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The Microscopic Origin of the Macroscopic
Dielectric Permittivity of Crystals:
A Mathematical Viewpoint.

Eric Cancés, Mathieu Lewin and Gabriel Stoltz

Abstract The purpose of this paper is to provide a mathematical aisabfsthe
Adler-Wiser formula relating the macroscopic relativerpétivity tensor to the mi-
croscopic structure of the crystal at the atomic level. Eahnical level of the pre-
sentation is kept at its minimum to emphasize the mathealadicucture of the
results. We also briefly review some models describing theteinic structure of fi-
nite systems, focusing on density operator based fornaustas well as the Hartree
model for perfect crystals or crystals with a defect.

1 Introduction

Insulating crystals are dielectric media. When an exteetedtric field is applied,

such an insulating material polarizes, and this inducedrption in turn affects

the electric field. At the macroscopic level and in the timdependent setting, this
phenomenon is modelled by the constitutive law

D = gemE (1)

specifying the relation between the macroscopic displargnfield D and the
macroscopic electric fiel&E. The constangy is the dielectric permittivity of the
vacuum, andy the macroscopic relative permittivity of the crystal, & 3 sym-
metric tensor such that, > 1 in the sense of symmetric matricés €y k > |k|2 for
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2 Eric Cances, Mathieu Lewin and Gabriel Stoltz

all k € R%). This tensor is proportional to the identity matrix for tiszpic crystals.
Recall thaD is related to the so-called free chamgey the Gauss law diiD) = ps
and that the macroscopic electric fidtdis related to the macroscopic potental
by E = —0V, yielding the macroscopic Poisson equation

—div(emOV) = pr/ &o. 2
In the time-dependent setting[| (1) becomes a time-coneolptroduct:

D(r,t)eo/+m£M(tt’)E(r,t’)dt’. (3)

—00

Fourier transforming in time, we obtain
7D(r,w) = 7ew(w)7E(r, ),

where, as usual in Physics, we have used the following ndazataln convention
for the Fourier transform with respect to the time-variable

+oo _
7f(r, ) :/ f(r,t)edt

—o00

(note that there is no minus sign in the phase factor). The-tiependent tensor
&v in (ﬂl) can be seen as the zero-frequency limit of the frequelependent tensor
FEM (Ol))

Of course, the constitutive Iawsﬂ (1) (time-independentfamnd [|3) (time-
dependent case) are only valid in firear response regimé&Vhen strong dielectric
field are applied, the response can be strongly nonlinear.

The purpose of this paper is to provide a mathematical aisabfghe Adler-
Wiser formula [LG] relating the macroscopic relativerpitivity tensor ey (as
well as the frequency-dependenttensey (w)) to the microscopic structure of the
crystal at the atomic level.

In Sectior] B, we discuss the modelling of the electroniacstme of finite molec-
ular systems. We introduce in particular the Hartree modksio( called reduced
Hartree-Fock model in the mathematical literature), whctine basis for our anal-
ysis of the electronic structure of crystals. This modelrisapproximation of the
electronicN-body Schrodinger equation allowing to compute the grastate elec-
tronic density of a molecular system containikignuclei considered as classical
particles (Born-Oppenheimer approximation) aidjuantum electrons, subjected
to Coulomb interactions. The only empirical parametershis model are a few
fundamental constants of Physics (the reduced Planckamtfstthe mass of the
electronm, the elementary charge and the dielectric permittivity of the vacuum
&) and the masses and charges of the nuclei. In this respiscis #nab initio, or
first-principle, model in the sense that it does not contaiy empirical parameter
specific to the molecular system under consideration.
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We then show, in Sectidih 3, how to extend the Hartree modehfdecular sys-
tems (finite number of particles) to crystals (infinite numbgparticles). We first
deal with perfect crystals (Secti@.Z), then with crystaith local defects (Sec-
tion @). The mathematical theory of the electronic sutebf crystals with local
defects presented here (and originally publishetﬂin [79 been strongly inspired
by previous works on the mathematical foundations of quandlectrodynamics
(QED) [18,[20.[ZB]. In some sense, a defect embedded in aaiirsylor semi-
conducting crystal behaves similarly as a nucleus embeiddéé polarizable vac-
uum of QED.

In Section|]4, we study the dielectric response of a crysiadt,Fve focus on
the response to an effective time-independent potevitiahd expand it in powers
of V (Sectio). The linear response term allows us to defiadrtticroscopic)
dielectric operatoe and its inverse 1, the (microscopic) dielectric permittivity
operator, and also to define a notion of renormalized changddfects in crystals
(Section[4.R). In Sectioh 4.3, we derive the Adler-Wisenfata from the Hartree
model, by means of homogenization arguments. Loosely spgalt defect in a
crystal generates an external field and thereby a dielaesigonse of the crystal.
If a given local defect is properly rescaled, it produces anmscopic charge (cor-
responding to the free charge in (E) and the total Coulomb potential converges
to the macroscopic potentisl solution to ﬂZ) wherey, is the tensor provided by
the Adler-Wiser formula. A similar strategy can be used ttaobthe frequency-
dependent tensarey (w) (Sectior(4}4).

As trace-class and Hilbert-Schmidt operators play a certi@in the mathemat-
ical theory of electronic structure, their definitions anche of their basic properties
are recalled in Appendix for the reader’s convenience.

The mathematical results contained in this proceeding haea publishe(ﬂ'ﬂ 8,
E], or will be published very sooﬂllO]. The proofs are ondttA pedagogical effort
has been made to present this difficult material to non-gfists.

As usual in first-principle modelling, we adopt the systenatdfmic units, ob-
tained by setting

1
h=1 =1 =1 — =1
3 rrb 3 e ) 47.[80 3
so that [) reads in this new system of units:
—div(emOV) = 4mpy. (4)

For simplicity, we omit the spin variable, but taking therspito account does not
add any difficulty. It simply makes the mathematical forraadia little heavier.
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2 Electronic structure models for finite systems

Let.s# be a Hilbert space and-) its inner product (bra-ket Dirac’s notation). Recall
that if A is a self-adjoint operator o’ and ¢ and ¢ are inD(A), the domain
of A, then(@|AlY) := (p|AY) = (Ap|y). If Ais bounded from below, the bilinear
form (o, ¢) — (@|AjY) can be extended in a unique way to the form domaiA.of
For instance, the operatér= —A with domainD(A) = H?(RY) is self-adjoint on
L2(RY). Its form domain isHY(RY) and (@A) = [pe O¢- Oy. In the sequel, we
denote by (#) the vector space dfoundedself-adjoint operators os?’.

Fork =0, 1 and 2, and with the conventi&tP(R3) = L?(R?), we denote by

N
AHKES) = { @ € HEN) [ W1 g, Toy) = £(P)W(rs, -+ ), Y E Sy )
i=1

(whereSy is the group of the permutations 61,--- ,N} ande(p) the parity ofp)

the antisymmetrized tensor productifspacesH¥(R?). These spaces are used to
describe the electronic state of Birelectron system. The antisymmetric constraint
originates from the fact that electrons are fermions.

2.1 TheN-body Schibdinger model

Consider a molecular system wit nuclei of chargegs,---,zy. As we work in
atomic unitsz, is a positive integer. Within the Born-Oppenheimer appraation,
the nuclei are modelled as classical point-like particldéss approximation results
from a combination of an adiabatic limit (the small parambéting the square root
of the ratio between the mass of the electron and the mas® digtitest nucleus
present in the system), and a semi-classical limit. We ttef@ B] and references
therein for the mathematical aspects.

Usually, nuclei are represented by point-like particlétheé M nuclei are located
at pointsRy, -- - , Ry of R3, the nuclear charge distribution is modelled by

M
pMC="S Zdr,,
2%

wheredg, is the Dirac measure at poiR. The Coulomb potential generated by
the nuclei and seen by the electrons then reads
vz

VM) = —
K=1 |I’ - Rk|

(the minus sign comes from the fact that the interaction betwnuclei and electrons
is attractive). In order to avoid some technical difficudt@ue to the singularity of
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the potential generated by point-like nuclei, the latter ssmetimes replaced with
smeared nuclei:

M
p™MAr) = 2x(r —Rk),
k=1
wherey is a smooth approximation of the Dirac measdgeor more precisely a

non-negative smooth radial function such tifas x = 1, supported in a small ball
centered at 0. In this case,

nuc r/)
Vue(py - — _(phuc .7lr:_/p ( dr’
()= =™ 0 == [ T
is a smooth function. We will sometimes denote this smootittion byVpnue in
order to emphasize that the potential is generated by a inguodar charge distribu-
tion.

The main quantity of interest in our study is the electrastpbtential gener-
ated by the total charge, which is by definition the sum of eactharge" ¢ and
the electronic charge®'. According to the Born-Oppenheimer approximation, elec-
trons are in their ground state, ap8l is a density associated with the ground state
wavefunctiont). Let us make this definition more precise.

Any (pure) state of a system &f electrons is entirely described by a wavefunc-
tion ¥ € AlL; L?(R®) satisfying the normalization conditiof# | 2 gan) = 1. The
density associated wit# is the functionpy defined by

pw(r):N/ |W(r,rp,--,rn)2dro---dry. (5)
]R3(N—1)

Clearly,
po=0. pucli(E), and [ py=N.
R3

It can be checked that ¥ € AN, H(R3), then/p € H(R®), which implies in
particular thapy € LY(R3) NL3(R3).

The ground state wavefunctid is the lowest energy, normalized eigenfunction
of the time-independent Schrodinger equation

N
HWW=EY¥, We AH?R®), |[|W||z2gam =1, (6)
i=1

where Hy is the electronic Hamiltonian. The latter operator is s&lfeint on
AN, L2(R3), with domainAN ; H2(R?) and form domaim\N ; HY(R?), and is de-
fined as

1

1 N N
Hn=—2 ZlAri + ZV””C(ri) + ) (7
2£ i= 1§i<zj§N Iri —rj

The first term in the right-hand side cﬂ (7) models the kinetiergy of the electrons,
the second term the Coulomb interaction between nuclei ltrens and the third
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term the Coulomb interaction between electrons. For latepgses, we write
Hn =T + Vhe+ Vee,

where

:72 ZAr” Vhe ZVHUC( i), Vee= <Z N |r|_rJ|

It is proved in ] that if the molecular system is neutrg[l’ilzk = N) or posi-
tively charged E:lzk > N), then the essential spectrumkf is an interval of the
form [Xn,4) with Xy <0 andXy < 0 if N > 2, and its discrete spectrum is an
increasing infinite sequence of negative eigenvalues egimgeto >y . This guaran-
tees the existence &. If Ep, the lowest eigenvalue dfly is hon-degenerat&yp
is unique up to a global phase, ap8l = pyo is therefore uniquely defined bﬂ (5).
If Eg is degenerate, then the ground state electronic densitytisnmique. As the
usual Born-Oppenheimer approximation is no longer valigmi, is degenerate,
we will assume from now on thé, is a simple eigenvalue.

Note thaty} can also be defined variationally: It is the minimizer of

N
inf{<W|HN|LIJ>, We AHNR®), [|W]| 2@, = 1} . (8)
i=1

Otherwise stated, it is obtained by minimizing the engigjHn |%) over the set of
all normalized, antisymmetric wavefunctio#sof finite energy.

Let us mention that, as in the absence of magnetic field\tbedy Hamiltonian
is real (in the sense that it transforms a real-valued fongtito a real-valued func-
tion), there is no loss of generality in working in the spateeal-valuedN-body
wavefunctions. Under the assumption tRatis non-degeneratel] (8) has exactly two
minimizers,% and—4, both of them giving rise to the same electronic density.

2.2 TheN-body Schibdinger model for non-interacting electrons

Neither the Schrodinger equatioﬂ (6) nor the minimiza(ﬂ)"lcan be solved with
standard numerical techniques whidrexceeds two or three. On the other hand,
these problems become pretty simple when the interactitweles electrons is ne-
glected. In this case, thé-body Hamiltonian is separable and reads

N
1
HY =T 4+ Vhe= Zlh” where hy, = _EA” +Vvnue
i=

is a self-adjoint operator dr?(R3) with domainH?(R3) and form domaiH®(RR3),
acting on functions of the variablg. It is known that the essential spectrum of
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his [0,4+) and that the discrete spectrumlofs an increasing infinite sequence
of negative eigenvalues converging to 0. Let us denoteiby &, < &3 < --- the
eigenvalues ofi counted with their multiplicities (it can be shown treatis simple)
and let(@)i>o be an orthonormal family of associated eigenvectors:

hg=g@, a<e<s<-, @cH R, (Q|@)2gs =93

The eigenfunctiongg are called (molecular) orbitals and the eigenvalaeare
called (one-particle) energy levels.

It is easy to check that By < &y.1, then
N
inf{<W|H,ﬂ|W), Ye /\ Hl(R3), ||WHL2<R3N) = 1} (9)
i=1

has a unique solution (up to a global phase) given by therSlaterminant

@u(r) @u(rz) - - - @(rn)
@(r1) @(r2) - - - @(rn)

dra = (10)
(IN(.H) ¢N(.f2) %l(.fN)

and that the ground state electronic densﬂty (5) takes thplsiform

N
o) =3 19

The above description of the electronic states of a sét nbn-interacting elec-
trons in terms of orbitals cannot be easily extended to itafisystems such as crys-
tals (the number of orbitals becoming infinite). For thiss@a we introduce a new
formulation based on the concept of one-particle densigratpr, here abbreviated
as density operator.

2.3 Density operators

The (one-particle) density operator of a systenNaflectrons is an element of the
convex set
In={ve 7 (L*R%)[0<y<1 Tr(y)=N}.

Recall that ifA andB are two bounded self-adjoint operators on a Hilbert sp#te
the notatiorA < B means that|A|yg) < (@|B|y) for all ¢ € J7.

Any density operatoy € 2 is trace-class, hence compact (the basic properties
of trace-class operators are recalled in the Appendixparttberefore be diagonal-
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ized in an orthonormal basis:
+00
V:_Zlni|‘ﬂ><(ﬂ| with (@l@) = 4. (11)
1=

The eigenvalues; are called occupation numbers; the eigenfunctigrese called
natural orbitals. The conditionsQy < 1 and T(y) = N are respectively equivalent

to
—+00

0<n <1 and Zni:N.

The fact that < n; < 1 is a mathematical translation of the Pauli exclusion pypiec
stipulating that each quantum stégg is occupied by at most one electron. The sum
of the occupation numbers is equaNpthe number of electrons in the system. The
density associated withis defined by

+o00
py(r) =3 nila(r)P?, (12)
oy
this definition being independent of the choice of the ortiramal basis(@)i>1
in {L3) and satisfies

py>0, pyclL(R®, and /PV:N-
R3

The kinetic energy of the density operayos defined as

T(y) = 2700,

and can be finite or infinite. Recall that the operdfdiis the unbounded self-adjoint
operator or.?(R?) with domainH*(R?) defined by

Ve e HY(R®), (Z(0|9)(K) = k|(ZF(9)(K)
where.% is the unitary Fourier transform

~ 1

F k) =ok) = 20772 Jis o(r)e ™" dr.

The kinetic energy of a density operajodecomposed aﬂll) is finite if and only
if eachq is in H(R3) andzﬁ:jniHquHEz(m) < oo, in which case

1t
T(y) = E.Zni”D(HHEqu)-
i=

As |0 is the square root of- A (i.e. |0 is self-adjoint, positive and]]? = —A),
the element THO|y|O|) of Ry U {+} is often denoted by TrAy). Using this
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notation, we can define the convex s, of the density operators of finite energy
as
Pn=1{ye Z(L3(R%))]0<y<1, Try) =N, Tr(-Ay) < »}.

Lastly, it is sometimes useful to introduce the integrahietiof a density operator
y € #n, which is called a (one-particle) density matrix, and isallyualso denoted
by y. Itis by definition the functiory € L?(R3 x R3) such that

Ype B, (o)) = [ virrelr)dr (13

The expression of the density matgxn terms of natural orbitals and occupation

numbers thus reads
+o00

y(r,r') = Znim(r)m(f')-

Formallyp,(r) = y(r,r) and this relation makes sense rigorously as soon as the den-
sity matrix y has a trace on the three-dimensional vector subs{)a(;e), re R3}
of R® x R3.

Let us now clarify the link between the description of elenit structures in
terms of wavefunctions and the one in terms of density opesat

The density matrix associated with a wavefunctigre AN, L2(R®) such that
|%|| 2y = L is the function oL ?(R® x R®) defined as

yi,u(r,r’):N/ W(r,rp,- ,IN)¥(r',ro,--,ry)drp---dry (14)
R3(N-1)

(recall that we are dealing with real-valued wavefunctjpaad the corresponding
density operator by

Yo PR, (wo)lr) = [ wirer)ar (15)

It is easy to see that the density opergtpiis in 2. Under the additional assump-
tion that¥ € AN H(R?), itis even in#y. Besides, the definitioff](5) of the density
associated witl¥ agrees with the definitior] (12) of the density associatet yyit
ie.

pLIJ = pWM
and the same holds with the definition of the kinetic enerdy & AN |H(R3):

(WITI¥) =T(w).

Remark 1The maps{ We AL L2R3) | W] 2gan = 1} SW¥ yw € 9y and

{W € ALy HZ(R3) | [[|W]| 2gman) = 1} > W yp € Py are not surjective. This
means that an element @iy (resp. of#y) is not necessarily the density operator
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associated with sonpurestate. However any € 2y (resp. any € 2y) is the (one-
particle) density operator associated with somigedstate (represented by some
N-particle density operator). This property is referred sattee N-representability
property of density operators.

We can now reformulate the electronic structure probiena system of N non-
interacting electronsin terms of density operators:

1. The energy of a wavefunctidd € AN HL(R?) is a linear form with respect to
the density operatgiy:

(WHRIW) = Egnc(yy) where Educ(y) =Tr (%Ay)+ / pV "G
R3

2. The ground state density matrix, that is the density dpeessociated with the
ground state wavefunctio#® defined by|Z|9), is the orthogonal projector (for the
L? inner product) on the space Sgam --- , @\ ):

N
Vipo = _;vm (al;

3. The ground state energy and the ground state densitytopeeae obtained by
solving the minimization problem

inf {Egnuc(y), ye Z(L2(R3), 0< y< 1, Tr(y) =N, Tr(~Ay) < oo} . (16)

The advantages of the density operator formulation, whiemat obvious for finite
systems, will clearly appear in Sectiﬂn 3, where we deal wrijfstals.

2.4 The Hartree model and other density operator models of
electronic structures

Let us now reintroduce the Coulomb interaction betweertelas, taking as a start-
ing point the non-interacting system introduced in Secfigh The models pre-
sented in this section are density operator models in theestvat the ground state
energy and density are obtained by minimizing scmplicit functional Epnuc(y)
over the set oN-representable density operatc#.

All these models share the same mathematical structureg.réad:
inf {Epnuc(y), y€ Z(LA(R3)), 0< y <1, Tr(y) =N, Tr(-4y) <}, (17)

with 1 1
Epnely) = Tr (~34) + [ pVome-+ 30(0100) + EW),
R3
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_ fFr)g(r’)
D(f,g)_/R3/RsWdrdr (18)

is the classical Coulomb interaction ai{y) some correction term. Note that
D(f,g) is well defined forf andg in L8/5(R3), see for instancg [BO, Section IX.4].
Recall also that for eache Py, py € LY(R3) NL3(R3) — LE/5(R3).

The Hartree model, on which we will focus in this proceediogrresponds to

E(y)=0:

where

1 1
ESREey) = Tr <§A V) +/ PyVpnue + ED(pVa Py)-
R3

The reason why we study this model is that it has much nicenemaatical proper-
ties than other models with(y) # O (see below).

The Kohn-Sham modeld [p4] originate from the Density Fwowel Theory
(DFT) [A3]. In this kind of modelsE(y) is an explicit functional of the density
py, called the exchange-correlation functional:

1 1
S0 = Tr (~347) + [ Vorwpy+ 30000 + E¥(py). (1)

If follows from the Hohenberg-Kohn theore@Zl] (s [27] omore mathemat-
ical presentation of this result) that there exists sometfanal E*(p) depend-
ing only on the density, such that minimizing@?) WithEpnue = Egﬁc provides
the exactground state energy and density, whatever the nuclear elstyibution
p"c. Note however, that the Kohn-Sham ground state densityateobtained
by minimizing (L}) is not the ground state density operatmresponding to the
ground state wavefunctioHC. Unfortunately, the exact exchange-correlation func-
tional is not known. Many approximate functionals have bpmposed, and new
ones come up on a regular basis. For the sake of illustratiensimplest approxi-
mate exchange-correlation functional (but clearly notlibst one) is the so-called
Xa functional

% (p) = ~Cxa [ "
R3
whereCy is a positive constant

Lastly, the models issued from the Density-Matrix Funcalohheory (DMFT)
involve functional€(y) depending explicitly on the density operaobut not only
on the densityp,. Similar to DFT, there exists agxact(but unknown) functional
E(y) for which minimizing ) gives the exact ground state egeagd density,
whatever the nuclear charge distributjo'®. However, unlike the exact DFT func-
tional, the exact DMFT functional also provides the exacugd state density op-
erator. Several approximate DMFT functionals have beepgsed. Note that the
Hartree-Fock model, which is usually defined as the vamati@pproximation of
(E) obtained by restricting the minimization set to the sefite energy Slater
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determinants, can also be seen as a DMFT functional

1 1 1 ly(r,r")|?
HE = —_— nuc by - = LLANEREEAES !
Epnuc(y) Ir( 2Ay> +/3pyvp + 2D(py,py) 2/3 R drdr’,
where, as abovey(r,r’) denotes the integral kernel pf

The existence of a solution tﬂl?) for a neutral or posifivearged system is
established in|E4] for the Hartree mod&*f = 0), in [@] for the Hartree-Fock
model, in [}] for the Xa and the standard LDA model, and in [15] for the Miiller
DMFT functional.

The key-property allowing for a comprehensive mathembacalysis of the
bulk limit for the Hartree model is that the ground stdtnsityis unique (which
is not the case for the other models presented in this s@clibis means that in the
Hartree framework, all the minimizers tE[l?) share the sderesity. This follows
from the fact that the ground state Hartree density solvesahiational problem

nt{&(e). p=0. peri®). [ p-n}. (20)
R?:
where 1

Ep)= F(p)+/Rsprnuc+ 5D(p.p)

and
F(p)= inf{Tr (—%Av) ,YeS(LX(R?), 0<y< 1, Tr(y) =N, Tr(—Ay) < w, py= p}-

As the functional’(p) is strictly convex on the convex set

{PZQVﬁEHWWL[;pN}

uniqueness follows.
The Euler equation for the Hartree model reads
P =S nlaal. #°0)=pp(r) = 5 nla()P
Hog —&q. (ala) = 5. :
n=1ifg<e, 0<N<lifg=¢r, n=0if § > &, iniN, (21)
=

HO— —1aqvo,

_Avo _ 47T(pnuc_ pO)
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It can be proved that the essential spectrum of the selfiadjperatoH® is equal
to R, and that, for a neutral or positively charged systethhas at leasil negative
eigenvalues. The scalgt, called the Fermi level, can be interpreted as the Lagrange
multiplier of the constraint Tyy®) = N.

Assuming thatey < &y41, the ground state density operaidrof the Hartree
model is unique: It is the orthogonal projector

N
V=73 la)al
2
In this case,@l) can be rewritten under the more compatt for

Y= 1(7io,ep} (H%), p°=pyp,
HO=—->Aa+V°, (22)
—AVO = 4n(p™°— 9,

for any ey < & < en1- In this equation, the notatioqu’gp](Ho) is used for the
spectral projector ofi® corresponding to the spectrum in the intergsabo, £¢].

Lastly, we remark that if smeared nuclei are used, tB€pger, pger) is well
defined (and finite). This allows us to reformulate the Hargeound state problem
as

inf {ERRRy), y € #(L2(RY), 0< y <1, Tr(y) =N, Tr(-4y) <o}, (23)

where . 1
E;ﬁ’rgee(y) =1Tr (_EA V) + ED(PHUC— py, P~ py).

The main interest of this new formulation of the Hartree peabis that the func-
tional EpHr%réreeis the sum of two non-negative contributions: the kinetiergy and
the Coulomb energy of the total charge distribut@h®— p,. The presence of the
unphysical terms corresponding to the self-interactionuaflei inD(pper, Pper) iS
not a problem for our purpose.

The time-dependent version of the Hartree model formaliyise

.dy 1 _
'a(t): *Eﬂf(Pnuc(t)*Py(t))*|'| Ly,

where[A, B] = AB— BA denotes the commutator of the operatArandB. We are
not going to elaborate further on the precise mathematieammg of this formal
equation for finite systems, but refer the readeﬂto [5] aferemces therein (see in
particular , Section XVII.B.5]) for further precisiomahe mathematical mean-
ing of the above equation. On the other hand, we will definestundly a mild version
of it in the case of crystals with defects in Sectjor] 4.4.
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3 The Hartree model for crystals

The Hartree model presented in the previous section descaitinite system ofN
electrons in the electrostatic potential created by a munaensity of charge™©.
Our goal is to describe aimfinite crystalline material obtained in the bulk limit.
In fact we shall consider two such systems. The first one igpréodic crystal
obtained when, in the bulk limit, the nuclear density apphess the periodic nuclear
distribution of the perfect crystal:

P ppe (24)
pper being az-periodic distribution. The se¥ is a periodic lattice oR3:
X =71y + Zay+ Zag, (25)

where(ay,a, ag) is a given triplet of linearly independent vectorsiof. The second
system is the previous crystal in the presence of a locattefe

pnuc ngrCJF m, (26)

mrepresenting the nuclear charge of the defect. The furaitapaces in whicpge’
andmare chosen are made precise below.

3.1 Basics of Fourier and Bloch-Floquet theories

A perfect crystal is characterized by a latti¢é of R® and aZ-periodic nu-
clear charge distributiopgg,". Not surprisingly, Fourier and Bloch-Floquet theories,
which allow to conveniently exploit the periodicity of thegblem, play essential
roles in the mathematical description of the electronigctire of crystals.

Let Z* be the reciprocal lattice of the latticg defined in [2p) (also called dual
lattice):
RH* =Ta)y+Zay+ Zaz, where g;- a]-‘ = 213

Denote by~ a unit cell ofZ. Recall that a unit cell is a semi-open bounded polytope
of R3 such that the cell§ + R = {(r +R),r € '} for R € # form a tessellation

of the spac&® (i.e. (F +R)N (I +R') =0 if R # R’ andUge» (I +R) = R3).

A possible choice fof is {xja; + Xoa2 + Xza3, —1/2 < % < 1/2}. Another choice

is the Wigner-Seitz cell o2, which is by definition the semi-open Voronoi cell
of the origin for the latticeZ. Lastly, we denote by * the first Brillouin zone,
that is the Wigner-Seitz cell of the dual lattice. Let ussthate these concepts on
the simplest example, the cubic lattice, for whigh= aZ2 (for somea > 0). In
this particular casez* = Z'Z3, the Wigner-Seitz cell is” = (—a/2,a/2]* and
= (-m/a,m/a?
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For eachK € Z*, we denote byex (r) = |I'|~Y/2€X" the Fourier mode with
wavevectoiK . According to the theory of Fourier series, eagkperiodic distribu-
tion v can be expanded in Fourier series as

v= Ke; Ck (V) &, (27)

whereck (v) is theK -th Fourier coefficient of,, the convergence of the series hold-
ing in the distributional sense. We introduce the usdaberiodicLP spaces defined

by
Lbed 1) := {ve LP(R®) | vZ%-periodic} ,

loc

and endow them with the norms

1/p
”VHL,‘)’er(F) = (/r |v|p) for1<p<e and HV||L;3°er(F) = ess-supv].

In particular,

1/2 —
HVHL%er(I’) = (V’V)Léer(l') where (V’W)Lger(r) = /I_VW

Any functionv € Lﬁer(l') can be expanded in Fourier modes accordin (27), the
Fourier coefficients being given by the simple formula

CK(V)|I’|—1/2/,—V(r>e ",
and the convergence of the seri@ (27) also holdi.ﬁgml'). Besides,
v(v,w) € Lger(,—) x Lger(,—)a (v, W)Lger(r) = ; Ck (V)ek (W).
Kez*

For eacts € R, theZ-periodic Sobolev space of indexs defined as

HSer(r) = {V Ké* ck (V)ex

and endowed with the inner product

(VW) == ; (1+ |K|?)%ek (Vo (w).
Kez*

> (LKl (W < °°} ,

Kez*

The Bloch-Floquet theory was introduced by Floquet for @did differential
equations and generalized by Bloch to periodic partiakedéhtial equations. We
just recall the basic results of this theory used in this pedling and refer the reader
to [B1] for further precisions.

Any function f € L2(R®) can be decomposed by the Bloch-Floquet transform as
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f(r) = ol
r*
where{;. is a notation fot/*|~* /-, and where the functionf, are defined by

fo(r) =3 f(r+R)e 4R (2m2 f(g+K)gKT (28)
q == == .
2 2

For almost allg € R3, fq € L3¢(I"). Besidesfq k(1) = fq(r)e ¥ forall K € 2
and almost al € R3. Lastly,

2 2
I, = 1., Il
ForR € R3, we denote by the translation operator defined by
we 2R3, (rv)(r)=v(r—R).

The main interest of the Bloch-Floquet transfo@ (28) i¢ tharovides a “block di-
agonalization” of anyZ-periodic operator, that is of any operatorlof{R®) which
commutes withrg for all R € #. Consider first a bounde#-periodic operatoA
on L2(R3). Then there exists a familgq)qer- of bounded operators drfe (")
such that

we L2(R3), (Av)q=Aqvq foralmostallge r*. (29)

If, in addition, A is self-adjoint onL2(R?), thenAq is self-adjoint onL3.(I") for
almostallg € " * and
qer*

In particular, the translation operatofgs )res, Which obviously commute with
each other, are homotheties in the Bloch-Floquet repratsent

VR S e@, (TR)q - eiq.RlL%er(r)'

As (ex )k e form an orthonormal basis dlﬁer(l'), it follows from (29) that any

boundedZ-periodic operator oh?(R?) is completely characterized by the Bloch-
Floquet matrice$([Ax k/(d)]) k k’)ez* x %+ )qer+ defined for almost alfj € I * by

Ak k(@) == (e, Agei )12, r)-

In particular, it holds

wel?®3), (A)@+K)= T Acx(@Va+K),
K’'ez*

for all (K,K") € Z* x #* and almost alf € I *.
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For unbounded operators, the situation is a little bit matadate. Let us limit
ourselves to the case®tperiodic Schrodinger operators of the form

1
H ::4751X47me

With Vper € L3e(I). By the Kato-Rellich theorem andl [31, Theorem XI11.96], the

operatorH is self-adjoint onL?(R?), with domainH?(R3). It can also be decom-
posed as follows:

WeHR?), vgeHL(I) and (Hv)q=Hqvy foraimostallqer*,
whereHy is the self-adjoint operator drpe,(I") with domainHZ.(I" ), defined by

1, . jal?
Hq :?"EZX‘*|q'[]+’_EF'4’Vbep
It is easily seen that for eadpe I'*, Hq is bounded below and has a compact
resolvent. Consequently, there exists a sequéficgn>1 of real numbers going to
+o0, and an orthonormal basiéin ; )n>1 of Lﬁer(l') such that

+00

Hq= ) &nglung)(Ungl-
n=1

As the mapping| — Hq is polynomial orR3, it is possible to number the eigenval-
uesénq in such a way thage, o)n>1 is non-decreasing and that for eack 1, the
mappingg — &nq is analytic in each direction. Then (see Fﬁb 1)

oH)= U o(Hy) = U [2.57],

qel* n>1
with
S, =mingyg, X =maxeg. (30)
ger= qer*

The interval[Z; , Z}] is called then™ band of the spectrum d. It is possible to
prove that the spectrum éf is purely absolutely continuouﬂSS]. In particulbd,
has no eigenvalues.

3.2 Perfect crystals

The purpose of this section is to formally construct, thestify with mathematical
arguments, a Hartree model for the electronic structureedgpt crystals.

As announced, we begin with a formal argument and considegaesnce of
finite nuclear distributiorfpf““) ey converging to the periodic distributigoly’ of
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1
T
> q

Fig. 1 The spectrum of a periodic Schrodinger operator is a unfdrands, as a consequence of
the Bloch-Floquet decomposition.

the perfect crystal whenmgoes to infinity. For instance, we can take

nuc nuc
Pn~" = Pper Irir
ReZ|IR|<n

(we assume that the function describing the nuclear chardieei unit cell of the
perfect crystal is supported in some compact set includélderinterior of"). We
solve the Hartree problem for eapfUc with the constraint that the system remains
neutral for eacm. Assuming that when goes to infinity,

e the Hartree ground state density converges to sgfveriodic densitypger €
LperT);

e the Coulomb potential generated by the total charge coegetg someZ-
periodic potential/J;

¢ the Hartree ground state density operator converges to epmatoryf,)e,;

e the Fermi level converges to sorg@c R,

we obtain byformally passing to the limit in[(22), the self-consistent equations
Vp)er = 1(7;-0,5'9] (H[?er)v pger = pv,%’er’
Heer = _EA +Vger (31)
_AVF())er = 4”(9335— pger)-

Let us comment on this system of equations. First, we notiaefor the periodic
Coulomb equatior—rAVpOer = 411(pper — pge,) to have a solution, each unit cell must

be neutral:
/ pger— / PSé‘f— Z, (32)
r r
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whereZ is the number of electrons, and also the number of protomamiecell.
Second, a¥, is Z-periodic (and belongs th3,(I") even for point-like nuclei),
we can apply the result of the previous section and write dtherBloch-Floquet
decomposition oH3,:

1, . lal® <
(ngr)q = 7§A —igq-U+ 2 JrV|:())er: Z en,Q|un,Q><u07Q|- (33)
n=1

The operator\/ger = 1<7m,5g](ngr) then is a bounded self-adjoint operator which

commutes with the translationgr)re#, and its Bloch-Floquet decomposition
reads

—+oo
(Vger)q = z 1gnvq§gg|un,Q><un,Q|-
n=1
Actually, the set{q er*|an>1s.teq= 5,9} is of measure zero (the spectrum
of ng, is purely continuous). It follows tha/ﬁe, is always an orthogonal projector,
even if g2 belongs to the spectrum b5,

Using the Bloch decomposition oﬁer, we can write the densitlgzvger as

400
PRelt) = .. 3 Tapgeaaltna(n)P e
n=1

Integrating on, and using @2) and the orthonormality of the functigugg)n>1
in L3e(I"), we obtain

1 ©
Z="=5 {aer*|eag<e}| (34)
|I_ |n:l

This equation determines the value of the Fermi legalniquely. It is easy to see
that if the periodic Coulomb potential is shifted by a unifoconstancC, and ifeg
is replaced wite? + C, thenyd,, andpd, remain unchanged.

The formal bulk limit argument presented above has beemaigty founded by
Catto, Le Bris and Lions if[11], fapfer = S rezs X (- — R) (smeared nuclei of unit
charge disposed on the cubic lattiZd). It is also possible to justify the periodic
Hartree model by passing to the limit on the supercell modil artificial periodic
boundary conditions (seE [7]). The latter approach is Iéssipal, but technically
much easier, and its extension to arbitrary crystallingcstires (including point-like
nuclei) is straightforward. It results from these matheoatvorks that the Hartree
model for perfect crystals is well-defined. More precisely:

1. The Hartree ground state density operazgg{and densit)pge, of a crystal with
periodic nuclear densitpgef (composed of point-like or smeared nuclei) are
uniquely defined;

2. The ground state densinge, satisfies the neutrality charge constra (32);
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3. The periodic Coulomb potentka(,fer and the Fermi leved? are uniquely defined
up to an additive constant (ahg’e,— 8,9 is uniquely defined);

4. The ground state density operavggr is an infinite rank orthogonal projector
satisfying the self-consistent equati(31);

5. y0,, can be obtained by minimizing some periodic model set on thiecell I

D
(see [1]1] for details).

In the remainder of the paper we assume that the system issatator (or a
semi-conductor) in the sense that 4 band is strictly below théN + 1)t band:

Jr —_
2N < ZN+17

whereZ: are defined in@O). In this case, one can choosegmny number in the
range(Z,j,Z,gH). The electronic state of the perfect crystal is the same avieat
the value o in the gap(%, Zy, ;). On the other hand, as will be seen in the next
section, fixing the value osfg may change the electronic state of the crystal in the
presence of a local defect.

In this paper however, we are only interested in the didecesponse of the
crystal, which corresponds to the limit of small defects(isense that will be made
precise later), and in this limit, the value gf does not play any role as long as it
remains inside the ga(;f,j,z,gﬂ). For simplicity, we consider in the following

0 N+
F 2 .
Lastly, we denote by
9=y 11— 2y >0 (35)

the band gap.

3.3 Crystals with local defects

We now describe the results cﬂ [7] dealing with the modeliifigocal defects in
crystals in the framework of the Hartree model. The main ideéa seek the ground
state density operator of a crystal with a local defect attar&zed by the nuclear
charge distributior@G) under the form

Vm’g'(__’ = V;?er‘f' Qm,g'(:)'

In this formalism, the defect is seen as a quasi-molecule mitclear charge dis-
tribution m and electronic ground state density opera@y,o (and ground state

electronic densit;ongo), embedded in the perfect crystal. Here, the charge of the

defect is controlled byF the Fermi level (the chemical patntThe dual approach,
in which the charge of the defect is imposed, is also deah mnﬂil]. It should be
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noticed that neithemnorpg_, area priori non-negative. For instance, the nuclear
"eF

distribution of a defect corresponding to the replacemérat ouclear of charge
located at poinR € R with a nucleus of chargg is m= (Z — z)& and can there-
fore be positively or negatively charged depending on theevaf Z — z. Regarding
the electronic state, the constran@;ﬁ]’sg)* = Yineds 0< Yneo < 1 andpymg >0,

. B 0
respectively readQp, .0)* = Qp c0. —YPer < Qpeo <1- Yoer andme‘gg > — Pl

The next step is to exhibit a variational model allowing tammteQm‘gg from

m, 82 and the ground state of the perfect crystal.

First, we perform the following formal calculation of theffédrence between the
Hartree free energy of some trial density opergtes yge,+ Q subjected to the
nuclear potential generated bgngr m, and the Hartree free energy of the perfect
crystal:

( PH%rrctfg V0er+Q 82Tr Voer+Q ) _ ( ;Ir%:ctree(yjer SFTI’ )}) ))
1
_/ mvoe,+ D(m m). (36)
R3

The last two terms are constants that we can discard. Ofeaihesleft-hand side of
@) does not have any mathematical sense since it is treraliife of two energies
both equal to plus infinity. On the other hand, we are going®that it is possible
to give a mathematical meaning to the sum of the first five tashike right-hand
side wherQ belongs to some functional spagedefined below, and to characterize
the ground state density operato,t;wg of the quasi-molecule, by minimizing the
so-defined energy functional on a closed convex sulfSetf 2.

For this purpose, we first need to extend the definit@w (18hefCoulomb in-
teraction to the Coulomb spaédefined as

£ 2
€ = {f e .7 (R% ‘ fe L (R, D(f, f):= 471/3 'fﬁ("‘g' dk},
R

where.#’(R3) is the space of tempered distributions®h Endowed with its nat-
ural inner product

(f.9)¢ :=D(f,0) w%g%dk (37)

% is a Hilbert space. It can be proved th&t>(R3) — % and that for any f,g) €
L8/5(R3) x L®5(R3), it holds

fk gk fnar’) . .,
4”/R3‘ K2 dk:/Rs/Rs R
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Hence, the definitior[ (37) dd(-,-) on% is consistent with the usual definitign [18)
of the Coulomb interaction when the latter makes sense. Thdothb spaces
therefore is the set of charge distributions of finite Coulanergy.

Second, we introduce, for an operatoon L2(R?), the notation

A= ygerAygera A= perA(l_ Vp)er)a

AT = (17 yger)Aygera At = (17 yger)A(lf Y;?er%
and note that the constrair@s= Q* andfyger <Q<1- Vge, are equivalent to

Q=Q @<Q""-Q. (38)
From the second inequality we deduce that it then h@ds < 0 andQ*+ > 0.
Using the fact that TV %,Q) = 3 0V, We formally obtain
1
(- 38Q) + [ PV~ eTH(Q) = Tr(H - 8O
= Tr((HSerf £,9)++Q++) + Tr((H[?erf 88)77Q77)'

We now remark that, by definition ¢, (H5er— £2) 7" > 0 and(Hoe,— £2) "~ <0,
so that the right-hand term of the above expression can bdttewas

Tr(|Hr())er_ 8'(:)|1/2(Q++ - Q77)|Hr())er_ gl(:)ll/z)- (39)

The above expression is well definedltn. U {+} for all Q satisfying the con-
straints [[3B). It takes a finite value@fis chosen in the vector space

2={Q€e&;|Q"=Q, Q €61, Q" €&y, (40)
I0Q € &2, |0|Q™ 0] € &1, |0Q" 0| € &1},

where&; andS; respectively denote the spaces of trace-class and Hiimdmtaidt
operators on.%(R?) (see Appendix for details). Endowed with its natural norm, o
with any equivalent norm such as

IQ

2 is a Banach space.

2=[(1+[0)Qlle, + (1+10NQ™" (1+[0) e, +I(1+[0NQ ™ (140 lle,

Before proceeding further, let us comment on the definitibc2o As the trial
density operator® must satisfy the constrainIE[SS), it is natural to imp@se= Q.
Since|ng,f €2|1/2(1+|0|)~*is a bounded operator with bounded inverse (Fee [7]),
the four condition®)™~ € &1, Q™+ € &1, |0|Q ' |U| € &1 and|T|Q" 0] € &3
are necessary and sufficient conditions for the expres)rv(ithQ satisfying )
being finite. The other constraints imposed to the elemeni3 ¢that is,Q € &,
and|0|Q € &) follow from the fact that for any satisfying [3B)
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(Q77 €6, Q" ¢ (‘51) = (Qz € (‘51)
(I0IQ |0l € &1, DIR[0 €61) = (IDQP|0|€&y).
In order to simplify the notation, we set f@ € 2,
Tro(Q) :=Tr(Q"" +Q "),
Tro((ngr_ 82)Q) = Tr(nger_ 8l9|l/2(QijL - Q77)|ngr_ £g|l/2)-

An important result is that the linear applicatiQn— pg originally defined on the
dense subse? NG of 2 can be extended in a unique way to a continuous linear
application

2 - 2R3N
Q— Pq.

Note that the density associated with a generic eleme &f not necessarily an
integrable function. On the other hand, its Coulomb enes@hways finite.

Letmbe such tha¥m = (mx|-|~1) € ¥”. Here and in the sequel
@' = {v cLSR3) |0V € (LZ(R3))3}

denotes the dual space@f endowed with the inner product

1 1 =
Vi, Vo)gr = — [ V-V = — [ |k[2V1(K) Va(k) dk
Ry M=V Uy UL ATIACE
It follows from the above arguments that the energy funetion
m,2 0 0 1
EM2(Q) = Trol(Her— ¢80~ | poVi-+ 5D(Po. o)

is well defined onZ and that a good candidate for a variational model allowing to
compute the ground state density operﬂgrag is

inf{Emvfé’(Q), Qe Ji/} (41)
where
H ={QE 2| — Yo <Q<1— e} (42)

Note that# is a closed convex subset &f.

The above formal construction of the modl](41) is justifiedd] by means of
rigorous bulk limit arguments. To summarize the situattbe,Hartree ground state
density operator of the crystal with nuclear charge derpgﬁwL m (the charge of
the defect being controlled by the Fermi level) is given by
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y= V;(J)er"' Qm,gg

WhereQm’sg is obtained by solvindﬂll).

The existence of a Hartree ground state density operatoa fonystal with a
local defect, as well as the uniqueness of the correspornfgingity and some other
important properties, are granted by the following theoreich gathers several
results from [f] and[]o].

Theorem 1.Let m such thatmx | -|~1) € L?(R%) 4+ %”. Then,
1. @) has at least one minimizer,Q, and all the minimizers of (#1) share the

same densitp_ €0
2. Queo is solution to the self-consistent equation

meg'(__) = 1(70075'(__)) (ngr+ (pmygg - m) *| ’ |7l) - 1(700,5'9] (ngr) + 65 (43)

whered is a finite-rank self-adjoint operator onzLR?’) suchthaD < d <1and
Rar(d) C Ker (ng,+ (Pmeo —m) |- |-1— so) .

The interpretation of the Euler equatidn|(43), which alsase
0
ygeﬂL Qm,sE - 1(*°°~,5|9] (Hm,s,(__’) +9
with
Hr?]’s'(__, = Hler+ (B0 — M) % |- |71, 0<6<1, Rand)cC Ker(Hr?wg —&?),

is the following. The mean-field Hamiltonia‘ﬁ%go is uniquely defined, since all
heF
the minimizers of|@1) share the same denpn.ygg. Besides, the operatop,, 0~

m) x| - |~ being a relatively compact perturbation}dge,, it results from the Weyl
theorem (see[[31, Section XIII.4]) that the Hamiltonid#, and Hr?150 have the

heF
same essential spectra. On the other hand, \Mﬁgehas no eigenvaluelsl,r?1 0 May
hEF

have a countable number of isolated eigenvalues of finitéiphialties in the gaps as
well as below the bottom of the essential spectrum. The oodgible accumulation
points of these eigenvalues are the edges of the bands.

If 2 ¢ G(Hr‘fwo), thend = 0 and the ground state density operator of the crystal

heF

in the presence of the defect is the orthogonal proje,zgtglﬂr lesg: All the energy

levels lower that the Fermi level are fully occupied while tther ones are empty
(see Fig[|2). In this caségmyag is both a Hilbert-Schmidt operator and the difference

of two projectors. It therefore follows froni [[18, Lemma 2hth

Tro(Qmeo) € N. (44)
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Assuming tham e L*(R®) and [s me N, the integer

/ m—Tro(Qn,z0)
R3 F

can be interpreted as thare charge of the defect (in contrast with teereenedr
renormalizedcharge to be defined later).
If 8,9 € O'(Hr?]so), then the energy levels with energ& may be fully or partially

occupied, and it Fnag priori happen tha@l) has several minimizers, differing from
one another by a finite rank self-adjoint operator with rajmgéer(Hr% 0~ 5,9).
heF

0

Ep
I | 0
e OO0 1— —  o(H el )
Fermi sea electrons

Fig. 2 General form of the spectrum of the self-consistent opendrfnbgo, in the presence of a
"

defect and for a fixed chemical potentadl

4 Dielectric response of a crystal

In this section, we study the response of the electronicrit@tiate of a crystal to a
small effectivepotential. In Sectio@.l, we consider a time-independertupba-
tionV € L2(R3) +%", with ||V|| 2.4 < o (for somea > 0 small enough). It can be
proved (see|]9, Lemma 5]) that there exiBts- 0 such that

(Ims -1 Mzse <B) = (I(omag =M x| Hizur < ). (45)

The results of Sectio@.l therefore directly apply to theecaf a crystal with a
local defect with nuclear charge distribution provided the defect is small enough
(in the sense thatmx |- | 7Y 2. < B).

In Section{4}4, we consider a time-dependent perturbation

v(t,r) = (p(t,)*|-|7H(r)  with  peli(R,LAR3}NY). (46)

4.1 Series expansion of the time-independent response

ForV € L?(R3) + %", the spectrum olf-lge,+v depends continuously . In par-
ticular (seel]]g, Lemma 2]), there exists some- 0, such that it is a smooth curve
in the complex plane enclosing the whole spectrurhi&f, below 8,9, crossing the
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real line ate? and at some < inf g(HS,,) and such that

d(0(Hy) A) = % where A = {ze C ‘ d(z @) < %},

d denoting the Euclidean distance in the complex plane gttt band gap@S)
(see Fig[B), themw (H3,+V) N (—e0, €] is contained in the interior of for all
V € L2(R3) + %" such that|V|| 2, < a.

¢

EF

per

il
XN
A

Fig. 3 Graphical representation of a contatiz C enclosingo(ngr) N (—, &l and of the com-
pact set\.

As a consequence, we obtain that fohat L?(R3)+%” such thaf|V|| 2.« < q,
0 0
Qv = 1(700,52) (Hper+v) - 1(700,52] (Hper)

1 0 -1 o\ 1
=520 ((zf HO—V) " — (z— HE,) ) dz (47)
where we have used the fact tisdt¢ U(ng,+V) to establish the first equality, and
the Cauchy formula to derive the second one.

Expanding[[47) in powers of, we obtain

N ~
Qv =) Qnv+Qnyt1v, (48)
=

where we have gathered the terms involving poweig rger tharN in a remain-
derQn.1v. The linear contribution is given by

1 ~ B
Quv =5 ] (z—HS%) 'V (2= HSy) " dz (49)

The higher order contributions and the remainder are réispgcgiven by
1 0\-1 0\—1 n
Qn,V = E‘[ A (Z* Hper) [V (Z* Hper) } dz

and

,1} N+1 iz

~ 1 -1
Queay = g (2= Hem) [V (2 HE)
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Proposition 1. The terms of the perturbation expansi(48) enjoy the \iollg
properties.

1. The k-linear application

1 -1 -1 -1

Vi, Vo) ﬁyg (z—H%) Vi(z—HSe) -+ Va(z—Hd) ~dz
is well-defined and continuous frofb?(R3) + ¢”)" to 2 for all n > 1, and from
(L2(R3)+%")" to &4 for all n > 6. In particular, for all V € L2(R%) + %", Qny €
2 foralln>1and Qy € &; for all n > 6. Besides, for all Ve L2(R%) + %",
Tro(Qny) = 0foralln > 1andTr(Qny) = Ofor all n > 6.

2. 1fV € LYR3), Qny is in & for each n> 1 and Tr(Qny) = 0.

3. For each Ve L?(R?®) +%" suchthatV|| 2, < a,the operatoQ. 1y isin 2
for all N > 0 with Tro(Qn+1v) =0, and inG4 for all N > 5, with Tr(Qnt1v) =

Tro(Qn1v) = 0.

We are now in position to define some operators which play goitant role in
the sequel:

¢ the Coulomb operator, which defines a bijective isometry betwe€rand¢”:
ve(p) == px|- |7

¢ the independent particle polarization operggdefined by

Xo(V) == PQuy >

which provides the first order response of the electronisitignf the crystal to
a time-independent modification of the effective potenfidle operatol is a
continuous linear application from*(RR3) to LY(R3) and fromL?(R?) + %" to
L2(R3NE;

e the linear operatafZ defined by

£ = —XoVe,

which is a bounded nonnegative self-adjoint operato#0ms a consequence,
(14 .2)~1is a well-defined bounded self-adjoint operator®n

e the dielectric operatos = vc(1+.2)vz 1, and its inverse, the dielectric permit-
tivity operator

e l=ve(1+2) WY

both being continuous linear operators@h Note that the hermitian dielectric
operator, defined as= vgl/zev%/z is a self-adjoint, invertible, bounded operator
onL?(R?) and is for this reason conveniently used in mathematicaifgro

We now focus our attention on the total Coulomb potential

Vin= (M- pm,eg) *|- |7l = Ve(Mm— pm,s,‘__’)’
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generated by some charge distributiosuch thatjmx |- ||| 2, ,» < B, and on the
respons@y, o of the Fermi sea. In view 0@45), we can apply the above resuid
deduce from|(48) that

Pmed = PQ-viy = PQL vy T PG, , =~ XoVm+ Pa, .,
= g(m - pmygg) + p@z.fvm . (50)

The above relation, which also reads

(m*pm,sg): (1+$>7lm*(1+3)7l( (51)

péz‘—Vm )
or

Vim=Ve(1+.2) tm—ve(1+.2) Y (52)

P 62‘7vm )’

is fundamental since it allows to split the quantities oknesst (the total charge
(m— pm‘gg) or the total Coulomb potential, generated by the defect) into two
components:

e alinear contribution inm, very singular, and responsible for charge renormaliza-
tion at the microscopic level, and for the dielectric prdsrof the crystal at the
macroscopic level;

e anonlinear contribution which, in the regime under stujhy£| - | ~2|| 2, < B),
is regular at the microscopic level and vanishes in the nsaoqic limit.

4.2 Properties ofQ, .o and p;, .o for small amplitude defects

The relation ) ,combined with the properties of the ofmer&’ stated in Propo-
sition [3 below, allows to derive some interesting propertéQ,, .o andpy, .0 and
to propose a definition of the renormalized charge of thealefe

Proposition 2. Letp € LY(R3). Then,Z(p) € LA(R3) %, Z(p) is continuous on
R3\ #*, and for all o € S (the unit sphere dR3),

lim Z(p)(no) = (a"La)p(0) (53)

n—0+

where Le R3*3 is the non-negative symmetric matrix defined by

’ 2

vk € RS,

N +-00 J <(k'|:|r)Un’q,u /7 )> 2
KTk =21 f | e s

|I—| (gn/’q - gn,q)S

where thesn 4's and the y 4's are the eigenvalues and eigenvectors arising in the
spectral decompositiof83) of (ngr)q. Additionally,

n=1n'=N+1
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Lo= %Tr(L) > 0. (55)

Notice that the convergence of the seriE (54) is grantethdyact thatey  —
&g > 2, — 25 >gforalln<N < andallg e I* (whereg > 0 is the band gap),
and the existence @ € R, such thatﬂuanHz y<Cforalll1<n<Nandall

g € I*. Actually, the convergence of the series is rather fasteﬁﬁhc ~ Cn?3

n —co

(this estimate is obtained by comparing the e|genvalud$p°9,fW|th those of the

Laplace operator ohpe,( ).

We do not reproduce here the quite technical proof of Prdxpo@ Let us how-
ever emphasize the essential role played by the long raragacter of the Coulomb
potential. If|-|~% is replaced by a potential € L%(R®), then for allp € LY(R?),
p*V; € L1(R3), henceZ(p) € LY(R®) andL = 0. More precisely, the Bloch-Floquet
decomposition of the Coulomb kernel reads

a1 ek
. N=— | —+ — .
(I-Dalr) =17 <|q|2 P |q+K|2>

and only the singular componeﬁ:\“ﬁz, which originates from the long-range of
the Coulomb potential, gives a nonzero contributioh.to

We can deduce fronEbO) and Propositﬂ)n 2 that, in genemlntinimizerQ,, .o
o (@) is not trace-class and that the denpir%g is not an integrable function if
the host crystal is anisotropic. Let us detail this point.

Consider somene L1(R3) NL2(R3) such thatfps m= 0 and||mx |- | 72| 2, <
B. In view of @) and Proposmoé 1, it holds

Tro(Qpe0) = Tro(Qr v + Q,-viy) = 0. (56)

Assume thapmlsg is in L1(R®). Then a technical lemma (se@ [9, Lemma 4]) shows
that the Fourier transform of the dens'yl;zs2 - corresponding to the nonlinear
s VM

response terms, is continuous and vanishes at zero. Thissntleat, although it
is not known whethepg, | is in LY(R3), this density of charge behaves in the

Fourier space as if it was mtegrable with an integral eqoiaetro. It follows from
(69) and Propositioi 1 that for eache <,

ﬁm,eg (0) = lim g(pm e~ m)(no) = (UT Lo) (ﬁm,s,‘__’ (0) —m(0)). (57)

n—0t

As by assumptiom(0) # O (since [zs m# 0), we reach a contradiction unless the
matrix L is proportional to the identity matrix. Defining here an ispic crystal as
a crystal for whichL # L1, this proves that, in generqdmsg is not an integrable

function for anisotropic crystals (and thasfortiori implies 'thatQm 0 is not trace-
class).
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Let us now consider an isotropic crystal.Q, .o were trace-class, thepy, .o
would be inL1(R3), and we would deduce frorh (56) that

(27'[)3/2[/5”1,8'(:) (0) = /]1&3 pm,sg = Tr(Qm,s,(:’) = TrO(Qm,sg) =0.

Again, except in the very special case wher- 1, this contradicts[($7) since
M £ 0 by assumption. Thus, in gener@mﬁg is not trace-class, even for isotropic
crystals. We do not know whether the electronic denplig;,;ég generated by some
me L1(R%) NL2(R3) (this assumption implies € L85(R3) — %) in an isotropic
crystal is integrable or not. If it is, it follows fronfi (57)ah still under the assump-
tion that|[mx| - || 2,4 < B,

Jesm
m— = .
/Rs 3 Pmeg =7 +Lo

This quantity can be interpreted as the renormalized chadripe defect, which dif-
fers from the bare chargf,s m— Tro(meag) = [gam by a screening factoij—LO.
This is formally similar to the charge renormalization pberenon observed in
QED (see [1]7] for a mathematical analysis).

4.3 Dielectric operator and macroscopic dielectric pertity

In this section, we focus again on the total potential
Vin= (M~ P, 0) %] -| (58)

generated by the total charge of the defect, but we studyaitd@rtain macroscopic
limit.

For this purpose, we fix somma € L1(R3) N L?(R?) and introduce for alh > 0
the rescaled density

my (r) == n®m(nr).

We then denote by the total potential generated Iy, and the corresponding
electronic polarization,e.

Vn’zl = (mn - pmq,eg)* | : |71a (59)
and define the rescaled potential

Wil (r) == n""Vid (n ). (60)
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The scaling parameters have been chosen in a way such theg absence of di-
electric response.g.for £ =0 and,?SQ2 L =0 it holdsWil = ve(m) = mx |- |1
for all n > 0. To obtain a macroscopic IiPnit, we lgtgo to zero.

As |[(my *|-|71) ¢ = n%?||m||¢, we can apply the results of the
previous sections as soon gds small enough. Introducing the family of scaling
operatorgUy ) -0 defined by(Uy, f)(r) = n%2f(nr) (eachUy, is a bijective isome-
try of L2(R3)), the equation linking the density of changeio the rescaled potential
Wi reads

@ = [|my

W = v/ 2U;E U ve P+ W, (61)
where the nonlinear contributioft} is such that there exis&® c R, such that for
n small enoughl|Wh||» < Cn. The macroscopic limit ol therefore is governed
by the linear response term, and is obtained as the limit wjhgoes to zero of the
family (U;€71Uj) ;>0 of bounded self-adjoint operators bA(R3).

If 1 was translation invariant, that is, if it was commuting wéth the trans-
lations T for R € R3, it would be a multiplication operator in the Fourier space
(i.e. such that for allf € L2(R®), (ﬁ)(k) = £ 1(k)f(k) for some function
R3 5 k —» £-1(k) € C). Using the fact that the operata§’? is the multiplication
operator by(47)/2/|k| in the Fourier space, we would obtain in the limit

. k|2 > ~ _
lim | = Win(k) = 4rmm(k).
As the operatog ! actually commutes only with the translations of the lattiége
the above argument cannot be applied. On the other hand) beg@roved, using
Bloch-Floquet decomposition, thak] has a limitw, whenn goes to zero, and that
this limits satisfies

_ K2 N oo
nl;rr& ([El]oo(flk) > Win(k) = 4mn(ko), ©2

where[€~Yoo(q) is the entry of the Bloch matrix of théZ-periodic operatog—1
corresponding t& = K’ = 0. Besides,

- k[? ) T
Iim [ =———— ) =k’ &uk, 63

n—0* ([51]00(flk) M (63)
wheregy is a 3x 3 symmetric, positive definite matrix. Transforming ba@)(fh
the physical space, we obtain the macroscopic Poissonieql@). Let us formalize
this central result in a theorem.

Theorem 2. There exists 8 x 3 symmetric matrixey; > 1 such that for all me
LL(R3)NL2(R3), the rescaled potential Wdefined by[(§0) converges toWeakly
in €’ whenn goes to zero, where $Ms the unique solution ir¢” to the elliptic
equation
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—div(em OWp) = 4rm.

The matrixgy is proportional to the identity matrix if the host crystaldithe sym-
metry of the cube.

From a physical viewpoint, the matrisf, is the electronic contribution to the
macroscopic dielectric tensor of the host crystal. Noté¢ the other contribution,
originating from the displacements of the nucE][ZQ], ig taken into account in
this study.

The matrixey can be computed from the Bloch-Floquet decompositioH&f,

as follows. The operatar = v{l/zsv%/z beingZ-periodic, it can be represented by
the Bloch matrice$[exk ' (0)]k k’c%* )qer+- It is provenin [b] that each entry of the
Bloch matrixéx x/(no) has a limit whem goes to 0 for all fixed o € <. Indeed,

lim &o(no)=14+0"Lo
n—0t

wherel is the 3x 3 non-negative symmetric matrix defined(54). Wikerk’ #£ 0,
& k/(no) has a limit atn = 0, which is independent af and which we simply
denote byg /(0). WhenK = 0 butK’ # 0, the limit is a linear function of: for
all K’ € 2*\ {0},
lim &/ (no) =P -0,
n—0ot

for somepy: € C3. Both &y (0) (K,K’ # 0) andBx can be computed from the
eigenvalueg, q and eigenvectors, q of the Bloch-Floquet decomposition l=.vl,‘3er
by formulae similar to[(§4). As already mentioned, the ettt contribution to the
macroscopic dielectric permittivity is thex33 symmetric tensor defined aﬁ [6]

. k|?
vk e R3, kTeyk = lim ~|7 64
M nS0r [E Too(nk) 9
By the Schur complement formula, it holds
1 ~ - ~
= &yo(Nk) — o (NK)[C(nk) Yk k& o(nk
& oo(nk) 00(nk) K’KZ#) ok (NK)[C(Nk) "]k k&’ ,0(NK)

whereC(nk)~! is the inverse of the matri€(nk) = [k (NK) ]k ke (o} - This
leads to

- K2 2Tk : ek B -K)
qlLrg+ [E*l]oo(r]k) _|k| +k Lk K’K/G;*\{O}(BK k)[C(O) ]K,K (BK k)

whereC(0)~1 is the inverse of the matrig(0) = [€kk 7 (0)]k k’ezn\ {0} - Therefore,

ev=1+L- Z Bk [C(0) Yk k' B - (65)
K K74\ {0}
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As already noticed in[[6], it holds
1<ey<1+L.

Formula [6F) has been used in numerical simulations fomesting the macro-
scopic dielectric permittivity of real insulators and seotiductors[l6[ 39, 24, 1L4,
@]. Direct methods for evaluating,, bypassing the inversion of the mat@X0),
have also been proposdd][$2] 25].

4.4 Time-dependent response

We study in this section the variation of the electronicestztthe crystal when the
mean-field Hamiltoniai Oe, of the perfect crystal is perturbed by a time-dependent
effective potential(t,r) of the form ‘) The mathematical proofs of the results
announced in this section will be given in 10]

Let 1
Hy(t) = Hor+V( )=—§A+Vper+V(tv')-

Under the assumption thafer € Lger( ) (smeared nuclei), the mean-field potential
Vper is Z-periodic and inC(R3) NL*(R3). Besides, there exists a constéht-

0 such that|p |- |7 » < CHP|||_2Q</ for all p € L?(R®)N ¥, so that the time-
dependent perturbatiorbelongs td_} .(R, L™ (R?)).

Let us now define the propagat@y(t,s))(stcrxr associated with the time-
dependent HamiltoniaHly(t) following [BQ, Section X.12]. To this end, consider
first the propagatddy(t) = g tHer assomated with the time-independent Hamilto-
nian ngr, and the perturbatlon in the so-called interaction picture

Vint(t) = Uo(t)*V(t)Uo(t).

Standard techniques (see for insta [28, Section 5lay & show the existence
and uniqueness of the family of unitary propagattfsi(t,s))sicrxr associated
with the bounded operatofsint(t) )icr, With

t
Uint(t,to) =1~ i/ Vint(S)Uint(S, to) ds
fo

Thereforely(t,s) = Up(t)Uint(t,S)Uo(s)* satisfies the integral equation
t
Uv(t,to) =Up(t—to) —1i / Uo('[ — S)V(S)UV(S,'[o) ds (66)
fo

Denoting byy? the density operator of the crystal at tine 0, the dynamics of
the system is governed by the evolution equation
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V(t) = UV(tvo)WUV(tvo)*' (67)

Note that the conditiong’ € .7 (L?(R3)) and 0< y° < 1 are automatically propa-
gated by [6]7).

Considering/(t) as a perturbation of the time-independent Hamiltonﬂgg, and
y(t) as a perturbation of the ground state density opelsﬁggrit is natural to follow
the same strategy as in the time-independent setting amodlirde

Q(t) = V(t) - Vp)er-

Using (66). [€]7), and the fact thgfl, is a steady state of the system in the absence

of perturbation l(Jo(t)yge,Uo(t)* = Vge,), an easy calculation shows tl@(t) satisfies
the integral equation

t
Q(t):Uo(t)Q(O)Uo(t)**i/OUo(t*S)[V(S)vvgerJrQ(S)]Uo(t*S)*dS (68)

We now assume thaf = yger, i.e. 0) =0, and write (formally for the moment)
Q(t) as the series expansion

+oo
QD = T Quult), (69)
n=1

where the operatoi®,(t) are obtained, as in the time-independent case, by iden-
tifying terms involvingn occurrences of the potential In particular, the linear
response is given by

t
Quy(t) = —i /0 Uo(t — ) [V(S), Yper Uo(t — 5)*ds; (70)

and the following recursion relation holds true

t

Vn>2, Qny(t) = —i/o Up(t — ) [V(S), Qn-1v(S)]Up(t —s)"ds  (71)

Itis proved in [1p] that for anyr > 1 and anyt > 0, the operato@n(t) in (69)
belongs ta2 and satisfies

Ve LAR3), (Y|Qny(t)|g) 2 =0.

In particular, Tp(Qnv(t)) = 0. Besides, there existsc R such that for alt > 0

t ety th-1
|Qn(t)]lo < b" /0 /0 /0 100t [ zrve - [Pt 20 ot
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and there exist§ > 0 such that the series expansipr] (69) converge? imiformly
on any compact subset f, T). Lastly, T = + if p € L*(R,,L?(R3)N%).

As in the time-independent setting, the frequency-depetrdielectric properties
of the crystal can be obtained from the linear respo@e B80Yefining the time-
dependent independent-particle polarization operator

Xo : LAR,v(L2(R3)N%F)) — L°(R,LA(R3)NF) (72)
Vi le‘v
and the time-dependent operatdfs= —xoVe, € = Vo(1+.2)Vg1, €71 = v (1 +
.Z)*lvgl, ande = vgl/zev%/z. Due to the invariance of the linear response with
respect to translation in time, all these operators arealatigns in time. In addi-
tion they arez-periodic in space. They can therefore be represented Qudrecy-
dependent Bloch matriceSk k/(w,q)], with K, K" in #*, ge '* andw € R.
The Adler-Wiser formula states that the (electronic cdmttion of the) frequency-
dependent macroscopic dielectric permittivity is givertiy formula

. k|2
vk eR3, Kk gem(wk = lim (~|7)
m(@) n—0+ \ [~ oo(w, nk)

The mathematical study of this formula and of its possibiédé&on from rigorous
homogenization arguments, is work in progress.

We finally consider the self-consistent Hartree dynamidmdd by

t
Q(t) = Uo(t)QUo(t)" i /0 Uo(t — ) [V(S) + Ve(Pors)): Voer+ Q(9) | ot — 9)"ds
(73)
for an initial conditionQC € ., and for an external potentia(t) = v¢(m(t)), where
m(t) € L2(R3)N¥ for all t. The solutiorQ(t) of (73) is such thay(t) = Y+ Q(t)
satisfies, formally, the time-dependent Hartree equation

.dy 1 -
G0 = |38 (B~ ARE— X0« L0

The following result [10] shows the well-posedness of thelimear Hartree dy-
namics.

Theorem 3.Let me C1(R, ,L?(R%)N¥%). Then, for any @ c .7, the time-dependent
Hartree equatior@) has a unique solution in€R ., 2). Besides, for all > 0,

Q(t) € # andTro(Q(t)) = Tro(Q°).
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Appendix: trace-class and self-adjoint operators

It is well-known that any compact self-adjoint operafoon a separable Hilbert
spaces# can be diagonalized in an orthonormal basis set:

—+oo
A=;/\i|<a><<nl, (74)

where(@|@;) = &j, and where the sequenth);>1 of the (real) eigenvalues &,
counted with their multiplicities, converges to zero. Wedormulated[(74) using
again Dirac’s bra-ket notation. The conventional mathérabformulation for [7})
reads

+o00
Voe A, Ap= _Z/\i (alo)a.
1=

A compact self-adjoint operatéxis called trace-class if

+
i;|)\i| < 0,

The trace ofA is then defined as

+o00 +o0

Tr(A) =S A=Y (alAle),

242
the right-hand side being independent of the choice of tttaormal basise )i>1.
Note that ifA is a non-negative self-adjoint operator, the spifif; (e|Ale) makes
sense iRy U{+} and its values is independent of the choice of the orthonbrma
basis(g)i>1. We can therefore give a sense tqAy for any non-negative self-
adjoint operatoA, and this number is finite if and only K is trace-class.

The notion of trace-class operators can be extended to elbadjoint operators
[B1,[33], but we do not need to consider this generalizatene h

By definition, a compact operatévris Hilbert-Schmidt ifA*A is trace-class. A
compact self-adjoint operat@y on # decomposed according tE[74) is Hilbert-
Schmidt if and only if

|)\i |2 < 00,

Obviously any trace-class self-adjoint operator is Hitiigchmidt, but the converse
is not true.

In this contribution, we respectively denote 84 and &, the spaces of trace-
class and Hilbert-Schmidt operators actind 8(iR®). We also denote by’ (L?(R?))
the vector space of the bounded self-adjoint operatots’@R®).

A classical result states thatAfis a Hilbert-Schmidt operator o?(R?), then
it is an integral operator with kernel Ic?(R3 x R3). This means that there exists a
unique function in_2(R3 x R3), also denoted b for convenience, such that
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Vo LXE), (Ap)r) = [ Ar)olr)ar (75)
R3

Conversely, ifA is an operator o.?(R®) for which there exists a functioA €
L2(R® x R®) such that[(7}5) holds, thehis Hilbert-Schmidt.

If Ais a self-adjoint Hilbert-Schmidt operator @A(R®) decomposed according
to (74), then its kernel is given by

n_ _ /
Ar,r) = i;/\l ar)a(r).
If, in addition A is trace-class, then the densfiy, defined as
< 2
Pa(r) = i;/\ilfﬂ(r)l ,

is a function of_L1(R®) and it holds

Tr(A) = zAi = /R3 pa(r)dr.

For convenience, we use the abuse of notation which consistsiting pa(r) =
A(r,r) even when the kernel & is not continuous on the diagonfl =r'} c RS.
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