance. In Section 3,

we define and give the expression of the so-called viability kernel. This is the set of

initial states for which exists a vaccination policy such that the solution of the SIR

model satisfies the viability constraint consisting in maintaining the number of infected

individuals below a threshold for all times. We discuss the implications of our results.

Proofs are relegated in the Appendix.

2 Bounding up infected population with vaccination control

We present a classical SIR model with vaccination, then formulate a control problem

with constraint on the infected population abundance. Our aim consists in identifying
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conditions under which a vaccination strategy (time-varying newborn vaccination rate)

exists, making in sort that this constraint is satisfied for all times.

We consider a population subdivided in four groups:

– S the number of susceptibles,

– I the number of infected,

– R the number of removed individuals,

– V the number of vaccinated.

We shall suppose that the total population

N = S + I + R + V

is constant. We consider the classical SIR model with newborn vacccination (see [23,

19] and the references there in), where t denotes time:

dS

dt
= −βIS + δN(1 − p) − δS ,

dI

dt
= βIS − νI − δI ,

dR

dt
= νI − δR ,

dV

dt
= δNp − δV .

In the above equations, β is the transmission rate, δ the birth and death rate, ν the

recovery rate, and p the newborn vaccination rate.

Notice that the two variables St and It satisfy a coupled controlled dynamical

system:

dSt

dt
= −βItSt + δN(1 − pt) − δSt , (2a)

dIt

dt
= βItSt − νIt − δIt . (2b)

From now on, the state variable is the couple (S, I), while the variable p, newborn

vaccination rate, is the control variable varying in [0, 1].

Let 0 < Imax ≤ N . Our aim consists in finding, if it exists, a piecewise continuous

function t 7→ pt (vaccination rate policy), such that the following so-called viability

constraint is satisfied:

It < Imax , ∀t ≥ t0 . (3)

The existence of such a vaccination rate policy depends crucially on the initial state

(St0 , It0) at initial time t0. We shall now study the set of such initial states, also called

the viability kernel [3].

3 Viability kernel and viable vaccination policies for the control of infected

We shall now define and give the expression of the viability kernel. Then, we shall

provide viable policies, examine viable equilibria, and study how the viability kernel

varies with the parameters. Doing this, we are going to cross a well known quantity,

the basic reproductive number R0 (without vaccination):

R0 :=
β

δ + ν
N . (4)
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Fig. 1 The state constraints set V
0 (in gray)

The so-called control reproductive number for a stationary vaccination rate p is (1 −

p)R0.

3.1 Expression of the viability kernel

Definition 1 The viability kernel V(Imax) is the set of initial states (St0 , It0) at initial

time t0 for which exists a vaccination rate policy t 7→ pt ∈ [0, 1], such that the solution

of the dynamical system (2a)-(2b) satisfies the viability constraint (3).

First, let us recall that our study domain without constraints is the positively

invariant set {(S, I) | S ≥ 0, I ≥ 0, S + I ≤ N}. Second, the viability kernel V(Imax)

is necessarily included in the rectangle [0, N ] × [0, Imax[, because the initial point

must satisfy the viability constraint (3). The so-called state constraints set is their

intersection (see Figure 2)

V
0 := {(S, I) | S ≥ 0, Imax > I ≥ 0, S + I ≤ N} . (5)

We put

Smax :=
N

R0
=

δ + ν

β
. (6)

Theorem 1 The viability kernel V(Imax) is either the whole state constraint set V
0

or is strictly smaller (see Figure 1) depending on whether the upper bound Imax on the

number of infected is high or low.

– When Imax + Smax ≥ N , then V(Imax) = V
0 is the whole state constraint set.

– When Imax + Smax < N , then (see Figure 2)

V(Imax) = V
0 ∩ {(S, I) | Smax ≤ S ≤ N and I < I(S)} (7)
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Fig. 2 The viability kernel V(Imax) when Imax + Smax < N

is the domain of the whole state constraint set V
0 below the vaccination barrier

B := {(S, I(S)) | Smax ≤ S ≤ N} . (8)

This latter is given by the solution S ∈ [Smax, N ] 7→ I(S) to the differential equa-

tion:

0 = S(βI(S) + δ)I′(S) + βI(S)(S − Smax) , (9a)

I(Smax) = Imax . (9b)

Any policy exhibiting maximal vaccination rate pt = 1 in the neighbourhood of the upper

frontier [0, Smax] × {Imax} and of the vaccination barrier B = {(S, I(S)) | Smax ≤

S ≤ N} is viable.

3.2 Description of the vaccination barrier

The differential equation (9a) may be solved by separation of variables, giving

(βI + δ)

I
dI =

−βS + δ + ν

S
dS ,

and therefore the vaccination barrier B is also described by

βI + δ log I + βS − (δ + ν) log S = βImax + δ log Imax + βSmax − (δ + ν) log Smax .

Notice that the differential equation (9a)–(9b) is the solution of the dynamical sys-

tem (2a)-(2b) starting from the initial state (Smax, Imax) and with stationary control

pt = 1 (this is a well known result in viability theory [33,3]).
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3.3 Maximum number infected at the peak in the stationary case

Our approach fixes first an infected threshold Imax, then looks for initial states such

that the maximum number infected at the peak can remain below Imax by means of

a non-stationary strategy. In [27], the opposite is done: one starts from a given initial

state, applies a stationary vaccination rate pt ≡ p, then identifies the maximum number

infected at the peak. As shown below, it happens that both methods rely upon close

differential equations, but with different initial conditions.

For fixed vaccination rate p, suppose that the following differential equation is well

defined for all S ∈ [0, N ]:

0 =
`

δN(1 − p) + S(βIp(S) + δ)
´

I′
p(S) + βIp(S)(S − Smax) , (10a)

Ip(St0) = It0 . (10b)

Starting from the initial state (St0 , It0), we can show that the maximum number in-

fected at the peak is given by maxt≥t0 It = Ip(Smax). This is because the orbit of the

dynamical system (2a)-(2b) starting from (St0 , It0) is included in the 0-level set of the

(Lyapunov) function Lp(S, I) = I − Ip(S). Indeed, with classical notations, we put

L̇p(S, I) =
∂Lp

∂I
(S, I, p)

`

β(S − Smax) − I′
p(S)

´

+
∂Lp

∂S
(S, I)

`

− βIS − δS + δN(1 − p)
´

= Iβ(S − Smax) − I′
p(S)

`

− βIS − δS + δN(1 − p)
´

,

and we deduce that L̇p(S, Ip(S)) = 0 by (10a). Now, we know that the peak is

achieved when dI
dt

changes its sign, hence at S = Smax by (2b). Thus, given an initial

state (St0 , It0), the maximum number infected at the peak is given by maxt≥t0 It =

Ip(Smax).

Notice that, by a comparison theorem [2], one can prove that Ip(S) is increasing

with p. Therefore, the maximum number infected at the peak increases with vaccination

rate, as suggested by intuition.

3.4 Relation with stationary vaccination control

We shall now compare our “non-stationary maximum peak” approach with the more

traditional “stationary asymptotic” one.

For fixed vaccination rate p, the control reproductive number [19,17,24] is R0(1−p).

It is well known that, if R0(1 − p) < 1, the equilibrium ((1 − p)N, 0) is globally

asymptotically stable, and the epidemy asympotically dies; on the contrary, if R0(1 −

p) > 1, susceptibles and infectives approach constant levels (see [23] for more details).

Asymptotic control goes as follows [1,19]. For fixed vaccination rate p strictly above

the critical proportion of the population to be immunized

pc := 1 −
1

R0
, (11)

one has R0(1 − p) < 1. Therefore, stationary vaccination control pt ≡ p > pc ensures

that the number of infected It will tend to zero as time t goes on.

Our approach is different. We are not looking for a stationary vaccination rate pol-

icy to asymptotically achieve a steady state without infected. We first fix an infected

threshold Imax, then look whether exist non-stationary vaccination rate policies such
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Fig. 3 Converging trajectory with controlled maximum peak

that the maximum number infected at the peak is less than Imax. Our results provides

two types of information. First, we know for any initial state (St0 , It0) if we can main-

tain or not the number of infected It below the threshold thanks to non-stationary

vaccination control. Second, we know what type of vaccination strategy to implement.

When (St, It) approaches the upper frontier [0, Smax] × {Imax} and the vaccination

barrier B = {(S, I(S)) | Smax ≤ S ≤ N}, the vaccination must approach the maximal

vaccination rate p = 1.

3.5 Viable and asymptotic non-stationary vaccination control strategies

We suggest the following vaccination control strategy aiming both at controlling the

maximum number infected at the peak and at asymptotically driving the number of

infected to zero. Assuming the initial state (St0 , It0) to belong to the viability kernel

V(Imax),

– apply maximal vaccination rate control pt = 1 in the vicinity of the upper frontier

[0, Smax]×{Imax} and of the vaccination barrier B = {(S, I(S)) | Smax ≤ S ≤ N},

– apply fixed vaccination rate pt = p where p > pc elsewhere within the viability

kernel.

For example, one can use a strategy of the form

pt = max{e−λ(I(St)−It), κpc + 1 − κ} (12)

where λ > 0 and 0 < κ < 1. An illustration is given in Figure 3.

3.6 Viable equilibria for fixed vaccination rate p

We here check that viable equilibria, namely those equilibria which respect the viability

constraint (3), belong to the viability kernel V(Imax), as is well known [3]. For fixed
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vaccination rate p, the dynamical system (2a)-(2b) has the two following equilibria [15,

19,24] (when the following quantities are nonnegative):

(Smax,
(δ + ν)(N(1 − p) − Smax)

βSmax + ν
) and (N(1 − p), 0) . (13)

Now, we let vaccination rate p vary to obtain all the viable equilibria.

– If Smax > N , i.e. R0 < 1, the viable equilibria are the horizontal straight line

[0, N ] × {0}.

– if Smax ≤ N , i.e. R0 ≥ 1, the viable equilibria are the horizontal straight line

[0, N ] × {0} and the vertical straight line {Smax} × [0,
(δ+ν)(N−Smax)

βSmax+ν
] when this

latter upper bound is strictly less than Imax, or the vertical straight line {Smax}×

[0, Imax[ else.

One can check that these viable equilibria indeed belong to the viability kernel V(Imax).

3.7 Sensitivity analysis

We examine now the shape of the vaccination barrier B = {(S, I(S))|Smax ≤ S ≤ N}.

We show in the Appendix that (9a) is equivalent to

I′(S) = −1 +
δS + I(S)(δ + ν)

(βI(S) + δ)S
. (14)

Observing that I′(S) > −1, we conclude that the vaccination barrier is above the

straight line {(S, I) | S + I = Smax + Imax}, which has slope −1 and passes by

(Smax, Imax).

– As the transmission rate β decreases, the slope of I increases, which results in an

increase of the viability kernel by a comparison theorem [2]. Indeed, the smaller

β, the less contagious the infection, so that it is easier to contain infected below a

threshold if the spread of the disease is slow and weak.

– As the recovery rate ν increases, the slope of I increases, hence the viability kernel

increases. Indeed, the larger ν, the less infection.

– The influence of the birth and death rate δ is ambiguous.

– The influence of R0 on the shape of the viability kernel is not clear. When R0

decreases, Smax increases and the rectangular left part of the viability kernel in-

creases. However, we do not know how the curved right part moves since the vacci-

nation barrier B depends both on R0 and on δ/β. Assuming that δ/β is fixed (only

ν/β varies), we see that the vaccination barrier goes down when R0 decreases.

4 Conclusion

After having first fixed an infected threshold Imax, we have identified all initial states

such that the maximum number infected at the peak can remain below Imax by means

of a non-stationary strategy. We have also identified viable strategies, and given ex-

amples of strategies aiming both at controlling the maximum number infected at the

peak and at asymptotically driving the number of infected to zero.
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To our knowledge, this approach is new. The viable point of view in mathemat-

ical epidemiology seems not to have ever been studied before. We have presented

the basic idea with a simple SIR model with vaccination rate as control. Neverthe-

less, on the one hand, our model can be made more realistic by putting an upper

bound pmax < 1 on the control, avoiding full vaccination rate which is impossible

or highly costly. This changes the vaccination barrier with a new frontier given by

infp∈[0,pmax] H(S, I(S),−I′(S), 1, p) = 0 (where the Hamiltonian H is introduced in

the proof in the Appendix) On the other hand, this approach can be extended to other

models with other controls, such as isolation or quarantine.

A Appendix: simulations parameter values

Simulations are made with data from [15, p.44]:

N = 100 , β = 0.00 028 , ν = 0.005 , δ = 0.01 .

B Appendix: proof of Theorem 1

We suppose that Imax < R0−1
R0

N , i. e. Imax + Smax < N . Otherwise, the proof is easy and

left to the reader.
The proof will consist of three Lemmas. It makes use of a geometric characterization of

viable sets. A subset V of the state constraint set V
0 in (5) is said to be a viable set if there

exists t 7→ pt ∈ [0, 1], such that the solution to the dynamical system (2a)-(2b) starting from
any initial state (St0 , It0 ) ∈ V at initial time t0, remains within V for all times t ≥ t0. It may
easily be seen that a union of viable sets still is a viable set. A Theorem by Aubin [3] states
that the viability kernel is the largest viable set, that is, the union of all viable sets.

To the controlled dynamical system (2a)-(2b), we associate the controlled vector field g
given by its two components:

gS(S, I, p) = −βIS + δN(1 − p) − δS , (15a)

gI(S, I, p) = βIS − νI − δI . (15b)

The scalar product of the controlled vector field g with a vector n =

„

nS

nI

«

is the so-called

Hamiltonian [31]
H(S, I, nS , nI , p) := gS(S, I, p)nS + gI(S, I, p)nI

with expression

H(S, I, nS , nI , p) = (−βIS + δN(1 − p) − δS)nS + βI(S − Smax)nI . (16)

Lemma 1 There exists a unique solution S ∈ [Smax, N ] 7→ I(S) to the differential equa-

tion (9a)-(9b). This solution I is decreasing and strictly positive.

Proof Notice that Imax + Smax < N ⇒ Smax < N .
In the neighbourhood of Smax > 0 and I(Smax) = Imax > 0, the expression (βI(S)+ δ)S

is strictly positive. Thus, we can write (9a) as

I′(S) = −
I(S)(S − Smax)

(I(S) + δ/β)S
. (17)

This differential equation has separable variables. We shall not follow the path to solve it this
way, but we shall directly study the solution properties.

– By the Cauchy Lipschitz theorem applied to (17), there exists a local solution I of (9a)
and (17) around Smax > 0.
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– We shall now prove that the above local solution I is such that I(S) > 0. Indeed, suppose
that there exists S0 ≥ Smax such that I(S0) = 0. In the neighbourhood of S0 > 0, the
expression (βI(S) + δ)S is strictly positive so that (9a) and (17) are locally equivalent.
Now, around S0 > 0, we have two solutions, S 7→ I(S) and S 7→ 0, as can be checked
on formulas (9a) or (17). By the Cauchy Lipschitz theorem, this may not happen by
uniqueness. Therefore, no such S0 ≥ Smax may exist, and thus I(S) > 0 for all S such
that the solution is well defined.

– Finally, we shall prove that the above local solution I is decreasing. Indeed, by examining
(9a) or (17), we see that I′(S) < 0.

– To conclude, the above unique local solution I of (9a) is decreasing and bounded below
by 0. Therefore, it can be defined for all S ≥ Smax.

Now, we shall prove that the intersection set

V := V
0 ∩ {(S, I) | Smax ≤ S ≤ N and I < I(S)} (18)

introduced in Theorem 1 is a viable domain.

Lemma 2 The set V is a viable domain.

Proof The proof consists in writing V as the union of viable domains Vǫ for all ǫ > 0.
For this, we shall consider the following slightly modified version of the differential equa-

tion (9a)–(9b), where ǫ > 0 is small enough:

−ǫIǫ(S) = S(βIǫ(S) + δ)I′
ǫ(S) + βIǫ(S)(S − Smax) , (19a)

Iǫ(Smax − ǫ) = Imax − ǫ . (19b)

By the same proof as in Lemma 1, we can show that the above differential equation has a
unique solution S ∈ [Smax − ǫ, N ] 7→ Iǫ(S), strictly positive and strictly decreasing. We put

Vǫ := V
0 ∩ {(S, I) | Smax − ǫ ≤ S ≤ N and I < Iǫ(S)} . (20)

By a comparison theorem [2], it can straightforwardly be seen that the solution Iǫ of (19a)–
(19b) is below the solution I of (9a)–(9b). Hence Vǫ ⊂ V. By a continuity argument, V is the
union of all Vǫ for ǫ > 0.

Now, we prove that any Vǫ is a viable domain. Since the state constraint set V
0 is strongly

invariant, we can focus upon the frontier line {(S, Imax − ǫ) | 0 ≤ S < Smax − ǫ} and upon
the frontier curve {(S, Iǫ(S))|Smax − ǫ ≤ S ≤ N}. By examining the scalar product of the
controlled vector field g with the normal vector at these two frontier curves, we shall prove the
existence of a control p ∈ [0, 1] such that the controlled vector field g is inward to the domain
Vǫ.

– All along the segment {(S, Imax − ǫ) | 0 ≤ S < Smax − ǫ}, we have

H(S, Imax−ǫ, nS , nI , p) = (−β(Imax−ǫ)S+δN(1−p)−δS)nS+β(Imax−ǫ)Imax(S−Smax)nI .

The outward normal cone to the segment is made of vectors

„

nS

nI

«

=

„

0
nI

«

with nI > 0,

so that

inf
p∈[0,1]

H(S, Imax − ǫ, nS , nI , p) = β(Imax − ǫ)(S − Smax)nI ≤ −βǫ(Imax − ǫ)nI < 0

because S < Smax − ǫ. Therefore, the control p = 1 at the frontier {(S, Imax − ǫ) | 0 ≤
S < Smax − ǫ} is such that the controlled vector field g is inward to the domain Vǫ.

– Along the frontier curve {(S, Iǫ(S))|Smax − ǫ ≤ S ≤ N}, an outgoing normal vector is
„

nS

nI

«

=

„

−I′
ǫ(S)
1

«

. Therefore, the Hamiltonian (16) evaluated for this outgoing normal

vector along this curve is given by

H(S, Iǫ(S),−I′
ǫ(S), 1, p) = −I′

ǫ(S)(−βIǫ(S)S + δN(1 − p) − δS) + βIǫ(S)(S − Smax) .
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We have I′
ǫ(S) < 0, so that

inf
p∈[0,1]

H(S, Iǫ(S), nS , nI , p) = −I′
ǫ(S)(−βIǫ(S)S−δS)+βIǫ(S)(S−Smax) = −ǫIǫ(S) < 0 ,

because Iǫ is solution of (19a) and Iǫ(S) > 0. Therefore, the control p = 1 at the frontier
{(S, Iǫ(S))|Smax − ǫ ≤ S ≤ N} is such that the controlled vector field g is inward to the
domain Vǫ.

– At the common extremity (Smax−ǫ, Imax−ǫ), the normal cone is

„

nS

nI

«

= a

„

−I′
ǫ(Smax − ǫ)

1

«

+

b

„

0
1

«

, with a ≥ 0 and b ≥ 0 and a + b > 0. Therefore, the Hamiltonian (16) evaluated for

such normal vectors at this common extremity (Smax − ǫ, Imax − ǫ) is given by

H(Smax − ǫ, Imax − ǫ, nS , nI , p) =

−aI′
ǫ(Smax − ǫ)

`

− β(Imax − ǫ)(Smax − ǫ) + δN(1 − p) − δ(Smax − ǫ)
´

−βǫ(a + b)(Imax − ǫ) .

Since I′
ǫ(S) < 0 and a ≥ 0, we obtain that

inf
p∈[0,1]

H(Smax − ǫ, Imax − ǫ, nS , nI , p) =

−aI′
ǫ(Smax − ǫ)

`

− β(Imax − ǫ)(Smax − ǫ) − δ(Smax − ǫ)
´

− βǫ(a + b)(Imax − ǫ) < 0 ,

because a+b > 0. Therefore, the control p = 1 at the common extremity (Smax−ǫ, Imax−ǫ)
is such that the controlled vector field g is inward to the domain Vǫ.

– At (N, Iǫ(N)) the normal cone is

„

nS

nI

«

= a

„

−I′
ǫ(N)
1

«

+ b

„

1
0

«

with a ≥ 0 and b ≥ 0,

not both equal to 0. Therefore, the Hamiltonian (16) evaluated for such normal vectors at
(N, Iǫ(N)) is given by

H(N, Iǫ(N), nS , nI , p) = (b − aI′
ǫ(N))(−βIǫ(N)N − δpN) + aβIǫ(N)(N − Smax) .

Since I′
ǫ(N) < 0 and a ≥ 0, b ≥ 0, we obtain that

inf
p∈[0,1]

H(N, Iǫ(N), nS , nI , p) = (b − aI′
ǫ(N))(−βIǫ(N)N − δN) + aβIǫ(N)(N − Smax)

= b(−βIǫ(N)N − δN)

+ a(N(βIǫ(N) + δ)I′
ǫ(N) + βIǫ(N)(N − Smax))

= b(−βIǫ(N)N − δN) − aǫIǫ(N) < 0 ,

since Iǫ is a solution of (19a) and Iǫ > 0. Therefore, the control p = 1 at (N, Iǫ(N)) is
such that the controlled vector field g is inward to the domain Vǫ.

To conclude, we have shown that the control p = 1 applied all along the boundary of the set
Vǫ is such that the controlled vector field g is inward to the domain Vǫ. Thus, Vǫ is a viable
set.

Lemma 3 If a solution t 7→ (St, It) of the differential control system (2a)-(2b) starts from

an initial state (St0 , It0 ) outside the set V defined in (18), it will violate the constraint (3)
after a finite time.

Proof We define a function L(S, I) on the rectangle [Smax, N ] × [0, Imax]:

L(S, I) = I − I(S) ,

where I is the solution of (9a)-(9b). With this, the set V defined in (18) can be written as
V = {(S, I)|Smax ≤ S ≤ N,L(S, I) < 0}. We introduce

D := {(S, I)|Smax ≤ S ≤ N, I > I(S)} = {(S, I)|Smax ≤ S ≤ N,L(S, I) ≥ 0} (22)
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Fig. 4 A trajectory starting from outside the viability kernel, and violating the constraint

which is the complementary set of V in {(S, I)|Smax ≤ S ≤ N, I ≥ 0}.
We shall now show that any trajectory starting from an initial state in D necessarily, on

the one hand, remains within D (D is strongly invariant), and, on the other hand, violates
the constraint (3). For this purpose, let us consider a solution t 7→ (St, It) of the differential
control system (2a)-(2b) starting from an initial state (St0 , It0 ) ∈ D.

First, we shall show that t 7→ L(St, It) is increasing. It is well known that
dL(It,St)

dt
=

L̇(St, It, pt), where

L̇(S, I, p) =
∂L

∂S
(S, I)gS(S, I, p) +

∂L

∂I
(S, I)gI(S, I, p)

= −I′(S)(−βIS + δN(1 − p) − δS) + Iβ(S − Smax)

= I′(S)(βIS + δS) − I′(S)δN(1 − p) + Iβ(S − Smax) .

Therefore, when I ≥ I(S), we have that

L̇(S, I, p) ≥ I(S)β(S − Smax) + I′(S)(βI(S)S + δS) − I′(S)δN(1 − p)

≥ −I′(S)δN(1 − p) ≥ 0 ,

because I′(S) < 0 and I solves (9a). We have proved that L(St, It) ≥ L(St0 , It0 ) > 0 and
therefore that (St, It) remains in the domain D, hence outside V.

Second, we shall prove that the constraint (3) is necessarily violated. Indeed, suppose the
contrary: It < Imax for all t ≥ t0. We put Lt0 = L(St0 , It0 ) > 0. We have

L(St, It) ≥ L(St0 , It0 ) ⇒ I(St) < It − Lt0 < Imax − Lt0 = I(Smax) − Lt0 ,

which implies that St > I−1(I(Smax)−Lt0 ). Therefore, St−Smax > κ, where κ = I−1(I(Smax)−

Lt0 )−Smax > 0 does not depend on time t. Now, according to (2b), İ = βI(St−Smax) > βIκ,

and thus It ≥ It0eκ(t−t0). Since κ > 0, this contradicts the initial assumption that It < Imax

for all t ≥ t0. Therefore, the constraint (3) is necessarily violated.

To conclude, we have proved, on the one hand, that the set V defined in (18) is a viable
set and, on the other hand, that any trajectory starting from an initial state outside V violates
the constraint (3) after a finite time. Therefore, this set V is the viability kernel V(Imax).
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