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The Microscopic Origin of the Macroscopic
Dielectric Permittivity of Crystals:
A Mathematical Viewpoint.

Éric Cancès, Mathieu Lewin and Gabriel Stoltz

Abstract The purpose of this paper is to provide a mathematical analysis of the
Adler-Wiser formula relating the macroscopic relative permittivity tensor to the mi-
croscopic structure of the crystal at the atomic level. The technical level of the pre-
sentation is kept at its minimum to emphasize the mathematical structure of the
results. We also briefly review some models describing the electronic structure of fi-
nite systems, focusing on density operator based formulations, as well as the Hartree
model for perfect crystals or crystals with a defect.

1 Introduction

Insulating crystals are dielectric media. When an externalelectric field is applied,
such an insulating material polarizes, and this induced polarization in turn affects
the electric field. At the macroscopic level and in the time-independent setting, this
phenomenon is modelled by the constitutive law

D = ε0εME (1)

specifying the relation between the macroscopic displacement field D and the
macroscopic electric fieldE. The constantε0 is the dielectric permittivity of the
vacuum, andεM the macroscopic relative permittivity of the crystal, a 3× 3 sym-
metric tensor such thatεM ≥ 1 in the sense of symmetric matrices (kTεMk ≥ |k|2 for
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Pontoise, France e-mail:Mathieu.Lewin@math.cnrs.fr

1

cances@cermics.enpc.fr, stoltz@cermics.enpc.fr
Mathieu.Lewin@math.cnrs.fr


2 Éric Cancès, Mathieu Lewin and Gabriel Stoltz

all k ∈ R3). This tensor is proportional to the identity matrix for isotropic crystals.
Recall thatD is related to the so-called free chargeρf by the Gauss law div(D) = ρf

and that the macroscopic electric fieldE is related to the macroscopic potentialV
by E =−∇V, yielding the macroscopic Poisson equation

−div(εM∇V) = ρf/ε0. (2)

In the time-dependent setting, (1) becomes a time-convolution product:

D(r , t) = ε0

ˆ +∞

−∞
εM(t − t ′)E(r , t ′)dt′. (3)

Fourier transforming in time, we obtain

FD(r ,ω) = F εM(ω)FE(r ,ω),

where, as usual in Physics, we have used the following normalization convention
for the Fourier transform with respect to the time-variable:

F f (r ,ω) =

ˆ +∞

−∞
f (r , t)eiωt dt

(note that there is no minus sign in the phase factor). The time-dependent tensor
εM in (1) can be seen as the zero-frequency limit of the frequency-dependent tensor
F εM(ω).

Of course, the constitutive laws (1) (time-independent case) and (3) (time-
dependent case) are only valid in thelinear response regime. When strong dielectric
field are applied, the response can be strongly nonlinear.

The purpose of this paper is to provide a mathematical analysis of the Adler-
Wiser formula [1, 36] relating the macroscopic relative permittivity tensorεM (as
well as the frequency-dependent tensorF εM(ω)) to the microscopic structure of the
crystal at the atomic level.

In Section 2, we discuss the modelling of the electronic structure of finite molec-
ular systems. We introduce in particular the Hartree model (also called reduced
Hartree-Fock model in the mathematical literature), whichis the basis for our anal-
ysis of the electronic structure of crystals. This model is an approximation of the
electronicN-body Schrödinger equation allowing to compute the groundstate elec-
tronic density of a molecular system containingM nuclei considered as classical
particles (Born-Oppenheimer approximation) andN quantum electrons, subjected
to Coulomb interactions. The only empirical parameters in this model are a few
fundamental constants of Physics (the reduced Planck constant h̄, the mass of the
electronme, the elementary chargee, and the dielectric permittivity of the vacuum
ε0) and the masses and charges of the nuclei. In this respect, this is anab initio, or
first-principle, model in the sense that it does not contain any empirical parameter
specific to the molecular system under consideration.
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We then show, in Section 3, how to extend the Hartree model formolecular sys-
tems (finite number of particles) to crystals (infinite number of particles). We first
deal with perfect crystals (Section 3.2), then with crystals with local defects (Sec-
tion 3.3). The mathematical theory of the electronic structure of crystals with local
defects presented here (and originally published in [7]) has been strongly inspired
by previous works on the mathematical foundations of quantum electrodynamics
(QED) [18, 20, 19]. In some sense, a defect embedded in a insulating or semi-
conducting crystal behaves similarly as a nucleus embeddedin the polarizable vac-
uum of QED.

In Section 4, we study the dielectric response of a crystal. First, we focus on
the response to an effective time-independent potentialV, and expand it in powers
of V (Section 4.1). The linear response term allows us to define the (microscopic)
dielectric operatorε and its inverseε−1, the (microscopic) dielectric permittivity
operator, and also to define a notion of renormalized charge for defects in crystals
(Section 4.2). In Section 4.3, we derive the Adler-Wiser formula from the Hartree
model, by means of homogenization arguments. Loosely speaking, a defect in a
crystal generates an external field and thereby a dielectricresponse of the crystal.
If a given local defect is properly rescaled, it produces a macroscopic charge (cor-
responding to the free chargeρf in (2) and the total Coulomb potential converges
to the macroscopic potentialV solution to (2) whereεM is the tensor provided by
the Adler-Wiser formula. A similar strategy can be used to obtain the frequency-
dependent tensorF εM(ω) (Section 4.4).

As trace-class and Hilbert-Schmidt operators play a central role in the mathemat-
ical theory of electronic structure, their definitions and some of their basic properties
are recalled in Appendix for the reader’s convenience.

The mathematical results contained in this proceeding havebeen published [7, 8,
9], or will be published very soon [10]. The proofs are omitted. A pedagogical effort
has been made to present this difficult material to non-specialists.

As usual in first-principle modelling, we adopt the system ofatomic units, ob-
tained by setting

h̄= 1, me = 1, e= 1,
1

4πε0
= 1,

so that (4) reads in this new system of units:

−div(εM∇V) = 4πρf. (4)

For simplicity, we omit the spin variable, but taking the spin into account does not
add any difficulty. It simply makes the mathematical formalism a little heavier.
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2 Electronic structure models for finite systems

LetH be a Hilbert space and〈·|·〉 its inner product (bra-ket Dirac’s notation). Recall
that if A is a self-adjoint operator onH and φ and ψ are in D(A), the domain
of A, then〈φ |A|ψ〉 := 〈φ |Aψ〉 = 〈Aφ |ψ〉. If A is bounded from below, the bilinear
form (φ ,ψ) 7→ 〈φ |A|ψ〉 can be extended in a unique way to the form domain ofA.
For instance, the operatorA= −∆ with domainD(A) = H2(Rd) is self-adjoint on
L2(Rd). Its form domain isH1(Rd) and〈φ |A|ψ〉 =

´

Rd ∇φ ·∇ψ . In the sequel, we
denote byS (H ) the vector space ofboundedself-adjoint operators onH .

Fork= 0, 1 and 2, and with the conventionH0(R3) = L2(R3), we denote by

N∧

i=1

Hk(R3) :=
{

Ψ ∈ Hk(R3N)
∣∣∣ Ψ(r p(1), · · · , r p(N)) = ε(p)Ψ (r1, · · · , rN), ∀p∈ SN

}

(whereSN is the group of the permutations of{1, · · · ,N} andε(p) the parity ofp)
the antisymmetrized tensor product ofN spacesHk(R3). These spaces are used to
describe the electronic state of anN electron system. The antisymmetric constraint
originates from the fact that electrons are fermions.

2.1 TheN-body Schr̈odinger model

Consider a molecular system withM nuclei of chargesz1, · · · ,zM. As we work in
atomic units,zk is a positive integer. Within the Born-Oppenheimer approximation,
the nuclei are modelled as classical point-like particles.This approximation results
from a combination of an adiabatic limit (the small parameter being the square root
of the ratio between the mass of the electron and the mass of the lightest nucleus
present in the system), and a semi-classical limit. We referto [2, 3] and references
therein for the mathematical aspects.

Usually, nuclei are represented by point-like particles. If theM nuclei are located
at pointsR1, · · · ,RM of R3, the nuclear charge distribution is modelled by

ρnuc=
M

∑
k=1

zkδRk,

whereδRK is the Dirac measure at pointRk. The Coulomb potential generated by
the nuclei and seen by the electrons then reads

Vnuc(r) :=−
M

∑
k=1

zk

|r −Rk|

(the minus sign comes from the fact that the interaction between nuclei and electrons
is attractive). In order to avoid some technical difficulties due to the singularity of



The Microscopic Origin of the Macroscopic Dielectric Permittivity of Crystals 5

the potential generated by point-like nuclei, the latter are sometimes replaced with
smeared nuclei:

ρnuc(r) =
M

∑
k=1

zkχ(r −RK),

whereχ is a smooth approximation of the Dirac measureδ0, or more precisely a
non-negative smooth radial function such that

´

R3 χ = 1, supported in a small ball
centered at 0. In this case,

Vnuc(r) :=−(ρnuc⋆ | · |−1)(r) =−
ˆ

R3

ρnuc(r ′)
|r − r ′| dr ′

is a smooth function. We will sometimes denote this smooth function byVρnuc in
order to emphasize that the potential is generated by a non-singular charge distribu-
tion.

The main quantity of interest in our study is the electrostatic potential gener-
ated by the total charge, which is by definition the sum of nuclear chargeρnuc and
the electronic chargeρel. According to the Born-Oppenheimer approximation, elec-
trons are in their ground state, andρel is a density associated with the ground state
wavefunctionΨ0. Let us make this definition more precise.

Any (pure) state of a system ofN electrons is entirely described by a wavefunc-
tion Ψ ∈ ∧N

i=1L2(R3) satisfying the normalization condition‖Ψ‖L2(R3N) = 1. The
density associated withΨ is the functionρΨ defined by

ρΨ (r) = N
ˆ

R3(N−1)
|Ψ(r , r2, · · · , rN)|2 dr2 · · ·drN. (5)

Clearly,

ρΨ ≥ 0, ρΨ ∈ L1(R3), and
ˆ

R3
ρΨ = N.

It can be checked that ifΨ ∈ ∧N
i=1H1(R3), then

√ρ ∈ H1(R3), which implies in
particular thatρΨ ∈ L1(R3)∩L3(R3).

The ground state wavefunctionΨ0 is the lowest energy, normalized eigenfunction
of the time-independent Schrödinger equation

HNΨ = EΨ , Ψ ∈
N∧

i=1

H2(R3), ‖Ψ‖L2(R3N) = 1, (6)

where HN is the electronic Hamiltonian. The latter operator is self-adjoint on∧N
i=1L2(R3), with domain

∧N
i=1H2(R3) and form domain

∧N
i=1H1(R3), and is de-

fined as

HN =−1
2

N

∑
i=1

∆r i +
N

∑
i=1

Vnuc(r i)+ ∑
1≤i< j≤N

1
|r i − r j |

. (7)

The first term in the right-hand side of (7) models the kineticenergy of the electrons,
the second term the Coulomb interaction between nuclei and electrons and the third
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term the Coulomb interaction between electrons. For later purposes, we write

HN = T +Vne+Vee,

where

T =−1
2

N

∑
i=1

∆r i , Vne=
N

∑
i=1

Vnuc(r i), Vee= ∑
1≤i< j≤N

1
|r i − r j |

.

It is proved in [37] that if the molecular system is neutral (∑M
k=1zk = N) or posi-

tively charged (∑M
k=1zk ≥ N), then the essential spectrum ofHN is an interval of the

form [ΣN,+∞) with ΣN ≤ 0 andΣN < 0 if N ≥ 2, and its discrete spectrum is an
increasing infinite sequence of negative eigenvalues converging toΣN. This guaran-
tees the existence ofΨ0. If E0, the lowest eigenvalue ofHN is non-degenerate,Ψ0

is unique up to a global phase, andρel = ρΨ0 is therefore uniquely defined by (5).
If E0 is degenerate, then the ground state electronic density is not unique. As the
usual Born-Oppenheimer approximation is no longer valid whenE0 is degenerate,
we will assume from now on thatE0 is a simple eigenvalue.

Note thatΨ0 can also be defined variationally: It is the minimizer of

inf

{
〈Ψ |HN|Ψ〉, Ψ ∈

N∧

i=1

H1(R3), ‖Ψ‖L2(R3N) = 1

}
. (8)

Otherwise stated, it is obtained by minimizing the energy〈Ψ |HN|Ψ〉 over the set of
all normalized, antisymmetric wavefunctionsΨ of finite energy.

Let us mention that, as in the absence of magnetic field, theN-body Hamiltonian
is real (in the sense that it transforms a real-valued function into a real-valued func-
tion), there is no loss of generality in working in the space of real-valuedN-body
wavefunctions. Under the assumption thatE0 is non-degenerate, (8) has exactly two
minimizers,Ψ0 and−Ψ0, both of them giving rise to the same electronic density.

2.2 TheN-body Schr̈odinger model for non-interacting electrons

Neither the Schrödinger equation (6) nor the minimization(8) can be solved with
standard numerical techniques whenN exceeds two or three. On the other hand,
these problems become pretty simple when the interaction between electrons is ne-
glected. In this case, theN-body Hamiltonian is separable and reads

H0
N = T +Vne=

N

∑
i=1

hr i where hr i =−1
2

∆r i +Vnuc

is a self-adjoint operator onL2(R3) with domainH2(R3) and form domainH1(R3),
acting on functions of the variabler i . It is known that the essential spectrum of
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h is [0,+∞) and that the discrete spectrum ofh is an increasing infinite sequence
of negative eigenvalues converging to 0. Let us denote byε1 < ε2 ≤ ε3 ≤ ·· · the
eigenvalues ofh counted with their multiplicities (it can be shown thatε1 is simple)
and let(φi)i≥0 be an orthonormal family of associated eigenvectors:

hφi = εiφi , ε1 < ε2 ≤ ε3 ≤ ·· · , φi ∈ H2(R3), 〈φi |φ j 〉L2(R3) = δi j .

The eigenfunctionsφi are called (molecular) orbitals and the eigenvaluesεi are
called (one-particle) energy levels.

It is easy to check that ifεN < εN+1, then

inf

{
〈Ψ |H0

N|Ψ 〉, Ψ ∈
N∧

i=1

H1(R3), ‖Ψ‖L2(R3N) = 1

}
(9)

has a unique solution (up to a global phase) given by the Slater determinant

Ψ0(r1, · · · , rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) · · · φ1(rN)
φ2(r1) φ2(r2) · · · φ2(rN)

· · · · · ·
· · · · · ·
· · · · · ·

φN(r1) φN(r2) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣

, (10)

and that the ground state electronic density (5) takes the simple form

ρel(r) =
N

∑
i=1

|φi(r)|2.

The above description of the electronic states of a set ofN non-interacting elec-
trons in terms of orbitals cannot be easily extended to infinite systems such as crys-
tals (the number of orbitals becoming infinite). For this reason, we introduce a new
formulation based on the concept of one-particle density operator, here abbreviated
as density operator.

2.3 Density operators

The (one-particle) density operator of a system ofN electrons is an element of the
convex set

DN =
{

γ ∈ S (L2(R3)) | 0≤ γ ≤ 1, Tr(γ) = N
}
.

Recall that ifA andB are two bounded self-adjoint operators on a Hilbert spaceH ,
the notationA≤ B means that〈ψ |A|ψ〉 ≤ 〈ψ |B|ψ〉 for all ψ ∈ H .

Any density operatorγ ∈ DN is trace-class, hence compact (the basic properties
of trace-class operators are recalled in the Appendix). It can therefore be diagonal-
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ized in an orthonormal basis:

γ =
+∞

∑
i=1

ni |φi〉〈φi | with 〈φi |φ j 〉= δi j . (11)

The eigenvaluesni are called occupation numbers; the eigenfunctionsφi are called
natural orbitals. The conditions 0≤ γ ≤ 1 and Tr(γ) = N are respectively equivalent
to

0≤ ni ≤ 1 and
+∞

∑
i=1

ni = N.

The fact that 0≤ ni ≤ 1 is a mathematical translation of the Pauli exclusion principle,
stipulating that each quantum state|φi〉 is occupied by at most one electron. The sum
of the occupation numbers is equal toN, the number of electrons in the system. The
density associated withγ is defined by

ργ(r) =
+∞

∑
i=1

ni|φi(r)|2, (12)

this definition being independent of the choice of the orthonormal basis(φi)i≥1

in (11) and satisfies

ργ ≥ 0, ργ ∈ L1(R3), and
ˆ

R3
ργ = N.

The kinetic energy of the density operatorγ is defined as

T(γ) :=
1
2

Tr(|∇|γ|∇|),

and can be finite or infinite. Recall that the operator|∇| is the unbounded self-adjoint
operator onL2(R3) with domainH1(R3) defined by

∀φ ∈ H1(R3), (F (|∇|φ))(k) = |k|(F (φ))(k)

whereF is the unitary Fourier transform

Fφ(k) = φ̂ (k) =
1

(2π)3/2

ˆ

R3
φ(r)e−ik·r dr .

The kinetic energy of a density operatorγ decomposed as (11) is finite if and only
if eachφi is in H1(R3) and∑+∞

i=1ni‖∇φi‖2
L2(R3)

< ∞, in which case

T(γ) =
1
2

+∞

∑
i=1

ni‖∇φi‖2
L2(R3).

As |∇| is the square root of−∆ (i.e. |∇| is self-adjoint, positive and|∇|2 = −∆ ),
the element Tr(|∇|γ|∇|) of R+ ∪ {+∞} is often denoted by Tr(−∆γ). Using this
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notation, we can define the convex setPN of the density operators of finite energy
as

PN =
{

γ ∈ S (L2(R3)) | 0≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ)< ∞
}
.

Lastly, it is sometimes useful to introduce the integral kernel of a density operator
γ ∈ PN, which is called a (one-particle) density matrix, and is usually also denoted
by γ. It is by definition the functionγ ∈ L2(R3×R3) such that

∀φ ∈ L2(R3), (γφ)(r) =
ˆ

R3
γ(r , r ′)φ(r ′)dr ′. (13)

The expression of the density matrixγ in terms of natural orbitals and occupation
numbers thus reads

γ(r , r ′) =
+∞

∑
i=1

niφi(r)φi(r ′).

Formallyργ(r) = γ(r , r) and this relation makes sense rigorously as soon as the den-
sity matrixγ has a trace on the three-dimensional vector subspace

{
(r , r), r ∈ R3

}

of R3×R3.

Let us now clarify the link between the description of electronic structures in
terms of wavefunctions and the one in terms of density operators.

The density matrix associated with a wavefunctionΨ ∈ ∧N
i=1L2(R3) such that

‖Ψ‖L2(R3N) = 1 is the function ofL2(R3×R3) defined as

γΨ (r , r ′) = N
ˆ

R3(N−1)
Ψ (r , r2, · · · , rN)Ψ(r ′, r2, · · · , rN)dr2 · · ·drN (14)

(recall that we are dealing with real-valued wavefunctions), and the corresponding
density operator by

∀φ ∈ L2(R3), (γΨ φ)(r) =
ˆ

R3
γΨ (r , r ′)φ(r ′)dr ′. (15)

It is easy to see that the density operatorγΨ is in DN. Under the additional assump-
tion thatΨ ∈∧N

i=1H1(R3), it is even inPN. Besides, the definition (5) of the density
associated withΨ agrees with the definition (12) of the density associated with γΨ ,
i.e.

ρΨ = ργΨ ,

and the same holds with the definition of the kinetic energy ifΨ ∈ ∧N
i=1H1(R3):

〈Ψ |T|Ψ〉= T(γΨ ).

Remark 1.The maps
{

Ψ ∈∧N
i=1L2(R3)

∣∣ |‖Ψ‖L2(R3N) = 1
}
∋Ψ 7→ γΨ ∈ DN and

{
Ψ ∈ ∧N

i=1H2(R3)
∣∣ |‖Ψ‖L2(R3N) = 1

}
∋ Ψ 7→ γΨ ∈ PN are not surjective. This

means that an element ofDN (resp. ofPN) is not necessarily the density operator
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associated with somepurestate. However anyγ ∈DN (resp. anyγ ∈DN) is the (one-
particle) density operator associated with somemixedstate (represented by some
N-particle density operator). This property is referred to as theN-representability
property of density operators.

We can now reformulate the electronic structure problemfor a system of N non-
interacting electrons, in terms of density operators:

1. The energy of a wavefunctionΨ ∈ ∧N
i=1H1(R3) is a linear form with respect to

the density operatorγΨ :

〈Ψ |H0
N|Ψ〉= E0

ρnuc(γΨ ) where E0
ρnuc(γ) = Tr

(
−1

2
∆γ
)
+

ˆ

R3
ργV

nuc;

2. The ground state density matrix, that is the density operator associated with the
ground state wavefunctionΨ0 defined by (9), is the orthogonal projector (for the
L2 inner product) on the space Span(φ1, · · · ,φN):

γΨ0 =
N

∑
i=1

|φi〉〈φi |;

3. The ground state energy and the ground state density operators are obtained by
solving the minimization problem

inf
{

E0
ρnuc(γ), γ ∈ S (L2(R3)), 0≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ)< ∞

}
. (16)

The advantages of the density operator formulation, which are not obvious for finite
systems, will clearly appear in Section 3, where we deal withcrystals.

2.4 The Hartree model and other density operator models of
electronic structures

Let us now reintroduce the Coulomb interaction between electrons, taking as a start-
ing point the non-interacting system introduced in Section2.2. The models pre-
sented in this section are density operator models in the sense that the ground state
energy and density are obtained by minimizing someexplicit functionalEρnuc(γ)
over the set ofN-representable density operatorsPN.

All these models share the same mathematical structure. They read:

inf
{

Eρnuc(γ), γ ∈ S (L2(R3)), 0≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ)< ∞
}
, (17)

with

Eρnuc(γ) = Tr

(
−1

2
∆γ
)
+

ˆ

R3
ργVρnuc+

1
2

D(ργ ,ργ )+ Ẽ(γ),



The Microscopic Origin of the Macroscopic Dielectric Permittivity of Crystals 11

where

D( f ,g) =
ˆ

R3

ˆ

R3

f (r)g(r ′)
|r − r ′| dr dr ′ (18)

is the classical Coulomb interaction and̃E(γ) some correction term. Note that
D( f ,g) is well defined forf andg in L6/5(R3), see for instance [30, Section IX.4].
Recall also that for eachγ ∈ PN, ργ ∈ L1(R3)∩L3(R3) →֒ L6/5(R3).

The Hartree model, on which we will focus in this proceeding,corresponds to
Ẽ(γ) = 0:

EHartree
ρnuc (γ) = Tr

(
−1

2
∆γ
)
+

ˆ

R3
ργVρnuc+

1
2

D(ργ ,ργ).

The reason why we study this model is that it has much nicer mathematical proper-
ties than other models with̃E(γ) 6= 0 (see below).

The Kohn-Sham models [24] originate from the Density Functional Theory
(DFT) [13]. In this kind of models,̃E(γ) is an explicit functional of the density
ργ , called the exchange-correlation functional:

EKS
ρnuc(γ) = Tr

(
−1

2
∆γ
)
+

ˆ

R3
Vρnucργ +

1
2

D(ργ ,ργ)+Exc(ργ). (19)

If follows from the Hohenberg-Kohn theorem [21] (see [27] for a more mathemat-
ical presentation of this result) that there exists some functional Exc(ρ) depend-
ing only on the densityρ , such that minimizing (17) withEρnuc = EKS

ρnuc provides
theexactground state energy and density, whatever the nuclear charge distribution
ρnuc. Note however, that the Kohn-Sham ground state density operator obtained
by minimizing (17) is not the ground state density operator corresponding to the
ground state wavefunctionΨ0. Unfortunately, the exact exchange-correlation func-
tional is not known. Many approximate functionals have beenproposed, and new
ones come up on a regular basis. For the sake of illustration,the simplest approxi-
mate exchange-correlation functional (but clearly not thebest one) is the so-called
Xα functional

Exc
Xα(ρ) =−CXα

ˆ

R3
ρ4/3,

whereCXα is a positive constant

Lastly, the models issued from the Density-Matrix Functional Theory (DMFT)
involve functionals̃E(γ) depending explicitly on the density operatorγ, but not only
on the densityργ . Similar to DFT, there exists anexact(but unknown) functional
Ẽ(γ) for which minimizing (17) gives the exact ground state energy and density,
whatever the nuclear charge distributionρnuc. However, unlike the exact DFT func-
tional, the exact DMFT functional also provides the exact ground state density op-
erator. Several approximate DMFT functionals have been proposed. Note that the
Hartree-Fock model, which is usually defined as the variational approximation of
(8) obtained by restricting the minimization set to the set of finite energy Slater
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determinants, can also be seen as a DMFT functional

EHF
ρnuc(γ) = Tr

(
−1

2
∆γ
)
+

ˆ

R3
ργVρnuc+

1
2

D(ργ ,ργ)−
1
2

ˆ

R3

ˆ

R3

|γ(r , r ′)|2
|r − r ′| dr dr ′,

where, as above,γ(r , r ′) denotes the integral kernel ofγ.

The existence of a solution to (17) for a neutral or positively charged system is
established in [34] for the Hartree model (Exc = 0), in [26] for the Hartree-Fock
model, in [4] for the Xα and the standard LDA model, and in [15] for the Müller
DMFT functional.

The key-property allowing for a comprehensive mathematical analysis of the
bulk limit for the Hartree model is that the ground statedensityis unique (which
is not the case for the other models presented in this section). This means that in the
Hartree framework, all the minimizers to (17) share the samedensity. This follows
from the fact that the ground state Hartree density solves the variational problem

inf

{
E (ρ), ρ ≥ 0,

√
ρ ∈ H1(R3),

ˆ

R3
ρ = N

}
, (20)

where

E (ρ) = F(ρ)+
ˆ

R3
ρVρnuc+

1
2

D(ρ ,ρ)

and

F(ρ)= inf

{
Tr

(
−1

2
∆γ
)
, γ ∈ S (L2(R3), 0≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ)< ∞, ργ = ρ

}
.

As the functionalE (ρ) is strictly convex on the convex set
{

ρ ≥ 0,
√

ρ ∈ H1(R3),

ˆ

R3
ρ = N

}
,

uniqueness follows.

The Euler equation for the Hartree model reads





γ0 =
+∞

∑
i=1

ni |φi〉〈φi |, ρ0(r) = ργ0(r) =
+∞

∑
i=1

ni |φi(r)|2,

H0φi = εiφi , 〈φi |φ j〉= δi j ,

ni = 1 if εi < εF, 0≤ ni ≤ 1 if εi = εF, ni = 0 if εi > εF,
+∞

∑
i=1

ni = N,

H0 =−1
2

∆ +V0,

−∆V0 = 4π(ρnuc−ρ0).

(21)
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It can be proved that the essential spectrum of the self-adjoint operatorH0 is equal
toR+ and that, for a neutral or positively charged system,H0 has at leastN negative
eigenvalues. The scalarεF, called the Fermi level, can be interpreted as the Lagrange
multiplier of the constraint Tr(γ0) = N.

Assuming thatεN < εN+1, the ground state density operatorγ0 of the Hartree
model is unique: It is the orthogonal projector

γ0 =
N

∑
i=1

|φi〉〈φi |.

In this case, (21) can be rewritten under the more compact form





γ0 = 1(−∞,εF](H
0), ρ0 = ργ0,

H0 =−1
2

∆ +V0,

−∆V0 = 4π(ρnuc−ρ0),

(22)

for anyεN < εF < εN+1. In this equation, the notation 1(−∞,εF](H
0) is used for the

spectral projector ofH0 corresponding to the spectrum in the interval(−∞,εF].

Lastly, we remark that if smeared nuclei are used, thenD(ρnuc
per ,ρnuc

per ) is well
defined (and finite). This allows us to reformulate the Hartree ground state problem
as

inf
{

ẼHartree
ρnuc (γ), γ ∈ S (L2(R3)), 0≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ)< ∞

}
, (23)

where

ẼHartree
ρnuc (γ) = Tr

(
−1

2
∆γ
)
+

1
2

D(ρnuc−ργ ,ρnuc−ργ).

The main interest of this new formulation of the Hartree problem is that the func-
tional ẼHartree

ρnuc is the sum of two non-negative contributions: the kinetic energy and
the Coulomb energy of the total charge distributionρnuc−ργ . The presence of the
unphysical terms corresponding to the self-interaction ofnuclei inD(ρnuc

per ,ρnuc
per ) is

not a problem for our purpose.

The time-dependent version of the Hartree model formally reads

i
dγ
dt

(t) =

[
−1

2
∆ − (ρnuc(t)−ργ(t))⋆ | · |−1,γ(t)

]
,

where[A,B] = AB−BA denotes the commutator of the operatorsA andB. We are
not going to elaborate further on the precise mathematical meaning of this formal
equation for finite systems, but refer the reader to [5] and references therein (see in
particular [12, Section XVII.B.5]) for further precision on the mathematical mean-
ing of the above equation. On the other hand, we will define andstudy a mild version
of it in the case of crystals with defects in Section 4.4.
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3 The Hartree model for crystals

The Hartree model presented in the previous section describes afinite system ofN
electrons in the electrostatic potential created by a nuclear density of chargeρnuc.
Our goal is to describe aninfinite crystalline material obtained in the bulk limit.
In fact we shall consider two such systems. The first one is theperiodic crystal
obtained when, in the bulk limit, the nuclear density approaches the periodic nuclear
distribution of the perfect crystal:

ρnuc→ ρnuc
per , (24)

ρnuc
per being aR-periodic distribution. The setR is a periodic lattice ofR3:

R = Za1+Za2+Za3, (25)

where(a1,a2,a3) is a given triplet of linearly independent vectors ofR3. The second
system is the previous crystal in the presence of a local defect:

ρnuc→ ρnuc
per +m, (26)

m representing the nuclear charge of the defect. The functional spaces in whichρnuc
per

andmare chosen are made precise below.

3.1 Basics of Fourier and Bloch-Floquet theories

A perfect crystal is characterized by a latticeR of R3 and aR-periodic nu-
clear charge distributionρnuc

per . Not surprisingly, Fourier and Bloch-Floquet theories,
which allow to conveniently exploit the periodicity of the problem, play essential
roles in the mathematical description of the electronic structure of crystals.

Let R∗ be the reciprocal lattice of the latticeR defined in (25) (also called dual
lattice):

R
∗ = Za∗1+Za∗2+Za∗3, where ai ·a∗j = 2πδi j .

Denote byΓ a unit cell ofR. Recall that a unit cell is a semi-open bounded polytope
of R3 such that the cellsΓ +R = {(r +R), r ∈ Γ } for R ∈ R form a tessellation
of the spaceR3 (i.e. (Γ +R)∩ (Γ +R′) = 0 if R 6= R′ and∪R∈R(Γ +R) = R3).
A possible choice forΓ is {x1a1+ x2a2+ x3a3, −1/2< xi ≤ 1/2}. Another choice
is the Wigner-Seitz cell ofR, which is by definition the semi-open Voronoi cell
of the origin for the latticeR. Lastly, we denote byΓ ∗ the first Brillouin zone,
that is the Wigner-Seitz cell of the dual lattice. Let us illustrate these concepts on
the simplest example, the cubic lattice, for whichR = aZ3 (for somea > 0). In
this particular case,R∗ = 2π

a Z3, the Wigner-Seitz cell isΓ = (−a/2,a/2]3 and
Γ ∗ = (−π/a,π/a]3.
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For eachK ∈ R∗, we denote byeK (r) = |Γ |−1/2eiK ·r the Fourier mode with
wavevectorK . According to the theory of Fourier series, eachR-periodic distribu-
tion v can be expanded in Fourier series as

v= ∑
K∈R∗

cK (v)eK , (27)

wherecK (v) is theK -th Fourier coefficient ofv, the convergence of the series hold-
ing in the distributional sense. We introduce the usualR-periodicLp spaces defined
by

Lp
per(Γ ) :=

{
v∈ Lp

loc(R
3)
∣∣ v R-periodic

}
,

and endow them with the norms

‖v‖Lp
per(Γ ) :=

(
ˆ

Γ
|v|p
)1/p

for 1≤ p< ∞ and ‖v‖L∞
per(Γ ) := ess-sup|v|.

In particular,

‖v‖L2
per(Γ ) = (v,v)1/2

L2
per(Γ )

where (v,w)L2
per(Γ ) :=

ˆ

Γ
vw.

Any functionv∈ L2
per(Γ ) can be expanded in Fourier modes according to (27), the

Fourier coefficients being given by the simple formula

cK (v) =
1

|Γ |1/2

ˆ

Γ
v(r)e−iK ·r dr ,

and the convergence of the series (27) also holds inL2
per(Γ ). Besides,

∀(v,w) ∈ L2
per(Γ )×L2

per(Γ ), (v,w)L2
per(Γ ) = ∑

K∈R∗
cK (v)cK (w).

For eachs∈ R, theR-periodic Sobolev space of indexs is defined as

Hs
per(Γ ) :=

{
v= ∑

K∈R∗
cK (v)eK

∣∣∣∣∣ ∑
K∈R∗

(1+ |K |2)s|cK (v)|2 < ∞

}
,

and endowed with the inner product

(v,w)Hs
per(Γ ) := ∑

K∈R∗
(1+ |K |2)scK (v)cK (w).

The Bloch-Floquet theory was introduced by Floquet for periodic differential
equations and generalized by Bloch to periodic partial differential equations. We
just recall the basic results of this theory used in this proceeding and refer the reader
to [31] for further precisions.

Any function f ∈ L2(R3) can be decomposed by the Bloch-Floquet transform as
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f (r) =
 

Γ ∗
fq(r)eiq·r dq,

where
ffl

Γ ∗ is a notation for|Γ ∗|−1
´

Γ ∗ and where the functionsfq are defined by

fq(r) = ∑
R∈R

f (r +R)e−iq·(r+R) =
(2π)3/2

|Γ | ∑
K∈R∗

f̂ (q+K)eiK ·r . (28)

For almost allq ∈R3, fq ∈ L2
per(Γ ). Besides,fq+K (r) = fq(r)e−iK ·r for all K ∈ R∗

and almost allq ∈ R3. Lastly,

‖ f‖2
L2(R3) =

 

Γ ∗
‖ fq‖2

L2
per(Γ )dq.

ForR ∈ R3, we denote byτR the translation operator defined by

∀v∈ L2(R3), (τRv)(r) = v(r −R).

The main interest of the Bloch-Floquet transform (28) is that it provides a “block di-
agonalization” of anyR-periodic operator, that is of any operator onL2(R3) which
commutes withτR for all R ∈ R. Consider first a boundedR-periodic operatorA
on L2(R3). Then there exists a family(Aq)q∈Γ ∗ of bounded operators onL2

per(Γ )
such that

∀v∈ L2(R3), (Av)q = Aqvq for almost allq∈ Γ ∗. (29)

If, in addition, A is self-adjoint onL2(R3), thenAq is self-adjoint onL2
per(Γ ) for

almost allq ∈ Γ ∗ and

σ(A) =
⋃

q∈Γ ∗
σ(Aq).

In particular, the translation operators(τR)R∈R , which obviously commute with
each other, are homotheties in the Bloch-Floquet representation

∀R ∈ R, (τR)q = eiq·R1L2
per(Γ ).

As (eK )K∈R∗ form an orthonormal basis ofL2
per(Γ ), it follows from (29) that any

boundedR-periodic operator onL2(R3) is completely characterized by the Bloch-
Floquet matrices(([AK ,K ′(q)])(K ,K ′)∈R∗×R∗)q∈Γ ∗ defined for almost allq ∈ Γ ∗ by

AK ,K ′(q) := 〈eK ,AqeK ′〉L2
per(Γ ).

In particular, it holds

∀v∈ L2(R3), (̂Av)(q+K) = ∑
K ′∈R∗

AK ,K ′(q)v̂(q+K ′),

for all (K ,K ′) ∈ R∗×R∗ and almost allq ∈ Γ ∗.
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For unbounded operators, the situation is a little bit more intricate. Let us limit
ourselves to the case ofR-periodic Schrödinger operators of the form

H =−1
2

∆ +Vper

with Vper ∈ L2
per(Γ ). By the Kato-Rellich theorem and [31, Theorem XIII.96], the

operatorH is self-adjoint onL2(R3), with domainH2(R3). It can also be decom-
posed as follows:

∀v∈ H2(R3), vq ∈ H2
per(Γ ) and (Hv)q = Hqvq for almost allq ∈ Γ ∗,

whereHq is the self-adjoint operator onL2
per(Γ ) with domainH2

per(Γ ), defined by

Hq =−1
2

∆ − iq ·∇+
|q|2
2

+Vper.

It is easily seen that for eachq ∈ Γ ∗, Hq is bounded below and has a compact
resolvent. Consequently, there exists a sequence(εn,q)n≥1 of real numbers going to
+∞, and an orthonormal basis(un,q)n≥1 of L2

per(Γ ) such that

Hq =
+∞

∑
n=1

εn,q|un,q〉〈un,q|.

As the mappingq 7→ Hq is polynomial onR3, it is possible to number the eigenval-
uesεn,q in such a way that(εn,0)n≥1 is non-decreasing and that for eachn≥ 1, the
mappingq 7→ εn,q is analytic in each direction. Then (see Fig. 1)

σ(H) =
⋃

q∈Γ ∗
σ(Hq) =

⋃

n≥1

[
Σ−

n ,Σ+
n

]
,

with
Σ−

n = min
q∈Γ ∗

εn,q, Σ+
n = max

q∈Γ ∗
εn,q. (30)

The interval[Σ−
n ,Σ+

n ] is called thenth band of the spectrum ofH. It is possible to
prove that the spectrum ofH is purely absolutely continuous [35]. In particular,H
has no eigenvalues.

3.2 Perfect crystals

The purpose of this section is to formally construct, then justify with mathematical
arguments, a Hartree model for the electronic structure of perfect crystals.

As announced, we begin with a formal argument and consider a sequence of
finite nuclear distribution(ρnuc

n )n∈N converging to the periodic distributionρnuc
per of
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qΓ∗

ε1,q

ε2,q

Fig. 1 The spectrum of a periodic Schrödinger operator is a union of bands, as a consequence of
the Bloch-Floquet decomposition.

the perfect crystal whenn goes to infinity. For instance, we can take

ρnuc
n = ρnuc

per

(
∑

R∈R | |R|≤n

1Γ+R

)

(we assume that the function describing the nuclear charge in the unit cell of the
perfect crystal is supported in some compact set included inthe interior ofΓ ). We
solve the Hartree problem for eachρnuc

n with the constraint that the system remains
neutral for eachn. Assuming that whenn goes to infinity,

• the Hartree ground state density converges to someR-periodic densityρ0
per ∈

L1
per(Γ );

• the Coulomb potential generated by the total charge converges to someR-
periodic potentialV0

per;
• the Hartree ground state density operator converges to someoperatorγ0

per;
• the Fermi level converges to someε0

F ∈ R,

we obtain byformallypassing to the limit in (22), the self-consistent equations




γ0
per= 1(−∞,ε0

F]
(H0

per), ρ0
per= ργ0

per
,

H0
per=−1

2
∆ +V0

per,

−∆V0
per= 4π(ρnuc

per −ρ0
per).

(31)

Let us comment on this system of equations. First, we notice that for the periodic
Coulomb equation−∆V0

per= 4π(ρnuc
per −ρ0

per) to have a solution, each unit cell must
be neutral:

ˆ

Γ
ρ0

per=

ˆ

Γ
ρnuc

per = Z, (32)
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whereZ is the number of electrons, and also the number of protons, per unit cell.
Second, asV0

per is R-periodic (and belongs toL2
per(Γ ) even for point-like nuclei),

we can apply the result of the previous section and write downthe Bloch-Floquet
decomposition ofH0

per:

(H0
per)q =−1

2
∆ − iq ·∇+

|q|2
2

+V0
per=

+∞

∑
n=1

εn,q|un,q〉〈un,q|. (33)

The operatorγ0
per = 1(−∞,ε0

F]
(H0

per) then is a bounded self-adjoint operator which

commutes with the translations(τR)R∈R , and its Bloch-Floquet decomposition
reads

(γ0
per)q =

+∞

∑
n=1

1εn,q≤ε0
F
|un,q〉〈un,q|.

Actually, the set
{

q∈ Γ ∗ |∃n≥ 1 s.t.εn,q = ε0
F

}
is of measure zero (the spectrum

of H0
per is purely continuous). It follows thatγ0

per is always an orthogonal projector,
even ifε0

F belongs to the spectrum ofH0
per.

Using the Bloch decomposition ofγ0
per, we can write the densityρ0

per as

ρ0
per(r) =

 

Γ ∗

+∞

∑
n=1

1εn,q≤ε0
F
|un,q(r)|2dq.

Integrating onΓ , and using (32) and the orthonormality of the functions(un,q)n≥1

in L2
per(Γ ), we obtain

Z =
1

|Γ ∗|
+∞

∑
n=1

∣∣{q ∈ Γ ∗ | εn,q ≤ ε0
F}
∣∣ . (34)

This equation determines the value of the Fermi levelεF uniquely. It is easy to see
that if the periodic Coulomb potential is shifted by a uniform constantC, and if ε0

F
is replaced withε0

F +C, thenγ0
per andρ0

per remain unchanged.

The formal bulk limit argument presented above has been rigorously founded by
Catto, Le Bris and Lions in [11], forρnuc

per = ∑R∈Z3 χ(·−R) (smeared nuclei of unit
charge disposed on the cubic latticeZ3). It is also possible to justify the periodic
Hartree model by passing to the limit on the supercell model with artificial periodic
boundary conditions (see [7]). The latter approach is less physical, but technically
much easier, and its extension to arbitrary crystalline structures (including point-like
nuclei) is straightforward. It results from these mathematical works that the Hartree
model for perfect crystals is well-defined. More precisely:

1. The Hartree ground state density operatorγ0
per and densityρ0

per of a crystal with
periodic nuclear densityρnuc

per (composed of point-like or smeared nuclei) are
uniquely defined;

2. The ground state densityρ0
per satisfies the neutrality charge constraint (32);
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3. The periodic Coulomb potentialV0
per and the Fermi levelε0

F are uniquely defined
up to an additive constant (andV0

per− ε0
F is uniquely defined);

4. The ground state density operatorγ0
per is an infinite rank orthogonal projector

satisfying the self-consistent equation (31);
5. γ0

per can be obtained by minimizing some periodic model set on the unit cell Γ
(see [11] for details).

In the remainder of the paper we assume that the system is an insulator (or a
semi-conductor) in the sense that theNth band is strictly below the(N+1)st band:

Σ+
N < Σ−

N+1,

whereΣ±
n are defined in (30). In this case, one can choose forε0

F any number in the
range(Σ+

N ,Σ−
N+1). The electronic state of the perfect crystal is the same whatever

the value ofε0
F in the gap(Σ+

N ,Σ−
N+1). On the other hand, as will be seen in the next

section, fixing the value ofε0
F may change the electronic state of the crystal in the

presence of a local defect.
In this paper however, we are only interested in the dielectric response of the

crystal, which corresponds to the limit of small defects (ina sense that will be made
precise later), and in this limit, the value ofε0

F does not play any role as long as it
remains inside the gap(Σ+

N ,Σ−
N+1). For simplicity, we consider in the following

ε0
F =

Σ+
N +Σ−

N+1

2
.

Lastly, we denote by
g= Σ−

N+1−Σ+
N > 0 (35)

the band gap.

3.3 Crystals with local defects

We now describe the results of [7] dealing with the modellingof local defects in
crystals in the framework of the Hartree model. The main ideais to seek the ground
state density operator of a crystal with a local defect characterized by the nuclear
charge distribution (26) under the form

γm,ε0
F
= γ0

per+Qm,ε0
F
.

In this formalism, the defect is seen as a quasi-molecule with nuclear charge dis-
tribution m and electronic ground state density operatorQm,ε0

F
(and ground state

electronic densityρQ
m,ε0

F
), embedded in the perfect crystal. Here, the charge of the

defect is controlled by the Fermi level (the chemical potential). The dual approach,
in which the charge of the defect is imposed, is also dealt with in [7]. It should be
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noticed that neithermnorρQ
m,ε0

F
area priori non-negative. For instance, the nuclear

distribution of a defect corresponding to the replacement of a nuclear of chargez
located at pointR ∈ R3 with a nucleus of chargez′ is m= (z′− z)δR and can there-
fore be positively or negatively charged depending on the value ofz′−z. Regarding
the electronic state, the constraints(γm,ε0

F
)∗ = γm,ε0

F
, 0≤ γm,ε0

F
≤ 1 andργ

m,ε0
F
≥ 0,

respectively read(Qm,ε0
F
)∗ = Qm,ε0

F
, −γ0

per≤ Qm,ε0
F
≤ 1− γ0

per andρQ
m,ε0

F
≥−ρ0

per.

The next step is to exhibit a variational model allowing to computeQm,ε0
F

from

m, ε0
F and the ground state of the perfect crystal.

First, we perform the following formal calculation of the difference between the
Hartree free energy of some trial density operatorγ = γ0

per+Q subjected to the
nuclear potential generated byρnuc

per +m, and the Hartree free energy of the perfect
crystal:
(

ẼHartree
ρnuc

per+m(γ
0
per+Q)− ε0

FTr(γ0
per+Q)

)
−
(

ẼHartree
ρnuc

per
(γ0

per)− ε0
FTr(γ0

per)
)

formal
= Tr

(
−1

2
∆Q

)
+

ˆ

R3
ρQV0

per−
ˆ

R3
ρQVm+

1
2

D(ρQ,ρQ)− ε0
FTr(Q)

−
ˆ

R3
mV0

per+
1
2

D(m,m). (36)

The last two terms are constants that we can discard. Of course, the left-hand side of
(36) does not have any mathematical sense since it is the difference of two energies
both equal to plus infinity. On the other hand, we are going to see that it is possible
to give a mathematical meaning to the sum of the first five termsof the right-hand
side whenQ belongs to some functional spaceQ defined below, and to characterize
the ground state density operatorQm,ε0

F
of the quasi-molecule, by minimizing the

so-defined energy functional on a closed convex subsetK of Q.
For this purpose, we first need to extend the definition (18) ofthe Coulomb in-

teraction to the Coulomb spaceC defined as

C :=

{
f ∈ S

′(R3)

∣∣∣∣ f̂ ∈ L1
loc(R

3), D( f , f ) := 4π
ˆ

R3

| f̂ (k)|2
|k|2 dk

}
,

whereS ′(R3) is the space of tempered distributions onR3. Endowed with its nat-
ural inner product

〈 f ,g〉C := D( f ,g) := 4π
ˆ

R3

f̂ (k) ĝ(k)
|k|2 dk, (37)

C is a Hilbert space. It can be proved thatL6/5(R3) →֒ C and that for any( f ,g) ∈
L6/5(R3)×L6/5(R3), it holds

4π
ˆ

R3

f̂ (k) ĝ(k)
|k|2 dk=

ˆ

R3

ˆ

R3

f (r)g(r ′)
|r − r ′| dr dr ′.
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Hence, the definition (37) ofD(·, ·) onC is consistent with the usual definition (18)
of the Coulomb interaction when the latter makes sense. The Coulomb spaceC
therefore is the set of charge distributions of finite Coulomb energy.

Second, we introduce, for an operatorA onL2(R3), the notation

A−− := γ0
perAγ0

per, A−+ := γ0
perA(1− γ0

per),

A+− := (1− γ0
per)Aγ0

per, A++ := (1− γ0
per)A(1− γ0

per),

and note that the constraintsQ= Q∗ and−γ0
per≤ Q≤ 1− γ0

per are equivalent to

Q∗ = Q, Q2 ≤ Q++−Q−−. (38)

From the second inequality we deduce that it then holdsQ−− ≤ 0 andQ++ ≥ 0.
Using the fact that Tr(V0

perQ) =
´

R3 ρQV0
per, we formally obtain

Tr

(
−1

2
∆Q

)
+

ˆ

R3
ρQV0

per− ε0
FTr(Q) = Tr((H0

per− ε0
F)Q)

= Tr((H0
per− ε0

F)
++Q++)+Tr((H0

per− ε0
F)

−−Q−−).

We now remark that, by definition ofγ0
per, (H

0
per−ε0

F)
++ ≥ 0 and(H0

per−ε0
F)

−− ≤ 0,
so that the right-hand term of the above expression can be rewritten as

Tr(|H0
per− ε0

F|1/2(Q++−Q−−)|H0
per− ε0

F|1/2). (39)

The above expression is well defined inR+ ∪ {+∞} for all Q satisfying the con-
straints (38). It takes a finite value ifQ is chosen in the vector space

Q =
{

Q∈S2 | Q∗ = Q, Q−− ∈S1, Q++ ∈S1, (40)

|∇|Q∈S2, |∇|Q−−|∇| ∈S1, |∇|Q++|∇| ∈S1
}
,

whereS1 andS2 respectively denote the spaces of trace-class and Hilbert-Schmidt
operators onL2(R3) (see Appendix for details). Endowed with its natural norm, or
with any equivalent norm such as

‖Q‖Q = ‖(1+ |∇|)Q‖S2+‖(1+ |∇|)Q++(1+ |∇|)‖S1+‖(1+ |∇|)Q−−(1+ |∇|)‖S1,

Q is a Banach space.

Before proceeding further, let us comment on the definition of Q. As the trial
density operatorsQ must satisfy the constraints (38), it is natural to imposeQ∗ = Q.
Since|H0

per−ε0
F|1/2(1+ |∇|)−1 is a bounded operator with bounded inverse (see [7]),

the four conditionsQ−− ∈S1, Q++ ∈S1, |∇|Q−−|∇| ∈S1 and|∇|Q++|∇| ∈S1

are necessary and sufficient conditions for the expression (39) withQ satisfying (38)
being finite. The other constraints imposed to the elements of Q (that is,Q ∈ S2

and|∇|Q∈S2) follow from the fact that for anyQ satisfying (38)
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(
Q−− ∈S1, Q++ ∈S1

)
⇒

(
Q2 ∈S1

)
(
|∇|Q−−|∇| ∈S1, |∇|Q++|∇| ∈S1

)
⇒

(
|∇|Q2|∇| ∈S1

)
.

In order to simplify the notation, we set forQ∈ Q,

Tr0(Q) := Tr(Q+++Q−−),

Tr0((H
0
per− ε0

F)Q) := Tr(|H0
per− ε0

F|1/2(Q++−Q−−)|H0
per− ε0

F|1/2).

An important result is that the linear applicationQ 7→ ρQ originally defined on the
dense subsetQ∩S1 of Q can be extended in a unique way to a continuous linear
application

Q → L2(R3)∩C

Q 7→ ρQ.

Note that the density associated with a generic element ofQ is not necessarily an
integrable function. On the other hand, its Coulomb energy is always finite.

Let m be such thatVm = (m⋆ | · |−1) ∈ C ′. Here and in the sequel

C
′ :=

{
V ∈ L6(R3)

∣∣∇V ∈ (L2(R3))3
}

denotes the dual space ofC , endowed with the inner product

〈V1,V2〉C ′ :=
1

4π

ˆ

R3
∇V1 ·∇V2 =

1
4π

ˆ

R3
|k|2V̂1(k)V̂2(k)dk.

It follows from the above arguments that the energy functional

Em,ε0
F(Q) = Tr0((H

0
per− ε0

F)Q)−
ˆ

R3
ρQVm+

1
2

D(ρQ,ρQ)

is well defined onQ and that a good candidate for a variational model allowing to
compute the ground state density operatorQm,ε0

F
is

inf
{

Em,ε0
F(Q), Q∈ K

}
(41)

where
K =

{
Q∈ Q | − γ0

per≤ Q≤ 1− γ0
per

}
. (42)

Note thatK is a closed convex subset ofQ.

The above formal construction of the model (41) is justified in [7] by means of
rigorous bulk limit arguments. To summarize the situation,the Hartree ground state
density operator of the crystal with nuclear charge densityρnuc

per +m (the charge of
the defect being controlled by the Fermi level) is given by
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γ = γ0
per+Qm,ε0

F

whereQm,ε0
F

is obtained by solving (41).
The existence of a Hartree ground state density operator fora crystal with a

local defect, as well as the uniqueness of the correspondingdensity and some other
important properties, are granted by the following theoremwhich gathers several
results from [7] and [9].

Theorem 1.Let m such that(m⋆ | · |−1) ∈ L2(R3)+C ′. Then,

1. (41) has at least one minimizer Qm,ε0
F
, and all the minimizers of (41) share the

same densityρm,ε0
F
;

2. Qm,ε0
F

is solution to the self-consistent equation

Qm,ε0
F
= 1(−∞,ε0

F)

(
H0

per+(ρm,ε0
F
−m)⋆ | · |−1

)
−1(−∞,ε0

F]

(
H0

per

)
+ δ , (43)

whereδ is a finite-rank self-adjoint operator on L2(R3) such that0≤ δ ≤ 1 and

Ran(δ ) ⊂ Ker
(

H0
per+(ρm,ε0

F
−m)⋆ | · |−1− ε0

F

)
.

The interpretation of the Euler equation (43), which also reads

γ0
per+Qm,ε0

F
= 1(−∞,ε0

F]
(H0

m,ε0
F
)+ δ

with

H0
m,ε0

F
= H0

per+(ρm,ε0
F
−m)⋆ | · |−1, 0≤ δ ≤ 1, Ran(δ )⊂ Ker(H0

m,ε0
F
− ε0

F),

is the following. The mean-field HamiltonianH0
m,ε0

F
is uniquely defined, since all

the minimizers of (41) share the same densityρm,ε0
F
. Besides, the operator(ρm,ε0

F
−

m) ⋆ | · |−1 being a relatively compact perturbation ofH0
per, it results from the Weyl

theorem (see [31, Section XIII.4]) that the HamiltoniansH0
per andH0

m,ε0
F

have the

same essential spectra. On the other hand, whileH0
per has no eigenvalues,H0

m,ε0
F

may

have a countable number of isolated eigenvalues of finite multiplicities in the gaps as
well as below the bottom of the essential spectrum. The only possible accumulation
points of these eigenvalues are the edges of the bands.

If ε0
F /∈ σ(H0

m,ε0
F
), thenδ = 0 and the ground state density operator of the crystal

in the presence of the defect is the orthogonal projectorγ0
per+Qm,ε0

F
: All the energy

levels lower that the Fermi level are fully occupied while the other ones are empty
(see Fig. 2). In this case,Qm,ε0

F
is both a Hilbert-Schmidt operator and the difference

of two projectors. It therefore follows from [18, Lemma 2] that

Tr0(Qm,ε0
F
) ∈ N. (44)
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Assuming thatm∈ L1(R3) and
´

R3 m∈ N, the integer

ˆ

R3
m−Tr0(Qm,ε0

F
)

can be interpreted as thebarecharge of the defect (in contrast with thescreenedor
renormalizedcharge to be defined later).

If ε0
F ∈ σ(H0

m,ε0
F
), then the energy levels with energyε0

F may be fully or partially

occupied, and it maya priori happen that (41) has several minimizers, differing from
one another by a finite rank self-adjoint operator with rangein Ker(H0

m,ε0
F
− ε0

F).

bb bcbc bcbc σ(H0
m,ε0

F

)

electronsFermi sea

ε
0
F

Fig. 2 General form of the spectrum of the self-consistent operator H0
m,ε0

F
, in the presence of a

defect and for a fixed chemical potentialε0
F.

4 Dielectric response of a crystal

In this section, we study the response of the electronic ground state of a crystal to a
small, effectivepotential. In Section 4.1, we consider a time-independent perturba-
tionV ∈ L2(R3)+C ′, with ‖V‖L2+C ′ < α (for someα > 0 small enough). It can be
proved (see [9, Lemma 5]) that there existsβ > 0 such that

(
‖m⋆ | · |−1‖L2+C ′ < β

)
⇒

(
‖(ρm,ε0

F
−m)⋆ | · |−1‖L2+C ′ < α

)
. (45)

The results of Section 4.1 therefore directly apply to the case of a crystal with a
local defect with nuclear charge distributionm, provided the defect is small enough
(in the sense that‖m⋆ | · |−1‖L2+C ′ < β ).

In Section 4.4, we consider a time-dependent perturbation

v(t, r) = (ρ(t, ·)⋆ | · |−1)(r) with ρ ∈ L1
loc(R,L

2(R3)∩C ). (46)

4.1 Series expansion of the time-independent response

ForV ∈ L2(R3)+C ′, the spectrum ofH0
per+V depends continuously ofV. In par-

ticular (see [9, Lemma 2]), there exists someα > 0, such that ifC is a smooth curve
in the complex plane enclosing the whole spectrum ofH0

per belowε0
F, crossing the



26 Éric Cancès, Mathieu Lewin and Gabriel Stoltz

real line atε0
F and at somec< inf σ(H0

per) and such that

d(σ(H0
per),Λ) =

g
4

where Λ =
{

z∈ C

∣∣∣ d(z,C)≤ g
4

}
,

d denoting the Euclidean distance in the complex plane andg the band gap (35)
(see Fig. 3), thenσ(H0

per+V)∩ (−∞,ε0
F] is contained in the interior ofC for all

V ∈ L2(R3)+C ′ such that‖V‖L2+C ′ < α.

σ(H0
per)

Λ

C

εF

Σ+
N

Σ−

N+1

Fig. 3 Graphical representation of a contourC⊂C enclosingσ (H0
per)∩ (−∞,ε0

F] and of the com-
pact setΛ .

As a consequence, we obtain that for allV ∈L2(R3)+C ′ such that‖V‖L2+C ′ < α,

QV = 1(−∞,ε0
F)

(
H0

per+V
)
−1(−∞,ε0

F]

(
H0

per

)

=
1

2iπ

˛

C

((
z−H0

per−V
)−1−

(
z−H0

per

)−1
)

dz, (47)

where we have used the fact thatε0
F /∈ σ(H0

per+V) to establish the first equality, and
the Cauchy formula to derive the second one.

Expanding (47) in powers ofV, we obtain

QV =
N

∑
n=1

Qn,V + Q̃N+1,V , (48)

where we have gathered the terms involving powers ofV larger thanN in a remain-
derQ̃N+1,V . The linear contribution is given by

Q1,V =
1

2iπ

˛

C

(
z−H0

per

)−1
V
(
z−H0

per

)−1
dz. (49)

The higher order contributions and the remainder are respectively given by

Qn,V =
1

2iπ

˛

C

(
z−H0

per

)−1
[
V
(
z−H0

per

)−1
]n

dz

and

Q̃N+1,V =
1

2iπ

˛

C

(
z−H0

per−V
)−1
[
V
(
z−H0

per

)−1
]N+1

dz.
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Proposition 1. The terms of the perturbation expansion (48) enjoy the following
properties.

1. The k-linear application

(V1, · · · ,Vn) 7→
1

2iπ

˛

C

(
z−H0

per

)−1
V1
(
z−H0

per

)−1 · · ·Vn
(
z−H0

per

)−1
dz

is well-defined and continuous from(L2(R3)+C ′)n to Q for all n ≥ 1, and from
(L2(R3)+C ′)n toS1 for all n ≥ 6. In particular, for all V∈ L2(R3)+C ′, Qn,V ∈
Q for all n ≥ 1 and Qn,V ∈ S1 for all n ≥ 6. Besides, for all V∈ L2(R3)+C ′,
Tr0(Qn,V) = 0 for all n ≥ 1 andTr(Qn,V) = 0 for all n ≥ 6.

2. If V ∈ L1(R3), Qn,V is in S1 for each n≥ 1 andTr(Qn,V) = 0.
3. For each V∈ L2(R3)+C ′ such that‖V‖L2+C ′ < α, the operator̃QN+1,V is in Q

for all N ≥ 0 with Tr0(Q̃N+1,V) = 0, and inS1 for all N ≥ 5, with Tr(Q̃N+1,V) =

Tr0(Q̃N+1,V) = 0.

We are now in position to define some operators which play an important role in
the sequel:

• the Coulomb operatorvc, which defines a bijective isometry betweenC andC ′:

vc(ρ) := ρ ⋆ | · |−1;

• the independent particle polarization operatorχ0 defined by

χ0(V) := ρQ1,V ,

which provides the first order response of the electronic density of the crystal to
a time-independent modification of the effective potential. The operatorχ0 is a
continuous linear application fromL1(R3) to L1(R3) and fromL2(R3)+C ′ to
L2(R3)∩C ;

• the linear operatorL defined by

L :=−χ0vc,

which is a bounded nonnegative self-adjoint operator onC . As a consequence,
(1+L )−1 is a well-defined bounded self-adjoint operator onC ;

• the dielectric operatorε = vc(1+L )v−1
c , and its inverse, the dielectric permit-

tivity operator
ε−1 = vc(1+L )−1v−1

c ,

both being continuous linear operators onC ′. Note that the hermitian dielectric

operator, defined as̃ε = v−1/2
c εv1/2

c is a self-adjoint, invertible, bounded operator
onL2(R3) and is for this reason conveniently used in mathematical proofs.

We now focus our attention on the total Coulomb potential

Vm = (m−ρm,ε0
F
)⋆ | · |−1 = vc(m−ρm,ε0

F
),
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generated by some charge distributionmsuch that‖m⋆ | · |−1‖L2+C ′ < β , and on the
responseρm,ε0

F
of the Fermi sea. In view of (45), we can apply the above results and

deduce from (48) that

ρm,ε0
F
= ρQ−Vm

= ρQ1,−Vm
+ρQ̃2,−Vm

=−χ0Vm+ρQ̃2,−Vm

= L (m−ρm,ε0
F
)+ρQ̃2,−Vm

. (50)

The above relation, which also reads

(m−ρm,ε0
F
) = (1+L )−1m− (1+L )−1(ρQ̃2,−Vm

) (51)

or
Vm = vc(1+L )−1m− vc(1+L )−1(ρQ̃2,−Vm

), (52)

is fundamental since it allows to split the quantities of interest (the total charge
(m− ρm,ε0

F
) or the total Coulomb potentialVm generated by the defect) into two

components:

• a linear contribution inm, very singular, and responsible for charge renormaliza-
tion at the microscopic level, and for the dielectric properties of the crystal at the
macroscopic level;

• a nonlinear contribution which, in the regime under study (‖m⋆ | · |−1‖L2+C ′ < β ),
is regular at the microscopic level and vanishes in the macroscopic limit.

4.2 Properties ofQm,ε0
F

and ρm,ε0
F

for small amplitude defects

The relation (50) ,combined with the properties of the operator L stated in Propo-
sition 2 below, allows to derive some interesting properties of Qm,ε0

F
andρm,ε0

F
and

to propose a definition of the renormalized charge of the defect.

Proposition 2. Letρ ∈ L1(R3). Then,L (ρ) ∈ L2(R3)∩C , L̂ (ρ) is continuous on
R3\R∗, and for allσ ∈ S2 (the unit sphere ofR3),

lim
η→0+

L̂ (ρ)(ησ) = (σTLσ)ρ̂(0) (53)

where L∈ R3×3 is the non-negative symmetric matrix defined by

∀k ∈ R
3, kTLk =

8π
|Γ |

N

∑
n=1

+∞

∑
n′=N+1

 

Γ ∗

∣∣∣〈(k ·∇r )un,q,un′,q)〉L2
per(Γ )

∣∣∣
2

(
εn′,q − εn,q

)3 dq, (54)

where theεn,q’s and the un,q’s are the eigenvalues and eigenvectors arising in the
spectral decomposition(33)of (H0

per)q. Additionally,
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L0 =
1
3

Tr(L) > 0. (55)

Notice that the convergence of the series (54) is granted by the fact thatεn′,q −
εn,q ≥ Σ−

n′ −Σ+
n ≥ g for all n≤ N < n′ and allq∈Γ ∗ (whereg> 0 is the band gap),

and the existence ofC ∈ R+ such that‖un,q‖H2
per(Γ ) ≤ C for all 1 ≤ n ≤ N and all

q ∈ Γ ∗. Actually, the convergence of the series is rather fast since Σ−
n′ ∼

n′→∞
Cn′2/3

(this estimate is obtained by comparing the eigenvalues ofH0
per with those of the

Laplace operator onL2
per(Γ )).

We do not reproduce here the quite technical proof of Proposition 2. Let us how-
ever emphasize the essential role played by the long range character of the Coulomb
potential. If | · |−1 is replaced by a potentialvr ∈ L1(R3), then for allρ ∈ L1(R3),
ρ ⋆vr ∈L1(R3), henceL (ρ)∈L1(R3) andL=0. More precisely, the Bloch-Floquet
decomposition of the Coulomb kernel reads

(| · |)q(r) =
4π
|Γ |

(
1

|q|2 + ∑
K∈R∗\{0}

eiK ·r

|q+K |2

)
,

and only the singular component4π
|Γ | |q|2 , which originates from the long-range of

the Coulomb potential, gives a nonzero contribution toL.

We can deduce from (50) and Proposition 2 that, in general, the minimizerQm,ε0
F

to (41) is not trace-class and that the densityρm,ε0
F

is not an integrable function if
the host crystal is anisotropic. Let us detail this point.

Consider somem∈ L1(R3)∩L2(R3) such that
´

R3 m 6= 0 and‖m⋆ | · |−1‖L2+C ′ <
β . In view of (45) and Proposition 1, it holds

Tr0(Qm,ε0
F
) = Tr0(Q1,−Vm+ Q̃2,−Vm) = 0. (56)

Assume thatρm,ε0
F

is in L1(R3). Then a technical lemma (see [9, Lemma 4]) shows
that the Fourier transform of the densityρQ̃2,−Vm

, corresponding to the nonlinear

response terms, is continuous and vanishes at zero. This means that, although it
is not known whetherρQ̃2,−Vm

is in L1(R3), this density of charge behaves in the

Fourier space as if it was integrable with an integral equal to zero. It follows from
(50) and Proposition 1 that for eachσ ∈ S2,

ρ̂m,ε0
F
(0) = lim

η→0+
̂L (ρm,ε0

F
−m)(ησ) = (σTLσ)(ρ̂m,ε0

F
(0)− m̂(0)). (57)

As by assumption̂m(0) 6= 0 (since
´

R3 m 6= 0), we reach a contradiction unless the
matrix L is proportional to the identity matrix. Defining here an isotropic crystal as
a crystal for whichL 6= L01, this proves that, in general,ρm,ε0

F
is not an integrable

function for anisotropic crystals (and thisa fortiori implies thatQm,ε0
F

is not trace-
class).
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Let us now consider an isotropic crystal. IfQm,ε0
F

were trace-class, thenρm,ε0
F

would be inL1(R3), and we would deduce from (56) that

(2π)3/2ρ̂m,ε0
F
(0) =

ˆ

R3
ρm,ε0

F
= Tr(Qm,ε0

F
) = Tr0(Qm,ε0

F
) = 0.

Again, except in the very special case whenL = 1, this contradicts (57) since
m̂ 6= 0 by assumption. Thus, in general,Qm,ε0

F
is not trace-class, even for isotropic

crystals. We do not know whether the electronic densityρm,ε0
F

generated by some

m∈ L1(R3)∩L2(R3) (this assumption impliesm∈ L6/5(R3) →֒ C ) in an isotropic
crystal is integrable or not. If it is, it follows from (57) that, still under the assump-
tion that‖m⋆ | · |−1‖L2+C ′ < β ,

ˆ

R3
m−

ˆ

R3
ρm,ε0

F
=

´

R3 m

1+L0
.

This quantity can be interpreted as the renormalized chargeof the defect, which dif-
fers from the bare charge

´

R3 m−Tr0(Qm,ε0
F
) =

´

R3 m by a screening factor 1
1+L0

.
This is formally similar to the charge renormalization phenomenon observed in
QED (see [17] for a mathematical analysis).

4.3 Dielectric operator and macroscopic dielectric permittivity

In this section, we focus again on the total potential

Vm = (m−ρm,ε0
F
)⋆ | · |−1 (58)

generated by the total charge of the defect, but we study it ina certain macroscopic
limit.

For this purpose, we fix somem∈ L1(R3)∩L2(R3) and introduce for allη > 0
the rescaled density

mη (r) := η3m(ηr).

We then denote byVη
m the total potential generated bymη and the corresponding

electronic polarization,i.e.

Vη
m := (mη −ρmη ,ε0

F
)⋆ | · |−1, (59)

and define the rescaled potential

Wη
m (r) := η−1Vη

m

(
η−1r

)
. (60)
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The scaling parameters have been chosen in a way such that in the absence of di-
electric response (i.e. for L = 0 andρ̃Q

2,−Vη
m
= 0), it holdsWη

m = vc(m) = m⋆ | · |−1

for all η > 0. To obtain a macroscopic limit, we letη go to zero.
As ‖(mη ⋆ | · |−1)‖C ′ = ‖mη‖C = η1/2‖m‖C , we can apply the results of the

previous sections as soon asη is small enough. Introducing the family of scaling
operators(Uη)η>0 defined by(Uη f )(r) = η3/2 f (ηr) (eachUη is a bijective isome-
try of L2(R3)), the equation linking the density of chargem to the rescaled potential
Wη

m reads
Wη

m = v1/2
c U∗

η ε̃−1Uηv1/2
c m+ w̃η

m, (61)

where the nonlinear contributioñwη
m is such that there existsC ∈ R+ such that for

η small enough,‖w̃η
m‖C ′ ≤Cη . The macroscopic limit ofWη

m therefore is governed
by the linear response term, and is obtained as the limit whenη goes to zero of the
family (U∗

η ε̃−1Uη)η>0 of bounded self-adjoint operators onL2(R3).

If ε̃−1 was translation invariant, that is, if it was commuting withall the trans-
lationsτR for R ∈ R3, it would be a multiplication operator in the Fourier space

(i.e. such that for all f ∈ L2(R3), (̂ε̃−1 f )(k) = ε̄−1(k) f̂ (k) for some function

R3 ∋ k 7→ ε̄−1(k) ∈ C). Using the fact that the operatorv1/2
c is the multiplication

operator by(4π)1/2/|k| in the Fourier space, we would obtain in the limit

lim
η→0+

( |k|2
ε̄−1(ηk)

)
Ŵm(k) = 4πm̂(k).

As the operator̃ε−1 actually commutes only with the translations of the latticeR,
the above argument cannot be applied. On the other hand, it can be proved, using
Bloch-Floquet decomposition, thatWη

m has a limitWm whenη goes to zero, and that
this limits satisfies

lim
η→0+

( |k|2
[ε̃−1]00(ηk)

)
Ŵm(k) = 4πm̂(k), (62)

where[ε̃−1]00(q) is the entry of the Bloch matrix of theR-periodic operator̃ε−1

corresponding toK = K ′ = 0. Besides,

lim
η→0+

( |k|2
[ε̃−1]00(ηk)

)
= kT εMk, (63)

whereεM is a 3×3 symmetric, positive definite matrix. Transforming back (62) in
the physical space, we obtain the macroscopic Poisson equation (4). Let us formalize
this central result in a theorem.

Theorem 2.There exists a3× 3 symmetric matrixεM ≥ 1 such that for all m∈
L1(R3)∩L2(R3), the rescaled potential Wηm defined by (60) converges to Wm weakly
in C ′ whenη goes to zero, where Wm is the unique solution inC ′ to the elliptic
equation
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−div(εM∇Wm) = 4πm.

The matrixεM is proportional to the identity matrix if the host crystal has the sym-
metry of the cube.

From a physical viewpoint, the matrixεM is the electronic contribution to the
macroscopic dielectric tensor of the host crystal. Note that the other contribution,
originating from the displacements of the nuclei [29], is not taken into account in
this study.

The matrixεM can be computed from the Bloch-Floquet decomposition ofH0
per

as follows. The operator̃ε = v−1/2
c εv1/2

c beingR-periodic, it can be represented by
the Bloch matrices([ε̃KK ′(q)]K ,K ′∈R∗)q∈Γ ∗ . It is proven in [9] that each entry of the
Bloch matrixε̃K ,K ′(ησ) has a limit whenη goes to 0+ for all fixedσ ∈ S2. Indeed,

lim
η→0+

ε̃0,0(ησ) = 1+σTLσ

whereL is the 3×3 non-negative symmetric matrix defined in (54). WhenK ,K ′ 6= 0,
ε̃K ,K ′(ησ) has a limit atη = 0, which is independent ofσ and which we simply
denote bỹεK ,K ′(0). WhenK = 0 butK ′ 6= 0, the limit is a linear function ofσ : for
all K ′ ∈ R∗ \ {0},

lim
η→0+

ε̃0,K ′(ησ) = βK ′ ·σ ,

for someβK ′ ∈ C3. Both ε̃KK ′(0) (K ,K ′ 6= 0) andβK can be computed from the
eigenvaluesεn,q and eigenvectorsun,q of the Bloch-Floquet decomposition ofH0

per
by formulae similar to (54). As already mentioned, the electronic contribution to the
macroscopic dielectric permittivity is the 3×3 symmetric tensor defined as [6]

∀k ∈R
3, kT εMk = lim

η→0+

|k|2
[ε̃−1]00(ηk)

. (64)

By the Schur complement formula, it holds

1
[ε̃−1]00(ηk)

= ε̃00(ηk)− ∑
K ,K ′ 6=0

ε̃0,K (ηk)[C(ηk)−1]K ,K ′ ε̃K ′,0(ηk)

whereC(ηk)−1 is the inverse of the matrixC(ηk) = [ε̃KK ′(ηk)]K ,K ′∈R∗\{0}. This
leads to

lim
η→0+

|k|2
[ε̃−1]00(ηk)

= |k|2+ kTLk − ∑
K ,K ′∈R∗\{0}

(βK ·k)[C(0)−1]K ,K ′(βK ′ ·k)

whereC(0)−1 is the inverse of the matrixC(0) = [ε̃KK ′(0)]K ,K ′∈R∗\{0}. Therefore,

εM = 1+L− ∑
K ,K ′∈R∗\{0}

βK [C(0)
−1]K ,K ′β ∗

K ′ . (65)
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As already noticed in [6], it holds

1≤ εM ≤ 1+L.

Formula (65) has been used in numerical simulations for estimating the macro-
scopic dielectric permittivity of real insulators and semiconductors [6, 22, 23, 14,
16]. Direct methods for evaluatingεM , bypassing the inversion of the matrixC(0),
have also been proposed [32, 25].

4.4 Time-dependent response

We study in this section the variation of the electronic state of the crystal when the
mean-field HamiltonianH0

per of the perfect crystal is perturbed by a time-dependent
effective potentialv(t, r) of the form (46). The mathematical proofs of the results
announced in this section will be given in [10].

Let

Hv(t) = H0
per+ v(t, ·) =−1

2
∆ +Vper+ v(t, ·).

Under the assumption thatρnuc
per ∈ L2

per(Γ ) (smeared nuclei), the mean-field potential
Vper is R-periodic and inC0(R3)∩ L∞(R3). Besides, there exists a constantC >
0 such that‖ρ ⋆ | · |−1‖L∞ ≤ C‖ρ‖L2∩C for all ρ ∈ L2(R3)∩C , so that the time-
dependent perturbationv belongs toL1

loc(R,L
∞(R3)).

Let us now define the propagator(Uv(t,s))(s,t)∈R×R associated with the time-
dependent HamiltonianHv(t) following [30, Section X.12]. To this end, consider

first the propagatorU0(t) = e−itH0
per associated with the time-independent Hamilto-

nianH0
per, and the perturbation in the so-called interaction picture:

vint(t) =U0(t)
∗v(t)U0(t).

Standard techniques (see for instance [28, Section 5.1]) allow to show the existence
and uniqueness of the family of unitary propagators(Uint(t,s))(s,t)∈R×R associated
with the bounded operators(vint(t))t∈R, with

Uint(t, t0) = 1− i
ˆ t

t0

vint(s)Uint(s, t0)ds.

Therefore,Uv(t,s) =U0(t)Uint(t,s)U0(s)∗ satisfies the integral equation

Uv(t, t0) =U0(t − t0)− i
ˆ t

t0

U0(t − s)v(s)Uv(s, t0)ds. (66)

Denoting byγ0 the density operator of the crystal at timet = 0, the dynamics of
the system is governed by the evolution equation
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γ(t) =Uv(t,0)γ0Uv(t,0)∗. (67)

Note that the conditionsγ0 ∈ S (L2(R3)) and 0≤ γ0 ≤ 1 are automatically propa-
gated by (67).

Consideringv(t) as a perturbation of the time-independent HamiltonianH0
per, and

γ(t) as a perturbation of the ground state density operatorγ0
per, it is natural to follow

the same strategy as in the time-independent setting and introduce

Q(t) = γ(t)− γ0
per.

Using (66), (67), and the fact thatγ0
per is a steady state of the system in the absence

of perturbation (U0(t)γ0
perU0(t)∗ = γ0

per), an easy calculation shows thatQ(t) satisfies
the integral equation

Q(t) =U0(t)Q(0)U0(t)
∗− i

ˆ t

0
U0(t − s)[v(s),γ0

per+Q(s)]U0(t − s)∗ds. (68)

We now assume thatγ0 = γ0
per, i.e. Q(0) = 0, and write (formally for the moment)

Q(t) as the series expansion

Q(t) =
+∞

∑
n=1

Qn,v(t), (69)

where the operatorsQn,v(t) are obtained, as in the time-independent case, by iden-
tifying terms involvingn occurrences of the potentialv. In particular, the linear
response is given by

Q1,v(t) =−i
ˆ t

0
U0(t − s)

[
v(s),γ0

per

]
U0(t − s)∗ds, (70)

and the following recursion relation holds true

∀n≥ 2, Qn,v(t) =−i
ˆ t

0
U0(t − s) [v(s),Qn−1,v(s)]U0(t − s)∗ds. (71)

It is proved in [10] that for anyn≥ 1 and anyt ≥ 0, the operatorQn,v(t) in (69)
belongs toQ and satisfies

∀ψ ∈ L2(R3), 〈ψ |Qn,v(t)|ψ〉L2 = 0.

In particular, Tr0(Qn,v(t)) = 0. Besides, there existsb∈R+ such that for allt ≥ 0

‖Qn,v(t)‖Q ≤ bn
ˆ t

0

ˆ t1

0
. . .

ˆ tn−1

0
‖ρ(t1)‖L2∩C . . .‖ρ(tn)‖L2∩C dtn . . .dt1,
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and there existsT > 0 such that the series expansion (69) converges inQ uniformly
on any compact subset of[0,T). Lastly,T =+∞ if ρ ∈ L∞(R+,L2(R3)∩C ).

As in the time-independent setting, the frequency-dependentdielectric properties
of the crystal can be obtained from the linear response (70),by defining the time-
dependent independent-particle polarization operator

χ0 : L1(R,vc(L2(R3)∩C )) → L∞(R,L2(R3)∩C )
v 7→ ρQ1,v

(72)

and the time-dependent operatorsL = −χ0vc, ε = vc(1+L )v−1
c , ε−1 = vc(1+

L )−1v−1
c , and ε̃ = v−1/2

c εv1/2
c . Due to the invariance of the linear response with

respect to translation in time, all these operators are convolutions in time. In addi-
tion they areR-periodic in space. They can therefore be represented by frequency-
dependent Bloch matrices[TK ,K ′(ω ,q)], with K , K ′ in R∗, q ∈ Γ ∗ and ω ∈ R.
The Adler-Wiser formula states that the (electronic contribution of the) frequency-
dependent macroscopic dielectric permittivity is given bythe formula

∀k ∈ R
3, kT

F εM(ω)k = lim
η→0+

( |k|2
[ε̃−1]00(ω ,ηk)

)
.

The mathematical study of this formula and of its possible derivation from rigorous
homogenization arguments, is work in progress.

We finally consider the self-consistent Hartree dynamics defined by

Q(t) =U0(t)Q
0U0(t)

∗− i
ˆ t

0
U0(t − s)

[
v(s)+ vc(ρQ(s)),γ0

per+Q(s)
]
U0(t − s)∗ds,

(73)
for an initial conditionQ0 ∈K , and for an external potentialv(t) = vc(m(t)), where
m(t) ∈ L2(R3)∩C for all t. The solutionQ(t) of (73) is such thatγ(t) = γ0

per+Q(t)
satisfies, formally, the time-dependent Hartree equation

i
dγ
dt

(t) =

[
−1

2
∆ +(ργ(t)−ρnuc

per −m(t))⋆ | · |−1,γ(t)
]
.

The following result [10] shows the well-posedness of the nonlinear Hartree dy-
namics.

Theorem 3.Let m∈C1(R+,L2(R3)∩C ). Then, for any Q0∈K , the time-dependent
Hartree equation(73) has a unique solution in C0(R+,Q). Besides, for all t≥ 0,
Q(t) ∈ K andTr0(Q(t)) = Tr0(Q0).
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Appendix: trace-class and self-adjoint operators

It is well-known that any compact self-adjoint operatorA on a separable Hilbert
spaceH can be diagonalized in an orthonormal basis set:

A=
+∞

∑
i=1

λi |φi〉〈φi |, (74)

where〈φi |φ j〉 = δi j , and where the sequence(λi)i≥1 of the (real) eigenvalues ofA,
counted with their multiplicities, converges to zero. We have formulated (74) using
again Dirac’s bra-ket notation. The conventional mathematical formulation for (74)
reads

∀φ ∈ H , Aφ =
+∞

∑
i=1

λi 〈φi |φ〉φi .

A compact self-adjoint operatorA is called trace-class if

+∞

∑
i=1

|λi |< ∞.

The trace ofA is then defined as

Tr(A) :=
+∞

∑
i=1

λi =
+∞

∑
i=1

〈ei |A|ei〉,

the right-hand side being independent of the choice of the orthonormal basis(ei)i≥1.
Note that ifA is a non-negative self-adjoint operator, the sum∑+∞

i=1〈ei |A|ei〉 makes
sense inR+∪{+∞} and its values is independent of the choice of the orthonormal
basis(ei)i≥1. We can therefore give a sense to Tr(A) for any non-negative self-
adjoint operatorA, and this number is finite if and only ifA is trace-class.

The notion of trace-class operators can be extended to non-self-adjoint operators
[31, 33], but we do not need to consider this generalization here.

By definition, a compact operatorA is Hilbert-Schmidt ifA∗A is trace-class. A
compact self-adjoint operatorA on H decomposed according to (74) is Hilbert-
Schmidt if and only if

∑
i≥1

|λi|2 < ∞.

Obviously any trace-class self-adjoint operator is Hilbert-Schmidt, but the converse
is not true.

In this contribution, we respectively denote byS1 andS2 the spaces of trace-
class and Hilbert-Schmidt operators acting onL2(R3). We also denote byS (L2(R3))
the vector space of the bounded self-adjoint operators onL2(R3).

A classical result states that ifA is a Hilbert-Schmidt operator onL2(R3), then
it is an integral operator with kernel inL2(R3×R3). This means that there exists a
unique function inL2(R3×R3), also denoted byA for convenience, such that
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∀φ ∈ L2(R3), (Aφ)(r) =
ˆ

R3
A(r , r ′)φ(r ′)dr ′. (75)

Conversely, ifA is an operator onL2(R3) for which there exists a functionA ∈
L2(R3×R3) such that (75) holds, thenA is Hilbert-Schmidt.

If A is a self-adjoint Hilbert-Schmidt operator onL2(R3) decomposed according
to (74), then its kernel is given by

A(r , r ′) = ∑
i≥1

λi φi(r)φi(r ′).

If, in additionA is trace-class, then the densityρA, defined as

ρA(r) =
+∞

∑
i=1

λi |φi(r)|2,

is a function ofL1(R3) and it holds

Tr(A) =
+∞

∑
i=1

λi =

ˆ

R3
ρA(r)dr .

For convenience, we use the abuse of notation which consistsin writing ρA(r) =
A(r , r) even when the kernel ofA is not continuous on the diagonal{r = r ′} ⊂ R6.
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