
Families of automata characterizing context-sensitive

languages

Christophe Morvan, Chloé Rispal
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Abstract In the hierarchy of infinite graph families, rational graphs are defined by ratio-
nal transducers with labelled final states. This paper proves that their traces are precisely
context-sensitive languages and that this result remains true for synchronized rational
graphs.

1 Introduction

During the last fifteen years, there has been a great deal of interest around families of
infinite graphs. The decidable properties of these families provide a nice framework for
validation and verification. Muller and Schupp introduced in [16] the transition graphs of
pushdown automata and proved that their monadic second order theory was decidable. A
few years later, Courcelle extended this result to regular graphs generated by deterministic
graph grammars, [7]. In 1996 Caucal used inverse rational substitution (followed by a
rational restriction) to define the prefix-recognizable graphs; they have a decidable second
order monadic theory [4]. The automatic graphs form a more general family of graphs.
They are automatic structures, defined in 2000 by Blumensath and Grädel [1], and have,
thus, a decidable first order theory. Very recently Colcombet considered an interesting
extension of prefix-recognizable graphs, namely the VRP-graphs (vertex replacement with
product) [6]. They are obtained using vertex replacement systems and a graph product.
Their first-order theory with accessibility is decidable.
The study of infinite graph families is also naturally linked to language theory. Precisely,
the transition graphs of pushdown automata and prefix-recognizable graphs are defined
from language theory. Recently, Urvoy extended the work of Ginsburg and Greibach [20]
to define abstract families of graphs [22]. The connection between families of graphs and
language theory is even deeper: they constitute an elegant characterization of families of
languages. If we consider the trace of a graph as the language of path labels leading from an
initial set of vertices to a final set of vertices, then traces form one of the most important
link between graphs and languages. For example, it is well known that the traces of finite
graphs are regular languages [11]. By construction, the traces of the transition graphs of
pushdown automata are the context-free languages. These languages are also the traces
of prefix-recognizable graphs [4]. At this time, the languages corresponding to the VRP-
graphs is still unknown. In 2001 Caucal used Turing machines to define a class of graphs
whose traces are recursively enumerable languages [3].
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In this paper we establish a new correspondence between the Chomsky hierarchy [5] and
families of graphs. We prove that the traces of rational graphs (generated by labelled ra-
tional transducers [14]), are context-sensitive languages. We show that this result remains
true if we restrict to synchronized graphs [18]. In those cases the traces correspond to path
labels between finite sets. Extending initial and final sets to rational sets, letter-to-letter
rational graphs also trace context-sensitive languages.
This article is organized in three sections. The first one uses finite transducers, that is
finite automata labelled with pairs, to define the rational graphs. Some basic results and
definitions about context-sensitive languages are also recalled. The second section proves
that the trace of any rational graph can be recognized using a linear bounded Turing
machine, and is therefore a context-sensitive languages. Finally, the third section uses the
Penttonen normal form [17] to prove that any context-sensitive language is the trace of a
rational graph. Indeed, it proves that the synchronized rational graphs, which is a proper
subclass of rational graphs [1], [21], are sufficient to obtain any context-sensitive language.

2 Preliminary definitions

In this section, we recall basic definitions concerning infinite graphs and context-sensitive
languages. In the first part, rational graphs, synchronized graphs and letter-to-letter graphs
are defined from transducers. Then, context-sensitive languages are characterized both
from Turing machines and from Penttonen’s rewriting systems in the second part.

2.1 Graphs and transducers

Let A be a finite set of labels. A simple arc labelled graph is a subset of V ×A×V where
V is an arbitrary set of vertices.
We denote by s

a
−→

G

t the existence of the arc (s, a, t) in the graph G or simply by s
a

−→t

when there is no ambiguity.
A path s

u
=⇒

G

t of a graph G leading from a vertex s to a vertex t and of label u is a finite

sequence (s0, a1, s1)...(sn−1, an, sn) of arcs of G such that u = a1...an, s = s0 and t = sn.
A trace of a graph G is the language L(G, I, F ) of path labels leading from a set I of initial
vertices to a set F of final vertices:

L(G, I, F ) = { u | ∃ s ∈ I ∃ t ∈ F, s
u

=⇒
G

t }

An automaton A is a triple (G, I, F ) where G is a finite graph and I and F are initial and
final sets of states. The language, L(A), recognized by A is the trace L(G, I, F ).
Let Σ be a finite alphabet. We denote by Σ∗ the set of finite words over letters of Σ, and
we write ε for the empty word.
A transducer T is a finite automaton where labels have been modified to recognize relations
instead of sets of words. It is defined by a finite subset of Q×Σ∗

×Σ∗
×Q of labelled arcs,

where Q is a finite set of states, by a set I ⊆ Q of initial states, and by a set F ⊆ Q of
final states. So a transducer is labelled by pairs of words. Any transition (p, u, v, q) of a

transducer T is denoted by p
u/v
−→

T

q or by p
u/v
−→ q when T is understood.

A path p0
u1/v1
−→ p1 . . . pn−1

un/vn
−→ pn with u = u1...un and v = v1...vn is labelled

u/v and is denoted by p0
u/v
=⇒

T

pn. A path is successful if it leads from an initial state to a

final one. A pair (u, v) ∈ Σ∗
×Σ∗ is recognized by a transducer if there exists a successful

path labelled u/v.
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Definition 2.1. A relation is rational if it is recognized by a transducer.

We denote by Rat(Σ∗×Σ∗) the set of binary rational relations. The following transducer,
with initial state 0 (marked by an incoming arrow) and final state 1 (marked by a double
circle) recognizes the rational relation { (AnBm , BnA2m) | n ≥ 0,m > 0 }.

0 1

A/B

B/AA

B/AA

2.2 hierarchy of rational graphs

Using words as vertices, infinite graphs can be defined by the relations between the ex-
tremities of its arcs. Given any graph G ⊆ Σ∗

×A×Σ∗, we denote by
a

−→
G

the relation

{ (s, t) | (s, a, t) ∈ G }. The graph G is rational if for each a ∈ A, the relation
a

−→
G

is

rational.
For instance, the following graph, on the left, called the grid is a rational graph since it is
defined by the following transducer, on the right.

ε A A2

B AB A2B

B2 AB2 A2B2

a a

a a

a a

b

b

b

b

b

b

p

q1

q2

a

b

ε/A

ε/B

A/A

B/B

B/B

Subfamilies of rational graphs are defined from subsets of rational relations.
If a transducer has labels over Σ×Σ it is called a letter-to-letter transducer: it is a trans-
ducer labelled by pairs of letters instead of pairs of words.

Definition 2.2. A relation is letter-to-letter if it is recognized by a letter-to-letter trans-
ducer.

A graph G is a letter-to-letter graph if for each a ∈ A, the relation Ga is letter-to-letter.
Another particular subset of rational relations called left-synchronized relations has been
studied by Elgot and Mezei [8] and then by Frougny and Sakarovitch [10]. Those relations
are recognized by letter-to-letter transducers with rational terminal functions completing
one side of the recognized pairs. The terminal function associates a relation to each termi-
nal state of the transducer. Then, the relation defined is the set of labels of path ending
at a state q, concatenated with pairs of the terminal function’s value in q. For example, a
pair (u, v) belongs to a synchronized relation R, if there exists two pairs of words (u′, v′)
and (u′′, v′′) such that (u, v) = (u′, v′) · (u′′, v′′) with the following condition: there exists
a terminal state q, a path labelled (u′, v′) leading to q, and (u′′, v′′) belongs to the value
of the terminal function in q. Formally:

Definition 2.3. A relation over Σ∗
×Σ∗ is left-synchronized if it is recognized by a letter-

to-letter transducer T with terminal function f taking values in
DifRat = (Rat(Σ∗) × {ε}) ∪ ({ε} × Rat(Σ∗))
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That is, a left-synchronized relation is a finite union of elementary relations of the form
R.S where R ∈ Rat((Σ × Σ)∗) and S ∈ DifRat. Right-synchronized relations are defined
symmetrically with an initial rational function. A rational relation is synchronized if it is
left-synchronized or right-synchronized.

Example 2.4. Let us consider the relation |2 defined by x|2y if x is a power of 2 dividing
y. Provided integers are coded in base 2 (with lowest bits on the left), the relation |2 is left-
synchronized. This relation is recognized by the following letter-to-letter transducer with
the terminal function f defined by f(q) = (ε, 0)∗(ε, 1){(ε, 0), (ε, 1)}∗ and f(r) = (ε, ε).

p

q

r

0/0
1/0

1/1

As the terminal function is rational, it can be introduced in the transducer adding states
and transitions. A left-synchronized transducer is a transducer such that each path leading
from an initial vertex to a final one can be divided into two parts: the first one only contains

arcs of the form {p
A/B
−→ q|p, q ∈ Q ∧ A,B ∈ Σ} while the second part contains either arcs

of the form {p
A/ǫ
−→ q|p, q ∈ Q ∧ A ∈ Σ} or arcs of the form {p

ǫ/B
−→ q|p, q ∈ Q ∧ B ∈ Σ}

(but not both).

Remark 2.5. Automatic structures, [1], or automatic groups, [9], are defined by auto-
matic relations which are equivalent to synchronized relations.

Example 2.6. The following left-synchronized transducer recognizes the left-synchronized
relation of Example 2.4.

p

q s

r

0/0

ǫ/0

1/0

ǫ/0, ǫ/1

1/1

ǫ/1

A graph G is left-synchronized if for each a ∈ A, the relation Ga is left-synchronized.

Subfamilies of rational relations are closed under union, intersection and complementation.

Theorem 2.7. [8] The rational left-synchronized relations (respectively letter to letter
relations) form a boolean algebra.

A very important consequence of this result is the decidability of the first order theory of
the graphs defined using synchronized relations.
We also use particular left-synchronized relations. A binary relation R is recognizable if it
is a finite union of products S × T where S, T ∈ Rat(Σ∗). A binary relation R over words
is of bounded length difference if there exists an integer b such that | |u| − |v| | ≤ b for any
(u, v) ∈ R.

Proposition 2.8. [10] The family of synchronized relations contains the recognizable re-
lations and the rational relations of bounded length difference.
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When working with rational or synchronized graphs, it is sufficient to consider the traces
between singletons instead of rational sets.

Lemma 2.9. Let G ⊆ Σ∗
×A×Σ∗ be a left-synchronized graph.

Let I, F ∈ Rat(Σ∗) and $,# /∈ Σ.
There exists a left-synchronized graph H ⊆ (Σ∗ ∪ {$,#})×A×(Σ∗ ∪ {$,#}) such that

L(G, I, F ) = L(H, {$}, {#}).

Proof. i) For all a ∈ A, we define:

Fa := Dom(
a

−→
G

∩ Σ∗
×F )

the set of vertices which are source of an arc leading to a final state. This set is rational
being the domain of a rational relation. Then we create new arcs leading from those vertices
to the vertex #. More precisely, for all a ∈ A, we define the arcs of the graph G′ to be as
follows:

a
−→

G′

:=
a

−→
G

∪ Fa×a×{#}

This relation is left-synchronized as the union of a left-synchronized relation with a rec-
ognizable set. Moreover and by construction,

L(G, I, F ) = L(G′, I, {#})

ii) By a symmetric argument, a graph G′′ is defined such that,

L(G′, I, {#}) = L(G′′, {$}, {#}).

2

2.3 Context-sensitive languages

In Chomsky’s hierarchy of languages, the family of context-sensitive languages (Csl) is
located between recursively enumerable and context-free languages. There are many dif-
ferent ways to characterize this family of languages. In the following, we recall two of those
characterizations. The first one, due to Kuroda [12], defines context-sensitive languages
as the languages recognized by Linearly Bounded Turing machines (LBM). The second
characterization due to Penttonen [17], is based on a particular rewriting system.

Context-sensitive languages from Turing machines
A linearly bounded machine is a Turing machine such that the size of the tape is bounded,
linearly, by the length of the input. These machines are a classical characterization of Csl.

Theorem 2.10. [12] Context-sensitive languages are the set of languages recognized by
linearly bounded Turing machines.

Penttonen’s characterization of Context-sensitive languages
A different characterization of Csl, due to Penttonen [17], is based on a rewriting system
using particular rules.

Definition 2.11. A rewriting system Γ = Γ1 ∪ Γ2 is a 2-system if every rule of Γ2 is of
the form AB → AC with B 6= C and every rule of Γ1 is of the form A → a where A,B,C
are letters of the non-terminal alphabet Σ and a ∈ A.
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Context-sensitive languages are obtained by derivation of a 2-system from a linear lan-
guage.
A language is linear if it can be generated by a grammar whose rules are of the form
Z −→ W , where Z is a non-terminal, W is a word over terminal and non-terminal symbols,

with at most one non-terminal.

Theorem 2.12. [17] There exists a linear language LLin such that every context-sensitive

language is {v ∈ A∗ | ∃ u ∈ LLin , u
∗

−→
Γ

v} for some 2-system Γ .

3 From rational graphs to context-sensitive languages

In this section, we prove that the traces of rational graphs between initial and final rational
sets of vertices are context-sensitive languages, this exposition is a detailed (and simplified)
version of the first section of [15].

3.1 First approach

As we have seen in Section 2.3, a common characterization of Csl is given by LBM. The
first idea is to simulate a rational graph with an LBM. Any vertex of the graph would be
stored on the tape, and the machine would compute the next vertex.
This basic approach fails to recognize the traces of rational graphs: the length of the
vertices may grow exponentially. Example 3.1 illustrates this situation.

Example 3.1. The transducer, having a single state p (initial and final labelled a) and a

single transition p
A/AA
−−−−→ p defines the following graph:

A

A3

A5

A2

A6

A10

A4

A12

A20

A2n

A3.2n

A5.2n

a a a a

a a a a

a a a a

The trace of this graph between A and A∗ is obviously a∗. The problem is that the length
of the vertices is exponential in the length of the recognized word. For example, the path
recognizing a3 is the following:

A
a
−→ AA

a
−→ A4 a

−→ A8

More generally: an leads from A to A2n
. Therefore, it is not straightforward to construct

a linear bounded machine recognizing the language of the transducer.

The last remarks leads to encode the vertices of the graph in order to keep their length
linear. In this case it becomes difficult to compute the “next vertex function”. Especially
if some branches of the transducer produce a sub-graph with a linear growth, and some
other with an exponential growth.
The next section exposes a different approach which avoids those difficulties.
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3.2 Construction of the LBM

Let G ∈ Σ∗ × A × Σ∗ be a rational graph recognized by a transducer T . For each a in
A, we denote by Ta the transducer recognizing

a
−→

G

. We construct a LBM recognizing the

trace L(G, I, F ), where I and F are rational sets.
Roughly speaking, our solution is to simulate the transitions of G in parallel: for example,

let us consider a path U
a
−→ V

b
−→ W in G and suppose that the first transition of Ta is

of the form q
ǫ/X
−−→ q′. Then X is the first element of V , thus we can activate Tb knowing

that X is the first non-empty left-hand-side label.

Using this observation we only need to keep on the tape of the machine one state for each
transducer Ta, plus some bounded information corresponding to what it might consume
and what it has produced (and that has not been consumed yet).
By Lemma 2.9 we suppose that I and F are singletons containing respectively $ and #.

A transducer is normalized if all its transitions are of the form, p
u/v
−−→ q, where |u|+|v| = 1.

It is straightforward to see that any rational graph can be generated by a normalized
transducer.

In order to present the LBM that we construct, we simply give moves corresponding to
obvious sequences of ordinary LBM transitions. Let M = (Q,W,⊲, F,R) be a LBM,
where W contains the elements of Σ, the states of T , ε and left and right end-markers
respectively denoted by △ and ▽. The elements of Q are not described in details, we only
need to specify two macro states (allowing to initiate a move): ⊲ and ◮, ⊲ being the
initial state of the machine. The set F contains a single state (♦).

The initial configuration is the following:

△ ⊲ w 2
|w|+1 ▽.

There are |w| + 1 blank symbols after w because the first transitions produce this config-
uration:

△ ◮ $ iw(0) ε iw(1) · · · iw(|w|) ε ▽.

For this configuration, each symbol iw(k) is the initial state of the transducer correspond-
ing to the letter w(k) (denoted by Tw(k)). In each configuration of this machine, the even
positions correspond to states of the transducers (the machine has to simulate |w| trans-
ducers). For example, let us suppose that A qa B qb C is a factor of some configuration of
the machine, the letter A corresponds to the left hand side of a transition in transducer
Ta starting from qa, B corresponds to the right hand-side of some transition in Ta ending
in state qa (it can be interpreted as: transducer Ta has produced B and has to consume
A). It is the same for state qb. There are three different moves of the machine:

Label Transducer Initial position Final position Comment

Move (a) qa
A/ε
−−→
Ta

q′a · · · ◮ A qa C qb · · · · · · ε q′a ◮ C qb · · ·

A,C ∈ Σ ∪
{$, #, ε} qa state
of Ta

qb state of Tb or ▽

Move (b) qa
ε/B
−−→

Ta

q′a · · · ◮ A qa ε qb · · · · · · A q′a ◮ B qb · · ·

A ∈ Σ ∪ {$, #, ε}
qa state of Ta

qb state of Tb or ▽

Move (c) — · · · B qb ◮ C qa · · · · · · ◮ B qb C qa · · ·
C = ε or
qa = ▽ and C = #
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The machine checks for success each time state ◮ reaches # followed by ▽ (if ▽ follows any
other non-ε letter there is no transition, the run fails). It also checks for success if ◮ reaches
ε followed by a fwi (a final state of Twi). In those cases, the machine checks whether for
all i, qai equals fai and Ai equals ε; if it is the case, it is a success. Indeed, it means that
everything that has been produced has been consumed, and that each transducer is in an
acceptable state (a final state). If there is no success, the machine proceeds to move (a),
(b) or (c).

Lemma 3.2. The languages recognized by the machine M is the trace, L(G, $,#), of G.

Proof. First, we prove that L(M) ⊆ LG. Consider a word w ∈ L(M). From a successful
run in M , we can deduce paths in the transducers corresponding to the letters of w: all
moves done by the machine can be done by a transducer, except those to the left which
correspond to a “change of transducer”.
Second, we prove that LG ⊆ L(M). Let w be a word in LG, and suppose that n = |w|.

There is a path in G between $ and # labelled w: $
w1−→ u1

w2−→ u2 · · · un−1
wn−−→ #. Therefore

we have: $ Tw1
u1, u1Tw2

u2, · · · un−1Twn#.
To construct a successful run of M , we use, for all i, a path in Twi labelled ui−1/ui. We
define a new transducer T ′

wi
as a copy of the transducer Twi , where each ε is replaced by

a letter E (not in Σ). Thus ui−1Twiui implies u′
i−1T

′
wi

u′′
i with:

u′
i−1 = Ek1ui−1(1)E

k2 · · · E
k|ui−1|ui−1(|ui−1|)E

k|ui−1|+1.

Each E means that a transition labelled ε on the left, in Twi has been followed. The word
u′′

i is similar. Each letter in u′
i−1 witnesses for a transition in Twi , and therefore corresponds

to a letter in u′′
i (thus, for all i, |u′

i−1| = |u′′
i |).

Now we use these words u′
i to construct a successful run in M . The function: first, over

words, returns the first letter of a word (nothing if it is the empty word), and the function
tail erases the first letter of a word. This process constructs a successful run of M :

Set i := 1 /* index of the transducer */
Set A1 := $ and, for all i > 2, Ai := ε
Repeat

Case:
u′′

i = ε :Follow corresponding move (c)
i := i − 1

first (u′
i−1) = E :Ai+1 :=first(u′′

i ) (first(u′′
i ) 6= E)

tail(u′
i−1), tail(u

′′
i ), i := i + 1

Follow corresponding move (b)
first (u′

i−1) = Ai:Ai := ε
tail(u′

i−1), tail(u
′′
i ), i := i + 1

Follow corresponding move (a)
Else :i := i − 1, follow corresponding move (c)

Until (For all i, u′
i = u′′

i = ε)

From the construction of the u′
i and u′′

i , this process will always be able to follow a tran-
sition. Since all transitions to the right remove letters, the process eventually meets the
“out” condition and therefore succeeds. This process yields a path in M , recognizing w
which concludes the proof. 2
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This construction is illustrated for the graph of Example 3.1.

Example 3.3. The first step consist of normalizing the transducer, and to separate initial
and final states.

a

a

ε/A

A/ε

ε/A

A/ε

A/ε

A/ε
ε/#

p s

r

ut

q

Once the transducer is transformed, we consider the trace of the graph from A to # (the
vertex A correspond to the vertex $ in the construction of the machine). Now, let us
consider the word a3 which labels following path:

A
a
−→ A2 a

−→ A4 a
−→ #

The configurations of the machine are presented on the left. Internal states correspond-
ing to the process are presented on the right (we omit the initial configuration △⊲

aaa2222▽):

△ ◮ A p ε p ε p ε ▽

u′
0 = AEE u′

1 = AEEAEE u′
2 = AEAAA

u′′
1 = EAA u′′

2 = EAAEAA u′′
3 = E#EEE

i := 1
Apply move (a)

△ ε q ◮ ε p ε p ε ▽

u′
0 = EE u′

1 = AEEAEE u′
2 = AEAAA

u′′
1 = AA u′′

2 = EAAEAA u′′
3 = E#EEE

i := 2
Apply move (c)

△ ◮ ε q ε p ε p ε ▽

u′
0 = EE u′

1 = AEEAEE u′
2 = AEAAA

u′′
1 = AA u′′

2 = EAAEAA u′′
3 = E#EEE

i := 1
Apply move (b)

△ ε r ◮ A p ε p ε ▽

u′
0 = E u′

1 = AEEAEE u′
2 = AEAAA

u′′
1 = A u′′

2 = EAAEAA u′′
3 = E#EEE

i := 2
Apply moves (a),(c),(b)

△ ε r ε r ◮ A p ε ▽

u′
0 = E u′

1 = EAEE u′
2 = AEAAA

u′′
1 = A u′′

2 = AEAA u′′
3 = E#EEE

i := 3
Apply moves (a),(c),(b)

△ ε r ε r ε u ◮ # ▽

u′
0 = E u′

1 = EAEE u′
2 = AAA

u′′
1 = A u′′

2 = AEAA u′′
3 = EEE
i := 4

Apply moves (c),(c),(b),(a), then (c),(c),(c)

△ ◮ ε r ε s ε u # ▽

u′
0 = E u′

1 = AEE u′
2 = AA

u′′
1 = A u′′

2 = EAA u′′
3 = EE

i := 1

Finally, following these moves: (a,b,c,a,b,c,c,a,b), the process finishes. We have computed
a successful path from the transducer.
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From Lemma 3.2 it is easy to prove the desired result.

Proposition 3.4. Traces of rational graphs are context-sensitive languages.

Proof. First, we transform the graph in order to consider the trace between two vertices.
Then we construct the corresponding machine M which recognizes the same language,by
Lemma 3.2. Thus the traces of rational graphs are Csl. 2

4 From context-sensitive languages to synchronized graphs

In the previous section, we proved that the traces of rational graphs are the context-
sensitive languages. Thus any trace of a synchronized graph is a context-sensitive language.
Conversely, we show that any context-sensitive language is the trace of a synchronized
graph. The proof uses Penttonen’s characterization of Csl. It is a detailed construction of
[19].
Let L be a context-sensitive language. We construct a synchronized graph whose traces
between two finite sets is L.
By Theorem 2.12, there exists a 2-system Γ such that L is obtained by derivation of
the linear language Llin. Recall that the derivation rules of non-terminal words are of

the form AB → AC. Consider a transducer having transitions (A,B)
A/C
−→(A,C) for each

(AB,AC) of Γ2. Any derivation AB1
Γ2
−→AB2 . . .

Γ2
−→ABm of a word of length 2 corresponds

to an arc Am → B1B2 . . . Bm on the graph. Following this idea, we first get a rational
synchronized graph GLin such that L = L(GLin, LLin, {ǫ}). Then, we transform GLin into
a graph G having a rational set of vertices LRat such that L = L(G,LRat, {ǫ}). Finally,
using Lemma 2.9, we obtain finite initial and final sets of states.

4.1 Traces from the linear language LLin

Let T2 be the transducer defined from Γ2 by:

I
[A/[B
−→ (B,A,B) for all A,B ∈ Σ (type 1)

(A,B,C)
B/D
−→ (A,B,D) for all A,B,C,D ∈ Σ such that BC −→

Γ2

BD (type 2)

(A,B,C)
D/C
−→ (A,D,C) for all A,B,C,D ∈ Σ (type 3)

(A,B,C)
]A/]
−→ F for all A,B,C ∈ Σ (type 4)

This transducer starting at I and ending at F recognizes pairs of the form

([AA1. . .Am]B, [BB1. . .Bm])

meaning that under the successive contexts A,A1, . . ., Am the letter B can be rewritten
successively B,B1, . . ., Bm. If the context does not change: Ai = Ai+1, one can apply a
rule AiBi −→

Γ2

Ai+1Bi+1. If the context changes: Ai 6= Ai+1, we copy the letter Bi = Bi+1.

The first component of states of T2 stores the first word of the derivation.
Note that the relation R2 recognized by T2 is of bounded length difference.



Families of automata characterizing context-sensitive languages 11

Example 4.1. Let Γ2 = { (AB,AC) , (AC,AD) , (DA,DE) , (EA,EE) }.
We have [AAA]B R2 [BCD] because under the context A, letter B can be rewritten
to C and then to D. The following derivation:

ABAA −→
Γ2

ACAA −→
Γ2

ADAA −→
Γ2

ADEA −→
Γ2

ADEE

is represented as follows:

AABA

A C A A

A D A A

A D E

A D E

A

E

We have [AAAAA]B R2 [BCDDD] and [BCDDD]A R2 [AAAEE]
and [AAAEE]A R2 [AAAAE].

Consider a word X1 ∈ LLin of length n and a derivation X1 −→
Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm

represented by the following Figure.

. . .. . .

Xm(n)

Xm−1(n)

Xm(i)

Xj(i − 1)

X3(i − 1)

X2(i − 1)

X1(i − 1)

Xm(i − 1)

Xm−1(i − 1)

X1(n)

X2(n)

X3(n)

Xj(n)

X1 X1(1)

X2(1)

X3(1)

Xj(1)

X1(2)

X2(2)

X3(2)

Xm(1)

Xj(2)

Xm−1(2)Xm−1(1)

Xm(2)

. . . . . . . . .

. . .

. . .

. . .

. . . . . .

. . .

. . . . . .. . .

X1(i)

. . .

. . .

. . .

. . .

. . .

X2

X3

. . .

Xj

. . .

Xm−1

Xm

X2(i)

X3(i)

Xj(i)

Xm−1(i)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

The transducer T2 produces pairs corresponding to m successive letters of adjacent posi-
tions: Given the m successive letters at a position i, it yields the m successive letters at
position i + 1.
For any words X,Y ∈ Σ∗ of length n, we denote by X △ Y the cardinal of { 1 ≤ i ≤
n | X(i) 6= Y (i) }. The following technical lemma states that any two consecutive columns
are recognized by T2.

Lemma 4.2. The two following properties are equivalent:
a) X1 −→

Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm

b) [X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] for all 2 ≤ i ≤ |X1|
and |Xj−1| = |Xj | and Xj−1 △ Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.

Proof. i) By definition of Γ2, we have, for all 2 ≤ j ≤ m,

|Xj−1| = |Xj | and Xj−1 △ Xj = 1 and Xj−1(1) = Xj(1) .

We show that

[X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]
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by induction on m ≥ 1.
Basis case : m = 1. For all 2 ≤ i ≤ |X1|, we have

[X1(i − 1)]X1(i) R2 [X1(i)]

considering the path

I
[X1(i−1)/[X1(i)

−→
TΓ2

(X1(i),X1(i − 1),X1(i))
]X1(i)/]
−→

T2

F

Inductive case : m =⇒ m + 1.
Suppose the implication for a derivation of length m and let X1 −→

Γ2

. . . −→
Γ2

Xm −→
Γ2

Xm+1.

There exists 2 ≤ k ≤ |X1| such that Xm(k) 6= Xm+1(k) and for all i 6= k, Xm(i) =
Xm+1(i).
Let 2 ≤ i ≤ |X1|. We want to show that

[X1(i − 1). . .Xm(i − 1)Xm+1(i − 1)]X1(i) R2 [X1(i). . .Xm+1(i)]

By inductive hypothesis, we have

[X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]

By definition of the transducer T2, we have

I
[X1(i−1)...Xm(i−1)/[X1(i)...Xm(i)

=⇒
T2

(X1(i),Xm(i − 1),Xm(i))

We distinguish the two complementary cases below.
Case 1 : i 6= k. Then Xm(i) = Xm+1(i) and we add an arc of type 3.

(X1(i),Xm(i − 1),Xm(i))
Xm+1(i−1)/Xm+1(i)

−→
T2

(X1(i),Xm+1(i − 1),Xm+1(i))

Case 2 : i = k. We have the rule Xm(i − 1)Xm(i) Γ2 Xm+1(i − 1)Xm+1(i).
The following arc of type 2 is associated to previous rule:

(X1(i),Xm(i − 1),Xm(i))
Xm+1(i−1)/Xm+1(i)

−→
T2

(X1(i),Xm+1(i − 1),Xm+1(i))

Finally, we add the arc leading to the final state:

(X1(i),Xm+1(i − 1),Xm+1(i))
]X1(i)/]
−→

T2

F

We get the result for m + 1 and the direct implication.

ii) Conversely, we prove that (b) =⇒ (a).
Suppose that [X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] for all 2 ≤ i ≤ |X1|
and |Xj−1| = |Xj | and Xj−1 △ Xj = 1 and X1(j − 1) = X1(j) for all 2 ≤ j ≤ m.
Let 2 ≤ j ≤ m. Let us show that Xj−1 −→

Γ2

Xj .

As Xj−1 △ Xj = 1, there exists a unique 2 ≤ k ≤ |X1| such that Xj−1(k) 6= Xj(k).
Moreover Xj(1) = Xj(1) thus k 6= 1 and Xj−1(k − 1) = Xj(k − 1).
We have [X1(k − 1). . .Xm(k − 1)]X1(k) R2 [X1(k). . .Xm(k)].
By definition of the transducer T2, the following arc exists

(X1(k),Xj−1(k − 1),Xj−1(k))
Xj(k−1)/Xj(k)

−→
T2

(X1(k),Xj(k − 1),Xj(k))



Families of automata characterizing context-sensitive languages 13

This arc is of type 2 and gives the existence of the following rule of Γ2

Xj−1(k − 1)Xj−1(k) −→ Xj(k − 1)Xj(k)

Thus for any 2 ≤ j ≤ m, Xj−1−→
Γ2

Xj i.e. a) holds.
2

The transducer T2 recognizes arcs of the form [U ]A → [AV ]. In order to create paths

on the graph, we add to T2 the set of transitions {F
A/A
−→ F | A ∈ Σ}. New arcs are of

the form [U ]AW → [AV ]W where W is a suffix of the initial word of the derivation. If

X1 ∈ LLin with |X1| = n and X1
m−1
−→

Γ2

Xm, the graph GLin contains the following

path:

[X1(1)
m]X1(2). . .X1(n) → [X1(2). . .Xm(2)]X1(3). . .X1(n) . . . → [Xm(1). . .Xm(n)].

It remains to add arcs of the form [U ] → ε for any word U and to label arcs of G.
Since Xm is derived by Γ1 in a word of L, the last letter of each column gives labels of
arcs. Thus, we set [UA]BW

a
−→
GLin

[BV ]W for each a ∈ A such that A−→
γ1

a. The graph GLin

obtained is left-synchronized graph, and verifies that L = L(GLin, LLin, {ε}).

4.2 Traces from a rational set

The problem is that LLin is not rational. In order to reduce LLin to a rational set, we
complete T2 into a transducer generating words of LLin successively from left to right.
Let Gr be a grammar in Greibach normal form generating LLin from a non-terminal
S. Each rule of Gr is of the form Z → AW where Z ∈ Σr is a non-terminal of Gr,
A ∈ Σ is a terminal (which is also a non-terminal of Γ ) and W ∈ Σ∗

r is a non-terminal
word of Gr. Let the transducer

T ′
2 := T2 ∪ {F

Z/U
−→ F ′ | (Z,U) ∈ Gr} ∪ {F ′ Z/Z

−→ F ′ | Z ∈ Σr},

where F ′ is a new state of the transducer. We denote by R′
2 the relation recognized by

T ′
2 from I to F ′. This relation is still of bounded length difference. Let

LRat := { [Am]BW | S
2

−→
Gr

ABW ∧ A,B ∈ Σ ∧ W ∈ Σ∗
r ∧ m ≥ 1 }.

Let us reformulate Lemma 4.2 for derivations starting from LLin .

Lemma 4.3. Let X1, . . . ,Xm ∈ Σ∗ and n = |X1|.
The two following properties are equivalent:
a) X1 −→

Γ2

X2 −→
Γ2

. . .−→
Γ2

Xm and X1 ∈ LLin

b) There exists W1, . . . ,Wn−1 ∈ Σ∗
r such that

[X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and Wn−1 = ε

and [X1(n − 1). . .Xm(n − 1)]X1(n) R2 [X1(n). . .Xm(n)]

and [X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi

for all 2 ≤ i < n

and |Xj−1| = |Xj | and Xj−1△Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.
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Proof. i) We suppose (a) and show (b).
Since X1 ∈ LLin, we consider the derivation from S to X1 according to Gr: there exists
non-terminal words W1, . . . ,Wn−2 of Gr such that

S
2

−→
Gr

X1(1)X1(2)W1 −→
Gr

. . .−→
Gr

X1(1). . .X1(n − 1)Wn−2 −→
Gr

X1(1). . .X1(n)

By Lemma 4.2, we have for all 2 ≤ i ≤ |X1|,

[X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)],

|Xj−1| = |Xj |, Xj−1 △ Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.
Let 2 ≤ i ≤ n − 1. We know that Wi is obtained from Wi−1 by the rewriting of the
non-terminal Wi−1(1) :

Wi−1 = ZV −→
Gr

UV = X2(i + 1)Wi.

We complete the preceding path leading to F with the arc F
Z/U
−→ F ′ and then with arcs

F ′ Z/Z
−→

T ′

2

F ′ for V . Thus, we have

[X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi.

ii) We suppose (b) and show (a).
We cut the paths

[X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi

which become

[X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]

By Lemma 4.2, we have X1 −→
Γ2

X2 −→
Γ2

. . .−→
Γ2

Xm.

By hypothesis [X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and X1(1) = . . . = Xm(1). So

S
2

−→
Gr

X1(1)X1(2)W1. Thus S
∗

−→
Gr

X1(1). . .X1(n) = X1 hence X1 ∈ LLin. 2

The transducer T ′
2 successively generates letters of X1 . It remains to label arcs of the

recognized graph to get a left-synchronized graph such that the language of path labels
leading from the rational vertex set LRat to the final vertex set {ε} is the context-sensitive
language defined by Γ . As in Section 4.1, any arc of the form [UA]BW → [BV ]W is
labelled a ∈ A if A−→

Γ1

a.

Proposition 4.4. Any context-sensitive language is trace of a synchronized graph.

Proof. Let L be a context-sensitive language. There exists a 2-system Γ such that

L = { v ∈ A∗ | ∃ u ∈ LLin , u
∗

−→
Γ

v }.

For all letter a ∈ A, we denote by

Σa := { A ∈ Σ | A −→
Γ1

a }

the set of non-terminals generating the terminal a in Γ .
We define the graph G0 such that for any a ∈ A,



Families of automata characterizing context-sensitive languages 15

a
−→
G0

:= R′
2 ∩ [Σ∗Σa]ΣΣ∗

r×([Σ+]ΣΣ∗
r ∪ [Σ+]Σ∗

r ).

Since R′
2 is a bounded length difference relation, so G0 is by Proposition 2.8 and Theo-

rem 2.7.
In particular, G0 is left-synchronized and the following graph:

G := G0 ∪
⋃

a∈A[Σ∗Σa]×{a}×ε

is also left-synchronized since [Σ∗Σa]×{a}×ε is recognizable ([10]) for all a ∈ A.
We recall that

LRat := { [Am]BW | S
∗

−→
Gr

ABW ∧ m ≥ 1 }

where S is the axiom of Gr. We have

u ∈ L with |u| = n > 1

⇐⇒(By definition)

there exists X1, . . . ,Xm ∈ Σ∗ of length n such that
X1 ∈ LLin and X1 −→

Γ2

X2 −→
Γ2

. . .−→
Γ2

Xm and Xm(i) −→
Γ1

u(i) for all 1 ≤ i ≤ n

⇐⇒ (by Lemma 4.3)

there exists non-terminal words W1, . . . ,Wn−1 of Gr such that
[X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and Wn−1 = ε and such that

[X1(1). . .Xm(1)]X1(2)W1
u(1)
−→
G0

[X1(2). . .Xm(2)]X1(3)W2
u(2)
−→
G0

. . .
u(n−1)
−→
G0

[X1(n). . .Xm(n)]

and Xm(n) ∈ Σu(n)

⇐⇒(By definition)

u ∈ L(G,LRat, {ε})

Thus

L = L(G,LRat, {ε}) ∪ { u ∈ L | |u| ≤ 1 }

and it remains to apply Lemma 2.9. 2

This leads to the main result of this paper:

Theorem 4.5. Context-sensitive languages are exactly the traces of synchronized graphs
between finite sets.

Proof. Any synchronized graph is a rational graph, hence any trace of a synchronized
graph is a context-sensitive language by Proposition 3.4. Proposition 4.4 ensures the con-
verse. 2

4.3 Letter to letter graphs

Using Lemma 2.9, the previous section defined Csl as traces of synchronized graphs from
and to finite sets of vertices. In this section, we study traces with initial and final rational
sets. Provided this extension, the traces of letter to letter graphs are Csl.
Indeed, the synchronized relation of bounded length difference R

′

2, we have used in the
proof of Proposition 4.4, can be completed into a letter-to-letter relation.
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Lemma 4.6. Let R ⊆ Σ∗ ×Σ∗ be a left-synchronized relation and let 3 be a symbol such
that 3 6∈ Σ. We can transform R into a letter-to-letter relation Rl such that
∀(U, V ) ∈ Σ∗ × Σ∗,∀n ≥ 0,

(U
n

−→
R

V ) ⇐⇒ (∃k ≥ 0,∃k
′
≥ 0 such that U3

k n
−→

Rl

V 3
k
′

)

Proof. Let T be a left-synchronized transducer recognizing R. The transducer Tl is built

from T by replacing each arc of the form p
ǫ/A
−→ q (respectively p

A/ǫ
−→ q) with A ∈ Σ by

the arc p
3/A
−→ q (respectively p

A/3

−→ q). Then for each final vertex f of T , we create a new

final state f
′
of Tl and add the arcs f

3/3

−→ f
′
and f

′ 3/3

−→ f
′
. 2

Let us reformulate Proposition 4.4.

Proposition 4.7. Any context-sensitive language is the language L(G,LRat, FRat) of path
labels leading from a rational set of vertices LRat to another FRat and where G is a letter-
to-letter rational graph.

Proof. Using Proposition 2.8 we get that R′
2 is a left-synchronized relation. Let 3 be a

symbol such that 3 6∈ Σ ∪ Σr . Using Lemma 4.6, R
′

2 is completed into a letter-to-letter
relation Rl. The result is obtained by adapting the proof of Proposition 4.4 with

a
−→
G0

:= Rl ∩ [Σ∗Σa]ΣΣ∗
r 3

∗
×([Σ+]ΣΣ∗

r 3
∗ ∪ [Σ+]3∗)

G := G0 ∪
⋃

a∈A{ [UA]3k a
−→ $|[UA]|+k | U ∈ Σ∗ ∧ A ∈ Σa }

LRat := { [Am]BW3
k | S

2
−→
Gr

ABW ∧ m ≥ 1 ∧ k ≥ 0}

and

FRat := $+

2

5 Conclusion

In this paper, we have established a connection between context-sensitive languages and
rational graphs. We have been able to prove that the traces of these graphs are context-
sensitive languages, and that the context-sensitive languages are traces of letter-to-letter
rational graphs with initial and final rational sets. The proof of the latter result relies on
the Penttonen normal form for context-sensitive languages, it is indeed possible to avoid
the use of this form: this has been done by Carayol [2] and Meyer [13], those proofs adapt
our construction to produce a rational graph from a linearly bounded Turing machine.
Our result might give an interesting approach to Kuroda’s conjecture [12]: do the deter-
ministic context-sensitive languages (i.e., generated using a deterministic LBM) coincide
with context-sensitive languages? An easier question would be to characterize the traces
of deterministic rational graphs. This question is still unsolved.
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