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AUTOMATIC DETECTION OF CRITICAL 
DERMOSCOPY FEATURES FOR 

MALIGNANT MELANOMADAGNOSIS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to U.S. Provisional Appli 
cation Ser. No. 60/685,664 filed May 27, 2005, which is 
incorporated herein by reference to the extent not inconsistent 
herewith. 

BACKGROUND 

Malignant melanoma, with 62,190 new cases and 7770 
deaths estimated in 2006 (Jemal06), is easily cured if detected 
at an early stage. To the total of 62,190 new cases of mela 
noma, we can add an estimated 49,710 cases of melanoma in 
situ in 2006 (Jemal06), a number growing at 15% per year in 
Some countries (Thom98). Dermatologists accuracy in diag 
nosis of pigmented lesions with dermoscopy is higher than 
without dermoscopy (Binder95). Diagnostic accuracy is at 
least as high with digital dermoscopy, especially when com 
bined with clinical data (BinderOO). Digital analysis of der 
moscopic images gives more accurate results than digital 
analysis of clinical images (Rosado03). The diagnostic accu 
racy achievable by digital dermoscopy is in the range of 93%, 
offering no significant improvement So far in diagnostic per 
formance over that of a dermatologist trained in dermoscopy 
(Rosado03, RubegniO2). Combining clinical and dermo 
scopic examinations has improved melanoma diagnostic 
accuracy (Bono02). 
Dermoscopy (Epiluminescence Microscopy (ELM). Derma 
toScopy) 

Dermoscopy is a technique for viewing skin lesions with 
10-power or more magnification. The dermoscopy may occur 
with a glass plate (contact dermoscopy) with a fluid, gel. 
mineral oil, or alcohol, between the skin and the glass plate, or 
illumination with cross polarization and no glass plate or fluid 
(non-contact dermoscopy). 
An unknown butgrowing number of American dermatolo 

gists are using dermoscopy, approximately 23% in 2001 and 
probably still a minority, compared to nearly all dermatolo 
gists in Europe (Rabinovitz01). From personal experience on 
rXderm-I, the national dermatology discussion group with a 
server at the University of California, Davis, much of the 
growth in American use has been with non-contact dermos 
copy. 
The four most popular dermoscopy algorithms are the pat 

tern analysis method, ABCD rule, the Menzies method, and 
the 7-point checklist. The most popular, the pattern analysis 
method, is based on the qualitative assessment of a varying 
number of individual ELM criteria including global pattern, 
pigment network, dots/globules, blue Veil, blotches, hypop 
igmentation, regression structures, and vascular structures 
observed within a given pigmented skin lesion (Carli99, 
Argenziano98, Argenziano03). A virtual meeting of 40 expe 
rienced dermoscopists had diagnoses tabulated for 108 pig 
mented skin lesions. The consensus diagnosis was the diag 
nosis agreed upon by over 50% of observers. The pattern 
analysis system, scored here for 24 features, showed the 
highest consensus diagnosis sensitivity of the four systems: 
100%, with a specificity of 88%, although the numbers of 
dermoscopists testing the systems were too low to achieve 
significance (Argenziano03). 
The dermoscopy ABCD rule (Nachbar94, Argenziano03) 
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2 
cutoffs in 0-2, 3-5 or 6-8 octants, color numbers of 1, 2-3, or 
4-5, and 1, 2-3, or 4-5 structures. This was first reported to 
show sensitivity of about 92% and specificity of about 91%, 
but showed consensus sensitivity and specificity of about 
96% and 70% in the virtual consensus meeting (Argen 
Ziano03). This system is sometimes modified to include infor 
mation about morphologic changes reported by the patient, 
sometimes called the ABCDE rule, improving the sensitivity 
about 3% (90% to 93%) in one study (Kittler99). 
The 7-point checklist (atypical pigment network, blue 

whitish Veil, atypical vascular pattern, irregular streaks, 
irregular pigmentation, and dots/globules or regression struc 
tures) has shown sensitivity as high as 95%, and a specificity 
of 86% (Dal Pozzo99). There have been variations of the 
seven features (Argenziano98) and one variation has 11 
points (Carli99). The consensus sensitivity and specificity for 
the 7-point checklist was 96% and 73% (Argenziano03). 

Menzies and colleagues (Menzies96b) have developed a 
method based upon number of colors, symmetry of pattern, 
and one or more positive features. The technique has a 
reported 92% sensitivity and 71% specificity, (96% and 73% 
consensus sensitivity and specificity) (Argenziano03). 

Digital Dermoscopy 
Computer systems that use dermoscopy images, some 

times called digital dermoscopy systems, yield better diag 
nostic accuracy than those that use clinical images. Their 
diagnostic accuracy is generally not statistically different 
from that obtained by physicians with experience using der 
moscopy. One digital dermoscopy system, called DermoGe 
nius Ultra, previously marketed by Linos, Munich, was devel 
oped by Stolz and colleagues (Stolz.96, Stolz01). The 
software for this device is based on the ABCD algorithm for 
dermoscopy noted above. (Nachbar94) The ABCs are calcu 
lated to approximate the dermoscopy ABCs and the scaling 
index was developed to replace the D to approximate the 
degree of heterogeneity in the image, as the system cannot 
identify structures. Used on 187 patients at risk for mela 
noma, it recommended removal of 52 lesions that appeared 
clinically unsuspicious, one of which was a melanoma in situ, 
and eight of which had at least moderate atypia (Jamora(03). 
The DANAOS system has achieved the planned collabo 

ration announced in 1997 and has collected 2218 images of 
pigmented skin lesions. Neural network diagnostic results 
were again within range of that achieved by trained dermos 
copists (Hoffman03). 
The DBDermo-MIPS program (Biomedical Engineering 

Dell Eva-Burroni, Siena) has analyzed more than 10,350 pig 
mented lesions. The group obtained a diagnostic accuracy of 
93% on atypical, flat, diagnostically difficult lesions, includ 
ing melanomas with a median thickness of 0.2 mm and dys 
plastic nevi (RubegniO2). 

All the above digital dermoscopy systems use contact der 
moscopy, with little analysis, as yet, appearing with non 
contact magnification. One international project launched in 
February 2004 at the International Dermoscopy Meeting was 
an attempt to obtain better diagnostic accuracy for amelan 
otic/hypomelanotic melanomas. Different technologies pro 
posed to solve this problem include non-contact dermoscopy 
such as the 3Gen DermLite B magnifying viewer, 3Gen LLC, 
Dana Point, Calif., and higher magnification, 30x or more, 
with analysis of vascular patterns. It is probable that for the 
current generation of digital dermoscopy systems, a core of 
difficult lesions will not be amenable to diagnosis, in part 
because limited attention has been given to structures other 
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than attempts to find them statistically and in part because 
digital dermoscopy systems cannot separate early melanomas 
from benign lesions. 
Hyperspectral Image Analysis 
The Melafind system, by Electro-Optical Sciences, Irving 

ton, N.Y., uses broadband Light-Emitting Diodes (LEDs) to 
obtain ten spectral images ranging from 430 nm to 950 nm, of 
which eight are used by a linear classifier. The best-perform 
ing linear classifier yielded an accuracy of 89% on a difficult 
set of images, including dysplastic and congenital nevi. The 
system uses wavelet analysis of image slices, with no pub 
lished attempts to identify structures (Elbaum01). 
A second system, SIAScopy, developed by Astron Clinica, 

Cambridge, U.K., uses eight infrared as well as visible image 
bands, ranging from 400 to 1000 nm (Cotton96, Cotton99, 
Moncrief)1). Analysis proceeds to identify the amount, dis 
tribution, and depth of certain critical features including col 
lagen, melanin, and blood within the skin. For lesions greater 
than 6 mm, using just two characteristic features, the system 
gave a diagnostic sensitivity of about 83% and a specificity of 
80% (Moncrief)2). 
Problems with Existing Digital Imaging Systems 
The above proprietary platforms are costly. Several of the 

devices are undergoing clinical trials before 510(k) approval, 
and are not for sale. Several systems are available costing in 
the range of $20,000. Relatively few clinics see enough pig 
mented lesion patients to justify such costs. One manufac 
turer has discussed a per-image analysis fee, with costs pre 
sumably to be borne by insurers. But the use of inexpensive 
digital cameras is likely to grow, with dermatologists increas 
ingly acquiring images with digital cameras such as one of the 
Nikon series and the 3Gen DermLite II Pro attachment, 
advertised on the dermlite.com website. 

All publications referred to herein are incorporated by 
reference to the extent not inconsistent herewith. 

SUMMARY 

Selected dermoscopy features that are identifiable by com 
puter are summarized here. This invention provides improved 
computer-aided analysis of dermoscopy images of skin 
lesions. 
The algorithms of this invention can be applied to multiple 

platforms, including any digital camera with an add-on 
device for 10-power magnification, or any device with mag 
nification within the range of 8-30 power. These devices 
include but are not limited to the Canfield Epilight, Canfield 
Imaging Systems, Fairfield, N.J., the 3Gen DermLite II Pro, 
3Gen LLC, Dana Point, Calif., and the Heine Dermaphot, 
Heine Dermaphot Optics, Heine Ltd, Herrsching, Germany. 
All Such images may be classified as dermoscopy images. 

In one embodiment, this invention provides a method for 
identifying a border between a skin lesion and Surrounding 
skin on a digital image of a skin lesion comprising (a) pre 
processing the image to identify pixels that represent features 
other than skin and lesion; (b) determining a first lesion ratio 
estimate of the image using bounding box methods; (c) Sub 
sequently applying a lesion ratio offset to produce a corrected 
lesion ratio estimate by running a classifier algorithm that 
incorporates color and histogram data from both inside and 
outside a bounding box; and (d) inputting the corrected lesion 
ratio estimate into a watershed algorithm for identifying a 
border between a skin lesion and Surrounding skin. 

Features other than skin and lesion on the image are 
referred to herein as “noise' and can include measurement 
markings, e.g., the image of a ruler, ink, shadow, flash, hair, 
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4 
bubbles, and other artifacts. The lesion ratio is the ratio of the 
area of a lesion divided by the area of the entire image. A 
lesion ratio estimate is an estimate of the lesion ratio, which 
may be obtained by several methods including bounding box 
and histogram methods. A lesion ratio estimate can be deter 
mined by determining a bounding box, wherein box borders 
are determined by a subtraction curve applied to horizontal 
and vertical projections of the luminance image or other 
similar linear combination or representation of the color 
planes. An example of a bounding box is shown in FIG. 11. In 
one embodiment of this invention, the absence of a bounding 
box indicates that the lesion extends to the periphery of the 
image, and the presence of a bounding box indicates that the 
lesion does not extend to the periphery of the image. Bound 
ing boxinformation is often stored as a separate binary image, 
for example with 0 for background and 1 for lesion. 
The luminance of a pixel is defined as 0.3 R+0.59 G+0.11 

B, where R, G, and B are the red, green and blue intensity 
values of a pixel. A single-plane image can be represented by 
assigning different weights, Summing to one, to R, G, and B 
compared to luminance. One example is the independent 
histogram pursuit (IHP) image, wherein the R, G, and B 
weights are chosen to maximize the area of the valley 
between histogram peaks on the image with the chosen 
weights (Gomez06). In the following definitions and detailed 
explanations, any single plane image such as the IHP image 
may be substituted for the luminance image. Representations 
of color, also known as color spaces, other than the ROB 
space can be used. Such as the Intensity, Hue, Saturation 
(IHS) space. In a similar manner, weights can be assigned to 
the variables in any color space to create a single-plane image. 

Alesion ratio offset is a correction factor forthelesion ratio 
estimate that is calculated as more fully described below. As 
is known to those skilled in the art of pattern classification, a 
classifier algorithm is a method of separating a mixture of 
items into separate classes, usually based on a “feature vec 
tor, which is a list of numbers representing measurements of 
those items. A feature vector is a list of measurements of 
“features”, where a feature is something thought to be useful 
in discriminating two or more classes. In the case of mela 
noma detection, the classes may include, for example, pres 
ence or absence of dark Structures, or presence or absence of 
melanoma. Classifier algorithms can be linear or non-linear. 
They include linear classifiers, tree-based algorithms, and 
neural networks. 
The method for identifying a border between a skin lesion 

and Surrounding skin can also comprise histogram analysis of 
objects resulting from a watershed algorithm with the analy 
sis being for the purpose of determining which of the objects 
will be merged into the lesion area. The term “object’ as used 
herein refers to a group of adjoining pixels with similar lumi 
nance in the original image, and which can appear as an 
isolated structure at Some stages of the watershed algorithm. 
A “watershed algorithm' is an algorithm as depicted in FIG. 
4 and more fully described hereinafter for identifying the 
borders of a lesion on a digital image of the lesion. The term 
“object as used herein also refers to a group of adjoining 
pixels with similar luminance in the original image which can 
appear as an isolated structure of any algorithm, including the 
DullRazorTM digital hair removal algorithm (Lee97) or modi 
fied digital hair removal algorithm of this invention. 

Another aspect of this invention provides a method of 
identifying nonskin and nonlesion objects on an original digi 
tal image of a skinlesion comprising (a) analyzing image with 
a first digital hair removal algorithm, which may be the Dull 
RazorTM algorithm or the modified digital hair removal algo 
rithm of this invention; (b) locating lesion borders on the 
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original image; and (c) applying a second, modified digital 
hair removal algorithm to the original image in which lower 
thresholds for noise are implemented outside the lesion bor 
der than inside the lesion border, which means more small 
noise is identified outside the lesion border. The border is 
determined by a binary border image as more fully described 
hereinafter. The DullRazorTM algorithm previously known to 
the art has a major drawback in that in addition to identifying 
“noise' objects, it also identifies the pigment network of the 
lesion as a noise object. By using a higher threshold for noise 
inside the lesion border, this problem is alleviated. 
A pigment network is a network of brownish intercon 

nected lines over a background of tan diffuse pigmentation 
(Argenziano03). Typical pigment networks are light- to dark 
brown networks with small, uniformly spaced network holes 
and thin network lines distributed more or less regularly 
throughout the lesion and usually thinning out at the periph 
ery (Argenziano03). Benign pattern variants can include 
peripheral accentuation in a ring, which can be patchy but still 
largely symmetric. In facial skin a peculiar pigment network, 
also called pseudonetwork, is typified by round, equally sized 
network holes corresponding to the pre-existing follicular 
ostia (Argenziano03). On the skin of the palms and Soles, the 
pigment network normally follows the tiny Sulci (grooves) in 
the dermatoglyphics (fingerprints). 

The modified digital hair removal algorithm also com 
prises determination of an adaptive morphology threshold 
instead of the fixed threshold used in the original algorithm, 
as more fully described hereinafter. 
The modified digital hair removal algorithm also com 

prises an area filter to remove objects that are smaller than a 
selected number of pixels. This modified digital hair removal 
algorithm can be adjusted for sensitivity by selecting thresh 
olds having the highest signal-to-noise ratio, and highest hit 
ratio, where hit ratio is the ratio of hair area found to total true 
hair area. 

In one embodiment of this invention, the hair mask of the 
DullRazorTM algorithm has been modified by the addition of 
an algorithm for identifying unusual hair width. The hair 
mask is iteratively dilated by a single unit until there is no 
significant change in the number of pixels present with a 
luminance below the median of luminance of the pixels 
within the hair mask, thereby arriving at an adequate hair 
mask for unusual hair width. A 'significant change' in this 
context means a change that exceeds a threshold that is typi 
cally 0.40x the difference obtained in the preceding step, with 
a range for the constant that depends on lighting and darkness 
of hair, no greater than about 0.60 and no less than about 0.20. 

In an embodiment of this invention, the modified digital 
hair removal algorithm comprises detection of bubbles by an 
algorithm for detection of salient points embodying an opti 
mized minimal luminance threshold. 

In another aspect, this invention provides a method of 
identifying structures that discriminate malignant melano 
mas from benign skin lesions on a digital image of a skin 
lesion comprising: (a) detecting dark structures on the image, 
and assigning numerical values representative of measure 
ments of these structures for input into a classifier algorithm; 
and (b) running the classifier algorithm to identify said struc 
tures that discriminate malignant melanomas from benign 
skin lesions. The dark structures can be detected by a method 
comprising calculating crisp thresholds for inclusion of pix 
els of the image within the structures. Crisp thresholds are 
those thresholds that can be represented by a single real 
number. In a crisp set, unlike a fuZZy set, an object is either a 
member of the set or it is not. Crisp thresholds are never fuzzy. 
A fuZZy set is a set with an associated membership function, 
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6 
with the output of that function ranging from 0 to 1, inclusive. 
The output of the membership function is called the grade of 
the element. A membership function is a function associated 
with a fuzzy set, with the input being any element and the 
output ranging from 0 to 1, inclusive. 

Dark structures are comprised of pixels within skin lesions 
with specific colors. Some colors have a higher degree of 
association with dark structures within the same skin lesion 
and in different skin lesions. The concept of a fuzzy set for the 
color of pixels within dark structures is to represent the degree 
of association of different colors within those dark structures 
using a membership function for the fuzzy set to quantify the 
degree of association of the different colors within the dark 
structures, with 1 typically representing the highest degree of 
association of membership in the fuZZy set and 0 typically 
representing no degree of association in the fuzzy set. Colors 
not present in dark structures would have a membership value 
of 0 in the fuzzy set. 

In practice, dark structures can be detected by a method 
comprising calculating fuzzy indices to determine thresholds 
for inclusion of pixels of the image within said structures. The 
method of calculating fuZZy indices can comprise selecting 
optimal alpha cuts. An alpha cut is a crisp set containing all 
elements of a fuzzy set B that have membership gradeealpha, 
where alpha is a real number between 0-1, inclusive (Klirs8) 
A low alpha cut implies inclusion of low-grade members; a 
high alpha cut includes only high-grade members. High 
grade members of a set are those for which the membership 
function value is high (greater than, say, 0.7); low-grade 
members of a set are those for which the membership function 
value is low (less than, say, 0.3). A crisp set, usually just called 
a set, is a collection of objects often called elements or mem 
bers. The members of a set can be anything, including num 
bers. 

Dark structures can also be detected by a method compris 
ing analysis of a local area drop histogram. A local area drop 
used in determination of dark structures (globules, dots) is the 
drop between the average brightness or luminance of all pix 
els within the structure and the average brightness or lumi 
nance of all pixels within a specified neighborhood of a can 
didate structure, excluding the pixels of the structure. A local 
area drop histogram is the histogram over all candidate dark 
structures of the local area drops. 
Dark structures can be given ratings on one or more scal 

able indices selected from the group consisting of eccentric 
ity, closeness to periphery of the structure, total area of the 
structure, area of the structure relative to the area of the lesion, 
total number of structures, shape irregularity, clustering, 
structure color, structure brightness variance, and melanoma 
color index. A scalable index has no dependence upon size or 
magnification. It has no dimensions of measurement and may 
be considered dimensionless. For example, an index that 
identifies a fraction of a given lesion will identify the same 
fraction on a similar index for a lesion that has the same 
features but is X times larger (scaled up by a factor X). These 
Scalable indices are input into a classifier algorithm to distin 
guish benign structures from malignant lesions. 

Another scalable index useful for this purpose is the color 
clustering index, determined by a ratio obtained by dividing a 
numerator by a denominator as follows: The numerator is 
obtained by Summing over each pixel in the entire lesion the 
number of pixels within a neighborhood of that pixel that have 
at least a selected alpha cut (level of membership in the fuzzy 
set of benign relative colors). The denominator is obtained by 
Summing all neighbors that have nonzero membership (any 
degree of membership of the fuzzy set) of the fuzzy set of 
benign relative colors. The claim also applies to a color clus 
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tering index obtained by using the fuZZy set of malignant 
(melanoma) relative colors to replace the benign relative 
color sets as noted above, to obtain a numerator and denomi 
nator as above. 

Other scalable indices useful for this purpose are atypical 
pigment network indices. An atypical pigment network can 
be any of a variety of pigment networks with brown, black or 
gray lines with irregular holes and thick lines over a back 
ground of tan or gray diffuse pigmentation. The darkness of 
the lines may make the atypical pigment network area the 
darkest in the lesion (FIG. 32). In other cases, the pigment 
network area is detectable by the different widths of the holes 
and thickness of the lines and not by darkness of the atypical 
pigment network region (FIGS. 33 and 34). For the purposes 
of melanoma detection, we include branched streaks (Smaller 
regions to the right, FIG.33) as an atypical pigment structure. 
We also include streaks at the rim of a lesion as atypical 
pigment network. These streaks at the rim of a lesion have 
been previously described separately as pseudopods and 
radial streaming, but are now combined into the one term: 
streaks (Argenziano03). They are bulbous and often kinked or 
finger-like projections seen at the edge of a lesion. They may 
arise from network structures but more commonly do not. 
They range in color from tan to black. 
The four atypical pigment network indices are determined 

by ratios obtained by dividing a numerator by a denominator 
as follows: The lesion is divided in nxm blocks, for example 
41x41-pixel blocks, each of which is at least partially within 
the lesion boundary, and four standard Haralick texture mea 
sures, with Haralick texture measures as defined in (Haral 
ick73), determined as in (Umbaugh05). The texture measures 
here are taken over the co-occurrence matrix, with a distance 
of 20 (range 6-26) as defined in Haralick73, as applied in 
CVIPtools (Umbaugh05). Haralick noted that four directions 
are used: 0 degrees, 45 degrees, 90 degrees and 135 degrees. 
(Haralick73) With the modified method used in CVIPtools, 
the data from all 8 directions, 0-315 degrees in 45-degree 
increments, is obtained, but the data from 0 and 180 degrees, 
45 and 225 degrees, 90 and 270 degrees, and 135 and 315 
degrees are combined. This method yields good separation of 
malignant and benign classes, as below. It is likely that further 
combinations and simplification can yield good texture sepa 
ration. 

Correlation average, inverse difference average, texture 
entropy range, and correlation range are determined from 
each co-occurrence matrix. The nxm blocks may be contigu 
ous, if the image is divided into blocks, or overlapping, some 
times termed the sliding window method. Using either 
method, texture determinations are made to construct the 
co-occurrence matrix for the entire lesion. Texture-based seg 
mentation, also called texture segmentation, proceeds, 
accomplished using watershed or a similar segmentation 
method. Segmentation is done for an image of an optimized 
linear combination of the texture measures to calculate the 
“optimized texture luminance' feature. A limitation may be 
placed on the total segmented area, for example 20% of the 
lesion area, as we have found that a practical limit on the 
atypical pigment network area is 20%. The principal compo 
nents transform (PCT) or independent histogram pursuit 
(IHP) may be used to compute the optimized texture lumi 
nance feature. The texture segmentation may be repeated 
multiple times, to determine multiple separate segmented 
areas, with the option of a limitation being placed on the 
maximum segmented area, as described above. If PCT or IHP 
histogram analysis indicates insufficient difference between 
optimized texture luminance on the segmented area and the 
remainder of the lesion, segmentation is not repeated. The 
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8 
numerator of the correlation average is obtained by comput 
ing the correlation average within the texture-segmented 
lesion area. The denominator is obtained by computing the 
correlation average over the entire lesion, or as an equiva 
lently effective method, over the remainder of the lesion. The 
remaining three indices are computed as for correlation aver 
age, using inverse difference average, texture entropy range, 
and correlation range. These indices may be used as classifier 
inputs. In addition, other scalable indices, including eccen 
tricity E, irregularity I and eccentricity area ratio R may be 
used as classifier inputs. 

For 79 dysplastic nevi with a typical proportion (1 in 8) of 
dysplastic nevi with atypical pigment network, and 28 mela 
nomas with atypical pigment network as the most visible 
feature, all lesions taken from the CD in (Argenziano00), 
96.3% of all lesions were classified correctly, with 100% of 
melanomas classified correctly, using a Bayes classifier with 
default settings. The Chi-square attribute evaluations were: 
correlation average, 85.0418, inverse difference average, 
83.8602, texture entropy range, 62.3315, and correlation 
range 45.7011. Other classifiers gave similar but slightly 
lower results. For example, the J48 decision tree, using only 
the correlation average, gave a classification accuracy of 
93.5%, indicating the power of these texture features, using 
this ratio method, to detect atypical pigment network and 
discriminate melanoma from dysplastic nevi. 

Salient point indices are also useful as input into the clas 
sifier algorithm to distinguish malignantlesions. Salient point 
indices are determined over one or more deciles (for example 
the outer decile) of the lesion over KXL blocks, where the 
block size is typically 27x27, but can extend over a larger 
range, for example from 23 to 39. The method must first 
eliminate large dark structures (blotches), telangiectasia, 
bubbles and hairs. The intensity image and a sigma of 1.02 
(range 0.98-1.10) is used for salient point detection but simi 
lar results may be obtained with other combinations of image 
planes and sigma. An intensity image (of an original color 
image) is defined for each pixel of the intensity image (similar 
to the luminance image) as R/3+G/3+B/3, where R,G, and B 
are the red, green and blue values of a pixel in the original 
color image. 
The salient point statistics are computed over rectangles of 

size KXL, where K and L are integers; typically K and L are 
optimized at 27, but can range from 23 to 39. The first six 
variables are computed: block mean, median, and standard 
deviation, and each of these divided by the average intensity 
for the block. A seventh variable is the standard deviation over 
the block times the square of the average intensity of the 
block. The average of these seven variables, confined to 
blocks on the selected lesion decile or deciles, are used as 
input by a classifier. “Lesion decile' refers to an area com 
prising 10% of the total lesion area. Starting at the lesion 
border and working inward, the first or outer decile is the 10% 
of pixels closest to the border, and the 10" or inner decile is 
the 10% of pixels furthest from the border and closest to the 
Center. 

Border gradient indices may also be input into the classifier 
algorithm to distinguish malignant from benign lesions. Bor 
der gradient indices are determined using the lesion border 
and the lesion centroid, operating upon a plane computed 
from the color planes, typically the intensity or luminance 
plane. The gradient in the direction from centroid to the 
border is computed after averaging about 3 to about 19, and 
typically about 5 points at the border and about 3 to about 19, 
and typically about 5 points at a second location X pixels 
outside the border in the direction from the centroid to the 
border, where X is typically 50, but can vary from about 15 to 
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about 150. The gradient may be taken as a sample at every Y 
points (Y is typically about 32), or continuously. A histogram 
of gradients may then be split at an interpeak mean into two or 
more sets of border points, and the number of elements in the 
two sets of border points with the highest and lowest mean 
gradients, normalized by the number of border points (ex 
cluding image edge points), is computed. The total number of 
Such sets is retained. The normalized high-gradient fraction 
of border points is called the high-gradient fraction. The 
normalized low-gradient fraction of border points is called 
the low-gradient fraction. The Euclidean distance between 
the centroid of the high-gradient fraction and the lesion cen 
troid, normalized (divided) by the square root of the lesion 
pixels, with this normalized distance called the high-gradient 
fraction eccentricity, is computed. If the high-gradient eccen 
tricity is sufficiently high, a melanoma is more likely. If the 
high-gradient fraction is 0.2-0.6, and the high-gradient frac 
tion's mean gradient is Sufficiently high, a melanoma is more 
likely. The high-gradient fraction, high-gradient mean, low 
gradient fraction, low-gradient mean, number of sets of bor 
der points, and high-gradient fraction eccentricity are saved 
and used as inputs to a classifier. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 is a flow chart showing the prior art DullRazorTM 
algorithm for identification and removal of hairs on a lesion 
image. 

FIG. 2A shows an original image of a lesion. FIG. 2B 
shows the hair mask for the same image after application of 
the digital hair removal algorithm to remove pixels represent 
ing hair (the hair mask represents the pixels identified by the 
digital hair removal algorithm as hair that will be removed by 
this algorithm), and FIG.2C shows the hair mask for the same 
image after application of an area filter to remove noise in the 
form of pixels representing blobs that are smaller than a 
certain number of pixels. 

FIG. 3A is a graph showing the number of noise objects in 
an image as a function of number of pixels in the object 
graphed for a small number of images. FIG. 3B is a graph 
showing that signal-to-noise ratio (SNR) is a function of both 
morphological closing threshold and object size thresholds. 
FIG. 3C graphs the hit rate which is the percentage of the hair 
that is picked up by the algorithm as a function of morpho 
logical closing threshold and object size thresholds. 

FIG. 4 is a flowchart showing the watershed algorithm we 
developed for detecting borders of a lesion. Note box with 
asterisk: If one or more bounding box sides are not found, the 
mean lesion ratio estimate with least mean square correction 
may be used to estimate the missing side(s). Alternately, this 
alternate lesion ratio estimate is then used rather than the 
bounding box lesion ratio estimate. 
FIGS.5A and 5B show two- and three-dimensional illus 

trations of the intermediate stage of the flooding process of 
the watershed algorithm. FIG.5A shows an example of water 
shed lines (peaks shown by arrows pointing down) and basins 
(valleys shown by arrows pointing up). FIG. 5B is a three 
dimensional representation of the basic rainfall model used in 
watershed segmentation. 

FIG. 6 is an example dermoscopy skin lesion image. 
FIG.7 shows the result of the watershed transform overlaid 

on the skin lesion image of FIG. 6 without any preprocessing. 
FIG. 8 shows the object histogram for a skin tumor image 

for the blue plane. The higher peak on the right represents the 
background or skin; the lower peak represents the lesion. 

FIG.9 shows Labeling and merging from the object histo 
gram of FIG. 8. 
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10 
FIG. 10 shows the result of the merging procedure on the 

sample image using a fixed lesion ratio of 0.27, with a white 
outline indicating the borders of the detected regions. 

FIG. 11 shows an example of bounding box detection for 
the lesion shown in FIG. 6. 

FIG. 12 shows the linear relationships between the actual 
and the estimated lesion ratios on the 70 benign lesion 
images. 

FIG. 13 shows the results of the area filter on the lesion 
image. Objects identified with black contours are the ones 
that will be removed by the area filter. The white contour 
shows the resulting border. 

FIG. 14 shows the result after the hole-removing algo 
rithm; black contours are the hole boundaries detected and 
removed. The white boundary is the final lesion boundary. 

FIG. 15 is a gray scale representation of boundary changes 
from 7 increments of the lesion ratio estimate Y. Gray scale 
changes show how the boundary varies considerably at Some 
areas of the boundary as Y varies. 

FIG. 16 shows the image after border smoothing using 
second-order B-Spline curve fitting. 

FIG. 17 shows mean error comparison of skin lesion seg 
mentation techniques. 

FIG. 18 shows error standard deviation comparisons of 
skin lesion segmentation techniques. 

FIG. 19 shows a lesion image with manually-drawn bor 
ders by different dermatologists compared with the water 
shed borders of this invention. 

FIG. 20A shows an image with hair before application of a 
digital hair removal algorithm. 
FIG.20B shows hairs detected on the image after both first 

and second stages of the modified digital hair removal algo 
rithm have been applied. 

FIG. 21 shows an image of a dysplastic nevus with the 
outline of the largest blotch found automatically. 

FIG. 22 shows an image of an invasive melanoma (from 
Argenziano00) with the outline of the largest blotch found 
automatically. 

FIG. 23 graphs membership function for fuzzy blotch 
determination. 

FIG. 24A shows a benign lesion with globules. Globules 
are regularin shape and not asymmetrically located. FIG.24B 
shows the automatically detected globules. 

FIG. 25A shows a malignant melanoma. Globules are 
irregular in shape and somewhat asymmetrically located. 
FIG. 25B shows the automatically detected globules. 

FIGS. 26A-D show gradient statistics for benign lesions 
and melanomas. 

FIG. 27 shows three-dimensional relative color histogram 
bin labeling for a training set of images. The gray regions are 
melanoma-labeled bins. The black regions are benign-labeled 
bins. 

FIG. 28 shows an image with areas of Scarlike depigmen 
tation. 

FIG. 29 shows an image produced by a method of scarlike 
depigmentation detection showing automatically-detected 
scar-like candidate areas using our method. 

FIG. 30 is a flowchart showing a prior art for screening 
algorithm for scar-like depigmentation detection in dermo 
Scopic images. 
FIG.31A shows an image with bubbles. FIG. 31B shows 

the image after application of the salient point mask to detect 
bubbles. 

FIG. 32 shows an area of atypical pigment network in this 
image of a melanoma (Argenziano00). Note that the atypical 
pigment network in this image is in the darkest part of the 
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image, and displays the widened pigment network lines as 
well as varying hole signs expected for an atypical pigment 
network. 

FIG.33 shows several areas of atypical pigment network in 
this image of a melanoma (Argenziano00). For this lesion, the 
area of atypical pigment network is not in the darkest part of 
the lesion, and thus is not detectable by darkness but by 
comparing texture measured over different areas of the lesion. 

FIG.34 shows dark atypical pigment network in this image 
of a melanoma (Argenziano00), not the darkest part of the 
lesion, and not detectable by darkness but by comparing 
texture measured over different areas of the lesion. (Argen 
Ziano00). 

DETAILED DESCRIPTION 

This invention provides a method of processing a digital 
image of a skin lesion Suspected of being a melanoma to 
achieve diagnosis or biopsy decision automatically using 
algorithms on a digital computer. The method involves pro 
viding an image using visible light reflected from the lesion to 
the processor, for accurately segmenting out (finding the bor 
ders of) the lesion. The image should comprise at least about 
512x480 pixels. 
The method of this invention performs preprocessing to 

remove unwanted portions of the image including hairs, 
bubbles, flash, shadow, markings such as ink, measuring 
scales and devices, and telangiectasia, then identifies critical 
features including statistics of peripheral salient points, bor 
der sharpness, and the proportion of colors consistent with 
melanoma as well as critical structures including regular and 
irregular pigment network, Scar-like depigmentation, granu 
larity, peripheral and eccentric blotches, peripheral and 
eccentric globules, peripheral and eccentric dots, peripheral 
blush, single, pairs, and groups of colors consistent with 
melanoma, and concentric-ring quantized eccentric mela 
noma color. 
The segmentation method for identifying the lesion border 

involves a sequence of preprocessing including removing 
hairs, flash, shadow and other extraneous unwanted portions 
of the image noted above, before a watershed method is 
applied, and applying an optimized histogram and color sta 
tistic processing method to obtain an optimized lesion ratio 
estimate as input to a flooding variant of the watershed algo 
rithm, followed by classifier optimization and Smoothing 
operations using, for example, a second-order spline function 
followed by a distance transform operation to remove 
unwanted peninsulas. Bubble detection uses a combination of 
salient points, brightness thresholds and an automatic rim 
finding method. The regular and irregular pigment network 
identification involves optimized digital texture analysis rou 
tines which include Laws energy filter operations (Laws80) 
and grey-level correlation matrix correlation average and 
range, inverse difference average, and entropy range analysis. 
(The four best features were correlation average and range, 
inverse difference average, and entropy range.) Scar-like 
depigmentation and granularity determination use the meth 
ods of Tatikonda (Tatikonda02) that are modified by param 
eters describing size and location of scar-like depigmentation 
and granularity, proximity of the two features, and Melanoma 
Color Index determination for scar-like depigmentation. 
Irregular vessels are found using a modified telangiectasia 
finder. 

These operations are specified for visible-light images, 
such as those obtained by xenon flash as with the Dermaphot 
(Heine, Munich, Germany) or Epiflash (Canfield, Fairfield 
N.J.) or with LED rings (3Gen Imaging, Dana Point, Calif., 
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FotoFinder Teachscreen Software GmbH, Bad Birnbach, 
Germany). The methods of this invention are performed using 
a computer processor Such as a personal computer. 
The image analysis is combined with clinical features 

which are obtained and input to the system, including: patient 
age, gender, lesion location (face, ears, Scalp, neck, arm, leg. 
trunk, anogenital, hand, foot), childhood Sunburns, recent 
lesion onset/change, family history of melanoma (first degree 
relative), and personal history of melanoma. 
The following provides a detailed explanation of the 

method and order of operations: 
The processor receives visible light images of a lesion on a 

patient’s skin that is suspected of being a melanoma from any 
Source of Such images, including Xenon flash as with the 
Dermaphot (Heine, Munich, Germany) or Epiflash (Canfield, 
Fairfield N.J.) or with LED rings (3Gen Imaging, Dana Point, 
Calif.) or partial LED rings (FotoFinder Teachscreen Soft 
ware GmbH, Bad Birnbach, Germany). 
The processor then computes the patient's background 

skin color. In order to do this, areas of the image that are not 
skin are first eliminated according to nonskin color elimina 
tion criteria, including black or white borders, measuring 
scales or measuring devices Such as rulers (often a ruler or 
scale is included in the photograph so indicate the size of the 
lesion) on the images, or reflections from bubbles. These 
features are omitted, i.e., are not considered in Subsequent 
processing by using three criteria for normal skin: RD-90, 
R>B, RG, to eliminate dark noise and shadows and nonskin, 
AND R350, G<250, B<250 to eliminate flash and bubbles, 
where R, G and B denote the red, green and blue intensity 
values, respectively, of the pixel under consideration. This 
method is modified from McLean94. An alternate screening 
has been used successfully to eliminate dark borders. This 
screening eliminates dark borders by requiring 
Max(R,G,B)>60. The rules above also ensure that dark bor 
ders are eliminated. 

Areas of the image that represent hair on the skin are also 
identified and eliminated. A modified digital hair removal 
algorithm is used. The DullRazorTM (Lee97) has proven to be 
a useful algorithm for dermoscopy image segmentation. The 
algorithm can generate reliable detection and elimination of 
pixels representing dark hair from consideration in analyzing 
the image. 
Two problems concerning hair detection have emerged. 

The DullRazorTM digital hair removal algorithm will miss 
fine hairs and sometimes erase critical intralesional structures 
within the pigment network. A solution for these problems 
can be found by preprocessing which includes applying an 
adaptive threshold for grayscale morphological closing, 
using an area opening filter, and applying noise removal strat 
eg1eS. 
The DullRazorTM algorithm is a morphological closing 

based method, as is known to those skilled in the art of image 
processing (SoilleO3), which consists of eight major steps. 
The flowchart depicted in FIG. 1 shows the sequence of 
operations: 
Read the color image. 
Apply the morphological closing structures to each of the 

three bands of the image and keep the maximal value. 
Subtract the original band from each band of the resulting 

image of the last step. 
Combine the three resulting bands by choosing the maxi 

mal value of the pixels. 
Apply the threshold to get rid of most of the noise. 
Generate the hair structure. 
Replace the hairpixels using bilinear interpolation of adja 

cent pixels. 



US 7,689,016 B2 
13 

Generate the hair mask and the resulting image. 
The modified digital hair removal algorithm of this inven 

tion provides five major improvements: use of a relative 
threshold instead of a fixed threshold, with different thresh 
olds inside and outside the lesion, an area filter and other 
modifications for noise removal, sensitivity adjustment, and 
adaptive digital hair removal algorithm thresholdestimate, as 
discussed below: 

Relative Threshold 
The improved digital hair removal algorithm uses an adap 

tive morphology threshold instead of the fixed threshold in 
the original algorithm. The new algorithm quantizes the result 
of the gray-level morphological closing to 0, 1 and limits the 
threshold to be a percentage of the maximum pixel value 
calculated from the image in the resulting image. 

n-max(pel...)x80% 

m:threshold value 

pel-pixels in the morphological closing result 
Instead of using the fixed threshold used in the original 

DullRazorTM algorithm (prior art), we are using a new thresh 
old m, which is calculated as follows. Of all the pixels result 
ing from the morphological closing operation after being 
quantized to the range 0.1, the maximum value is found of 
all these pixels. The new threshold (replacing the fixed thresh 
old used in the original DullRazorTM) is set to 80% of this 
value. This range may vary from 65% to 95%. 
Noise Removal 

Empirically, almost all the hair will either cross the lesion 
border or be totally outside the lesion area. So a literal rule is 
defined that all hair candidates strictly inside the lesion 
boundary will be considered noise and discarded. Different 
thresholds inside and outside the lesion will be later defined, 
such that the inside threshold is higher than the outside thresh 
old to remove more noise from outside the lesion area. The 
digital hair removal algorithm threshold is set loosely for the 
first iteration, so that fewer hairs are removed inside and 
outside the lesion (because a single threshold must be used on 
the first iteration of the digital hair removal algorithm as the 
border is still not determined). This results in some pigment 
network being erased, but this is satisfactory for the first 
digital hair removal algorithm output, which is only used for 
border determination. 

Area Filter 
An area filter to remove the blobs that are smaller than a 

certain number of pixels has proven to be a very useful strat 
egy to suppress the noise. FIG. 2 shows the results before and 
after the area filter. 

Sensitivity Adjustment 
To adjust the sensitivity of the algorithm, we present the 

method below. 

Define I as the result of grayscale morphological closing 

T = X. (p > n) m is the dullrazor threshold 
peic 

I is the image resulting after grayscale morphological 
closing. It is the thresholded digital hair removal algorithm 
image. 

Practically, the threshold varies from 0.03 to 0.08. At a 
value of 0.1, almost all segmentation, that is, separating out 
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the lesion, will be eliminated. When the threshold is too low, 
noise will be overwhelming. To view the effect of different 
thresholds on the image, we define an array to store the 
different values from 0.01 to 0.1, and the histogram of the 
number of objects with same area (same number of pixels) is 
defined by: 

H = X. 4 (P) P, is if object in the image, i = 1, 2, 3... 
Pelt 

Binary function ; is given by 

1 if X. p = i 
; (P) = peP; 

0 otherwise 

Adaptive Digital Hair Removal Algorithm Threshold Esti 
mate 

A standard hair mask is introduced in the algorithm to 
estimate the optimized threshold point for morphological 
closing, and an area filter to remove objects less than a certain 
size. Thresholds are determined to have highest (SNR). Prac 
tically, the range of morphological closing is between 0.03 
and 0.08, the range of the area filter is between 60 and 400. 
Fifty values of the former threshold and 50 of the latter 
threshold are chosen and their combinational SNR are calcu 
lated (2500 combinations). Inner thresholds of 2, 3 and 4 
times the outer threshold are computed. An error surface is 
generated to determine the global maximum. 

Lesions have an inverse relationship between size of noisy 
object and number of noisy objects of a given size, as shown 
in FIG. 3A. 

Signal-to-Noise Ratio (SNR) 
The signal-to-noise ratio is defined by the following equa 

tion for the binary (black/white) hair mask image. The SNR is 
an important measure to estimate and evaluate image process 
ing procedures during the hair removal process. Noise is 
comprised of Small noise, which is easily removed by object 
size thresholding below, and large noise, which is either 1) a 
false addition to a true hair mask or 2) a large object that is 
incorrectly found. For good results, the noise counted in the 
noise total may be restricted to large noise, of type 2) (large 
object incorrectly found). FIG. 3B shows that the SNR is a 
function of both morphological closing threshold and object 
size thresholds. The SNR is given by: 

Power (hair) 
SNR = 20x lost Power (white pixel) 

X. p; 
ie Hair 

2. Pi 
is NH 

= 20x logo 

(NH is the set of no hair and p, and p, represent pixels that 
are Summed for pixel counts.) 
Hit Rate 

Signal-to-noise ratio represents to Some degree the quality 
of the hair mask. However, in Some cases, we are mostly 
interested in how many hairs can be detected by the algo 
rithm. Therefore, in some cases, it can be important to keep 
most of the hair while allowing limited noise. A hit rate is 
introduced to measure the percentage of the hair that is picked 
up by the algorithm, as shown in FIG. 3C. 
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y - XP/2. P. ;ei Pie hair Pieli 

Granularity 
The granularity of the image could be defined in multiple 

ways. In our experiment, the first approach is to define the 
granularity of the image as the power of the resulting image of 
the morphological closing. The equation is given below. 

(i) = X. p;f Size (Ic) 
piec 

For this equation only, p, refers to the luminance or equiva 
lent pixel gray-scale value rather than the pixel count as in the 
equations above. I refers to the area of the hair found after 
morphological closing. Experiments showed that the 
improved digital hair removal algorithm can generate more 
reliable hair masks with much less noise in the hair mask, 
while preserving the most important features, such as pig 
ment networks and globules. 
Hair Removal on First Iteration 

The first modified digital hair removal algorithm imple 
mentation uses an adaptive morphological threshold and a 
single object size threshold optimized over SNRandhitratios 
i.e., ratios of hair area found to total true hair area. The 
threshold of size of Small objects removed is dynamic, rang 
ing from 40 to 400 pixels, typically in the range of 200 pixels. 
Since no lesion border is known at this point, a second inside 
the-border threshold is not used. 

An estimation of hair widths is made. The digital hair 
removal algorithm hair mask width is iteratively dilated by a 
single unit using mathematical morphology until there is no 
significant change in the number of pixels below a median 
threshold, i.e., hair mask width is adequate, as a check on 
optimized hair finding using iterative morphologic dilation 
and the histogram of object sizes. 

Segmentation (Finding Lesion Border) 
Watershed Algorithm Border Detection 
The watershed algorithm, which has many variations, is 

based upon a topographical representation of an image gray 
level map. In the topographical representation, the brighter 
pixels represent the higher altitudes or the “hills' and the 
darker pixels correspond to the “valleys', which allows deter 
mination of the path that a falling raindrop would follow 
(Bleau00). Watershed lines are the dividelines of “domains of 
attraction' of water drops. The flooding modification of the 
watershed algorithm is analogous to immersion of the relief in 
a lake flooded from holes at minima. The flooding variant is 
more efficient than the original falling raindrop approach for 
many applications (Vincent91). With merging techniques, the 
watershed algorithm has improved performance and is now a 
primary tool for medical image segmentation (Bleau00). 
The proposed watershed-based segmentation technique is 

compared to Pagadala’s histogram thresholding method 
(Erkol(05), the gradient vector flow method developed by 
Erkol et al. (Erkolo5), and the modified JSEG method 
(Celebi06) on a set of 100 dermoscopy images. 
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Watershed-Based Algorithm For Skin Lesion Segmentation: 
Overview of the Algorithm 
An overview of the watershed algorithm is shown in FIG. 

4. 

Preprocessing: Black Frame Cropping and Background Skin 
Finder 
The watershed algorithm requires the non-skin finder and 

background skin color finder as above. 
Watershed Transform 

For a two-dimensional image, a three-dimensional repre 
sentation is constructed from the original image, where X and 
y represent the row and column of the image pixels and Z 
represents the luminance value. The methods of Gomez et al. 
(Gomez06) may be used to create a histogram pursuit (IHP) 
image as an alternate to the luminance plane. The IHP image 
multiplies the R,G, and B values by constants that maximize 
the depth of the valley between the histogram peaks for the 
image. (Gomez06) 

Points belonging to a regional minimum or where water 
following the steepest path would fall into the same minimum 
are called catchment basins. 
The sets of points where water in rainfall simulations will 

be equally likely to fall into more than one such regional 
minimum when performing a rainfall simulation are termed 
divide lines or watershed lines. A set of adjacent pixels with 
the same gray level is called a plateau. 
The flooding version of the watershed algorithm is sum 

marized as follows: 
1. Rainfall simulation is used to determine regional minima 

by following raindrop paths until a regional minimum is 
reached. When the rainfall simulation starts from the point (x, 
y) with gray value I(X,y), its neighbor's gray value is given by 
I(X+i, y+j) where ij=-1. The next rainfall path R is given by 
finding the maximum gradient (steepest path) of the gray 
value of the neighbors, which is given by the following equa 
tion: 

Wherever the rainfall path reaches a regional minimum (Xo, 
yo) where E(X+i), (yo)>0, for i, j=-tl, these regional 
minima become the flooding start points. We use the same 
label for the pixels in the rainfall path and the regional minima 

2. The flooding procedure is launched at a regional mini 
mum. Rainfall simulations are repeated on all adjacent pixels 
to see if the points could reach the same regional minimum. If 
the regional minimum is reached, the neighboring pixel will 
be given the same label as the one with the regional minimum; 
otherwise, a new regional minimum will be pushed onto the 
stack for further flooding processing. The procedure stops 
when all regional minima in the Stack are processed. As the 
waterline increases, more pixels beyond the regional mini 
mum are flooded and given the same label. 

3. When the rising waters in different catchments are about 
to merge, a dam is built to prevent the merging. When the 
flooding procedure finally reaches the global maximum, the 
whole area is flooded except the dam boundaries, which cor 
respond to the watershed lines. FIGS.5A and 5B show two 
and three-dimensional illustrations of the intermediate stage 
of the flooding process. 
Over-segmentation and Solutions 

Over-segmentation is the most common problem for the 
watershed transformation. Over-segmentation occurs 
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because every regional minimum, even if tiny and insignifi 
cant, forms its own catchment basin. FIG. 7 shows the result 
of the watershed transform overlaid on the skin lesion image 
(FIG. 6) without any preprocessing. The solution that we have 
adopted is to use a merging procedure to prevent the over 
segmentation. Other solutions include removing minima that 
are too shallow (Felke101), (Mangan'98), and the h-minima 
transform (SoilleO3), that Suppresses all regional minima 
whose depth is less than h, where h is an arbitrary threshold. 
Modified Watershed Algorithm with Object Merging 

Object histogram: The watershed algorithm that we are 
using applies a rainfall simulation to the grayscale luminance 
or any other single-plane image. Such as the IHP image and to 
the blue plane of the image. From empirical analysis of the 
image set, the blue plane in general produced more accurate 
borders when compared to other planes. Other implementa 
tions can include a linear combination of the red, green and 
blue plane to maximize the area of the valley between histo 
gram peaks (Gomez06). 

Objects in the watershed image are then tabulated in an 
object histogram, where each vertical line on the histogram 
represents the number of Small objects (or segmented 
regions) in the watershed image (not pixels in the original 
image) with that average gray-level value on the horizontal 
axis. Histogram analysis of the image set reveals that most 
skin tumor images have two peaks in their histograms. FIG. 8 
shows the object histogram for a skin tumor image for the 
blue plane. The higher peak on the right represents the back 
ground or skin; the lower peak represents the lesion. 
Labeling and Merging 
As Stated in the previous section, a lesion image usually has 

two peaks in its histogram, the lower peak representing the 
lesion and the higher peak representing the skin color distri 
bution. It is not always easy to locate the lower peak. How 
ever, the global peak, i.e., the highest peak in the histogram, is 
very easy to locate. A merging and labeling method is then 
developed to find the skin. 
The merging procedure is initiated by finding the maxi 

mum value in the object histogram (FIG.9). Starting from the 
gray level T which marks the gray level with the maximum 
number of objects in the histogram, a recursive procedure 
expands in both directions on the X-axis of the histogram at 
the step size of one gray level in each direction. Usually, 
T+1=255, the maximum gray level, before the procedure 
ends, in which case tzt. When the total area of the objects 
within the color range exceeds a certain portion of the image 
area, the procedure stops, and the lower limit and upper limit 
T-T and T+t, are recorded. S is the total area of the water 
shed segments with average color equal to gray level X. 

Lesion Ratio Definition 

The lesion ratio Y is the ratio of the lesion area to the image 
area M. From empirical analysis of the experimental image 
set, an estimate of 0.25 is typical for the lesion ratio. A more 
accurate lesion ratio estimate will be introduced in the fol 
lowing Subsection. 
The next step in the procedure is traversing the entire image 

and locating the objects. If the average color of an object is 
higher than the lower limit, T-t, a label of 0, representing the 
background (skin), is assigned to the object; otherwise, a 1 is 
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assigned to the object. Therefore, all the objects are catego 
rized into two groups: background skin and lesion. 

FIG. 10 shows the result of the merging procedure on the 
sample image using a fixed lesion ratio of 0.27, with a white 
outline indicating the borders of the detected regions. The 
segmentation errors present at the stage of FIG. 10 are 
addressed in the following sections. 
Lesion Ratio Estimate 
Mean Lesion Ratio Estimate from Mean Luminance: 

Because the distribution of lesion ratios in our test set varies 
widely, ranging from about 5% to 48.4% on 100 images, we 
need an a priori estimate of the lesion ratio Y. The simplest 
estimates, is obtained by counting the number of pixels with 
gray level value I less than the mean luminance u, and 
dividing this by M, the total number of pixels in the image. 

count (ly < it) 
y = 

This formula tends to give too high an estimate for images 
with an actual low lesion ratio, and too low an estimate for 
images with an actual high lesion ratio. 
The mean lesion ratio estimate is further improved by 

adjustment by a linear correction factor. Even after being 
adjusted by a linear correction factor, segmentation errors 
were still high. Various methods to obtain a better lesion ratio 
estimate were tried, including analysis of the histograms in 
each color plane and in the luminance image, and the use of an 
outer bounding box, as described in the next section. 
Bounding Boxes 
The projected outer bounding box, shown in FIG. 11, is 

calculated as follows: Each column of numbers representing 
the luminance image is projected (Summed) vertically to form 
a vector(P). The second-order best-fit curve of this projec 
tion (P) is subtracted from this projection, the resulting curve 
is normalized as described later, and then the two major 
maxima (denoted by * in the figure) of the normalized curve 
(B) are found. These points define the horizontal extent of the 
outer bounding box. A similar procedure is used with the 
horizontal projection of the numbers representing the lumi 
nance image to define the vertical extent of the outer bound 
ing box. The inner bounding box is found by the location 
where the normalized difference curve's (B) value equals the 
mean value of the second-order fitting curve (P) (noted by + 
in the chart). Two projections are needed to construct the four 
sides of the inner and outer bounding boxes. A more detailed 
description follows. 

In order to estimate the lesion ratio, the bounding box area 
ratio is used. Let I, be the luminance value of the i"j" image 
pixel, and n be the number of rows. Thei" column projection 
point P, is given by: 

Then a second-order best fit curve is calculated based on the 
projection curve. Since P, is an n-element array, P, is also an 
n-element array given by 



US 7,689,016 B2 
19 

The coefficient vector A C C Co is determined by mini 
mizing the mean square errore between P, and P. 

where E represents the expected value. 
Use of a Subtraction Curve Applied to Horizontal and Vertical 
Projections for Bounding Box Determination 
The second-order curve is then subtracted from the original 

projection curve to create a curve that is roughly m-shaped. 
Some of the lesions may have a lighter central area rather than 
an entire dark central region, so a central power Suppressing 
scheme was developed by multiplying the Subtraction result 
with the projection curve P. The means of the curves P, P, are 
also used to normalize the curve, giving the final equation of 
the bounding curve B, 

- Fi 
- P-P-P), 

In order to find the two major maxima for the outer bound 
ing box from the subtraction curve B, the global minimum of 
the curve is found. The curve is split in two based on the 
global minimum, and the two maximam, mare found 
on each part of the curve. The index of the two maxima is the 
index of the column bounding box. The row bounding box 
indicesm, mare found in the same way. FIG. 11 presents 
an example of the bounding box detection process. Although 
there were exceptions within this image set, the outer bound 
ing box is generally outside the lesion boundary. Similarly, 
the inner bounding box is not guaranteed to fall totally inside 
the lesion, and it does not in this example. Nevertheless, the 
Subtraction curve method generally produces an accurate 
estimate of the true lesion ratio. Additionally, if there is no 
maxima on one or more sides (no bounding box border inte 
rior to image edge) that becomes a criterion for lesion extend 
ing to periphery of image, as noted in the section below 
“border going to edge of image.” 
First Lesion Ratio Estimate Based on Outer Bounding Box 
Once the outer bounding box is determined, the bounding 

box ratio B is given by the ratio of the outer bounding box area 
to the image area. The bounding box ratio has a significant 
linear relationship with the lesion ratio, as shown in FIG. 12. 
The lesion ratio estimate is given by the equation deter 
mined by the mean-square best-fit linear relationship between 
the actual lesion ratio and the bounding box ratio: 

5 = 0.7799p–0.0436 

(n - m2)(nel - inc2) 
i. i. 

= 0.7799 - 0.0436 

For those cases in which one or more bounding box sides 
are not found, the mean lesion ratio estimate (LRE) is used for 
the first lesion ratio estimate. If no bounding box sides are 
found, there is at least a moderate probability of the lesion 
going to the wall on all four sides. A classifier may be used on 
the no-bounding box case as mentioned elsewhere, but the 
mean LRE is still the first estimate. As an alternate method, if 
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1-3 bounding box sides are found, those sides may be retained 
for bounding box determination and the mean LRE can be 
used to estimate the remaining sides, with the sides chosen So 
that the mean LRE is satisfied. 

Lesion Ratio Estimate Correction Based on Random Forest 
Algorithm to Provide Second Lesion Ratio Estimate 

Although any classifier may be used to provide the lesion 
ratio estimate correction, good results were obtained with the 
random forest algorithm. The random forest algorithm 
(Breiman01) is a statistical classification algorithm that 
grows many classification trees. Input data is classified by 
each of the trees, and the output of each tree is considered a 
Vote. The forest is grown using m randomly chosen variables 
of the Mpossible variables at each tree node, where m-3M is 
a constant throughout the forest growth. The best split on the 
m variables is used to split each node. Trees are grown with 
out pruning. The forest algorithm determines the final classi 
fication after counting and weighing votes from all the trees. 
The classification error of the forest falls as the correlation 

among trees falls and the error rates of the individual trees 
fall. A choice of a small m increases the error of the trees but 
reduces correlation. The value of m lying between these 
extremes is determined automatically by the algorithm of 
Breiman L. (2001), “Random Forests' (Breiman01). 

Final features were selected from 44 features. These fea 
tures are the image area (in pixels); first-iteration lesion area 
(in pixels), gray levels of the high and low peaks of the object 
histogram; and the following values in each of four planes, 
red, green, blue and luminance: entire image pixel means; 
entire image pixel standard deviations watershed rim aver 
ages (described in the next Subsection); mean lesion ratio Y 
estimates; pixel histogram y-axis peak values; pixel histo 
gram X-axis peak gray levels; pixel histogram variances; pixel 
histogram standard deviations; and the average grayscale of 
the inner and outer bounding boxes. 
The whole data set is classified into three classes. One class 

represents cases for which the lesion ratio estimate over 
estimates the true lesion ratio by at least 5%. Another class 
represents cases for which a underestimates the true lesion 
ratio by at least 5%. The final class represents cases for which 
sis within 5% of the true lesion ratio. Therandom forest was 
able to classify all of the instances correctly. Then a final 
offset was added to a to get the final lesion ratio estimate. 

y = 3 + P. 0.02 

1 under-estimate 

P = 0 proper-estimate 
-1 over-estimate 

Noise Control 
Noise in the lesion images arises from lentigines (lacy dark 

areas in the image, hair, and telangiectasia (the dark river-like 
areas representing blood vessels), bubbles, and other Small 
skin irregularities. In order to alleviate the noise, several 
algorithms are introduced in this Subsection. 
Area Filter 
The area filter is an image filter based on the area of the 

objects in the images. Since all the dermoscopy images con 
tain only one object of interest, the result of the watershed 
algorithm should also contain only one object. The resulting 
image is obtained by only keeping the largest object among 
the Nobjects in the mask image. In FIG. 13, objects identified 
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with black contours are the ones that will be removed by the 
area filter. The white contour shows the resulting border. 
Object Filling 
The resulting lesion mask is filled using a flood-fill algo 

rithm. Then, the holes in the filled image are removed using 
mathematical morphology (SoilleO3). FIG. 14 shows the 
result after the hole-removing algorithm; black contours are 
the hole boundaries detected and removed. The white bound 
ary is the final lesion boundary. 

Sensitivity of the Watershed Border to the Lesion Ratio Esti 
mate 

The watershed border is sensitive to the lesion ratio esti 
mate Y but the sensitivity varies greatly for different images, 
for different Y, and for different portions of the boundary 
within an image. FIG. 15 shows by gray Scale changes how 
the boundary varies considerably at some areas of the bound 
ary as Y varies. Rather than a series of roughly parallel lines 
resembling altitude isoclines, the Successive watershed bor 
ders are generally patchy as shown in FIG. 15. 

FIG. 15 shows gray scale representation of boundary 
changes from 7 increments of the lesion ratio estimate Y: a 
change of Y of 0.07. White:-0.03 to 0.02 Dark gray: +0.03 to 
+0.04. The watershed rimaverage intensity used as an input to 
the random forest algorithm is the average intensity over the 
area between the borders determined by lesion ratio estimates 
between Y and the next increment: Y+0.01. 
Lesion Border Smoothing 

In order to smooth the jagged borders which result from the 
watershed algorithm, two techniques were employed, mor 
phological processing and B-spline closed curve fitting. 
Border Smoothing by Morphological Operations 

Border Smoothing by morphological opening or closing 
(SoilleO3) can reduce unwanted false positive and false nega 
tive errors, usually caused by false convexities or concavities, 
but these error reductions come at a cost of a greater overall 
error, as shown in Table 1. The structural element used was 
ball-shaped with a radius of 31. 

TABLE 1. 

Results of mathematical morphology border Smoothing on 
jagged watershed border without bounding box iteration, or 

statistical optimization: The overall border error rises. 

Before After Before After 
Morph. Morph. Morph. Morph. 
Opening Opening Closing Closing 

Average False Positive 6.78% 2.78% 6.78% 11.15% 
Average False Negative 6.38% 11.21% 6.38% 2.55% 
Average FP+FN 13.16% 13.99% 13.16% 13.70% 

Border Smoothing by B-spline Curve Fitting 
In the final watershed algorithm, second-order B-Spline 

closed curve fitting (de Boor()1) is applied to the original 
border pixels from the lesion mask. First, a sequence of the 
border pixels DX, Y is generated. Second, a Smoothing pro 
cedure records the starting point then traverses along the 
boundary and records all the pixels in the path. When the 
distance from starting point exceeds 32 pixels in either the X 
or they direction, an average control point(x,y) is calculated 
with all the pixels' coordinates along the path from the start 
ing point until the border point just prior the point that 
exceeded the 32 pixel distance in either X or y direction, as 
expressed in the following equations, 
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1 v. s = x, y-yl 432 for v i 

where (x, y) is the starting point. 
The first point that exceeded the 32-point distance is then 

used as the starting point for the next block. In this way a set 
of control points with block size of 32 will be generated and 
given as input to the B-Spline closed curve fitting. FIG. 16 
shows a jagged border and the resulting Smoothed curve. 
Example 

In order to evaluate the effectiveness of the proposed 
method and compare it with alternative methods, the water 
shed border detection algorithm was applied to a dermoscopy 
image set of 30 invasive malignant melanomas and 70 benign 
skin lesions. Images were 24-bit true color images with typi 
cal resolutions of 1024x768 in uncompressed tiff format, 
from Heine Dermaphot photographs. The benign images 
included nevocellular nevi and benign dysplastic nevi. All 
lesions were biopsied. The borders of the images were manu 
ally drawn by three dermatologists using software that creates 
a closed curve based on selected points using second-order 
B-Spline. The resulting closed skin lesion borders were filled 
to obtain binary border masks which were then used to esti 
mate the error of the computer-generated lesion borders. 
Error Measures 

The error rate for Pagadala, GVF, and the JSEG methods 
were previously determined by using one dermatologists 
segmentation as the gold standard. To allow a meaningful 
comparison with those methods, errors in the current study 
were computed in the same way. The error metric used was 
the method developed by Hance et al. (Hance96). Let M 
represent the area of a manually segmented skin lesion. Let A 
denote the automatically segmented lesion and CD represent 
the exclusive-OR operation. Then, the percentage border 
error E is given by: 

A (BMLesion E = Prox 100%. 
MLesion 

An equivalent formulation is to add the false positive areas 
over the lesion (FP) and the false negative areas over the 
lesion (FN) and divide this sum by the lesion area (M- 
sion): 

FPlesion + FNLesion 
MLesion x 100% ET 

Results 
FIG. 17 compares the mean errors of the watershed method 

and the three previously implemented border detection meth 
ods: Pagadala’s method (Erkolo5), the GVF snake method 
(Erkolo5), and the JSEG method (Celebi06). The watershed 
error (benign error of 3.96%, melanoma error of 4.02%, and 
overall error of 3.98%) is significantly lower than the error 
from the Pagadala’s method (benign 19.87%, melanoma 
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91.96%, and overall 41.49%), the GVF snake method (benign 
13.77%, melanoma 19.76%, and overall 15.59%), and the 
JSEG method (benign 10.78%, melanoma 14.91%, and over 
all 12.02%). The watershed-based border segmentation is 
also much more stable (measured by standard deviation of the 
error, FIG. 18) than Pagadala’s method (benign: 59.53, mela 
noma: 234.46, overall 112.01), the GVF snake method (be 
nign: 5.61, melanoma 8.60, overall 6.51), and the JSEG 
method (benign 6.28, melanoma 8.4, overall 6.91). 

Both watershed and dermatologist borders sometimes 
include darker areas that may be part of the surrounding skin. 
There is no conclusive way to determine whether these dark 
areas near the lesion are additional lesions such as lentigines 
or part of the main lesion. 

For comparison purposes, FIGS. 17 and 18 show the area 
differences between the borders manually drawn by two other 
dermatologists compared to the dermatologist drawn borders 
used as the gold standard. These differences were computed 
in the same manner as algorithm error measure described 
earlier. 

Lesion Border Extending to Edge of Image 
The first method to discover that the border goes to the edge 

of the image is: there is no peak on the subtracted curve 
obtained from the image horizontal and vertical projections 
and no outer bounding box (OBB) is possible. 
The second method is to apply a classifier to the image 

histogram and first lesion ratio estimate and other key vari 
ables as used in the second (final) lesion ratio estimate. The 
lesion ratio estimate is considered a key variable, as a high 
lesion ratio estimate gives a larger probability of the lesion 
extending to the edge of the image. An additional variable for 
input to the classifier is the OBB calculation curve peak or the 
absence of a peak if no maxima was found on the subtraction 
curve analyzed earlier. A classifier is used with two outputs 
for each of the four image boundaries: the lesion either goes 
to the edge of the image or it does not for each image bound 
ary: top, right, left and bottom. 
Removal of Peninsulas and Large False Areas in the Image 

Peninsulas and other large areas connected by a narrow 
neck to the main lesion were found to be errors in approxi 
mately of the 100 images, and in no cases were the peninsulas 
or other narrow-necked areas found to be part of the lesion by 
the dermatologists. An example of a peninsula is shown in 
FIG. 19. These peninsulas are corrected by either morpho 
logical processing or a distance transform method. Because 
of the errors introduced by morphological processing (see 
border smoothing by morphological processing above), a 
distance transform was used to find the false positive border 
areas. The distance transform assigns a closest integer dis 
tance i to all lesion pixels indicating the Euclidean distance 
from the lesion pixel to the nearest pixel outside the lesion 
border. The area was calculated for all pixels of distance 
transform less than or equal to i. When the growth from i to 
i+1 produces a growth in area greater than a threshold 
amount, a peninsula or other narrow-necked area is consid 
ered a possibility. A dynamic threshold, which may be deter 
mined by an automatic classifier, was used to exclude those 
growth areas which are greater than the threshold. 
Further Error Reduction: Addition of Regression Areas Near 
the Border. 
A second method of error reduction includes those areas 

which have pixels that are lighter than background skin as 
previously determined and are pale white, pale pink, or pale 
blue and are close to the initial border and asymmetrically 
distributed about the lesion. The asymmetry is determined by 
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the eccentricity index used for blotches. These areas are con 
sidered regression and will be excluded unless specifically 
sought. 

Second Iteration of the Digital Hair Removal Algorithm 
After the border was found, the digital hair removal algo 

rithm was applied a second time with two modifications: 1) 
The size of the objects removed outside the border was 
dynamic, depending on the object histogram, and was typi 
cally 50 pixels, range 40 to 200, and size of objects removed 
inside the border was also dynamic, and was typically 200 
pixels, with range 100 to 400 pixels. FIG. 20 shows the result 
after the second application of the digital hair removal algo 
rithm. 

Hair finding can be used to extend inward from the water 
shed border all hairs detected by the first digital hair removal 
algorithm pass at the border, with the advantage that fewer 
pigment network lines within the border are detected as hairs 
and erased as with the original DullRazorTM method. 
Feature Preprocessing: Finding Background Skin Color 
Method to Calculate Background Skin Color 
The background skin color was computed by averaging 

skin color, red green and blue, over the selected non-lesion 
portion of the image. An area of 10% of the lesion size around 
the lesion was omitted, to reduce the effect of peri-border 
inflammation and errors in border determination. This area 
was found using the distance transform to define nearness 
(Euclidean distance to the nearest lesion boundary point). 

For small lesions, occupying approximately 25% of the 
image area or less, the number of pixels for averaging nonskin 
was increased until the area of the region to be averaged is 24 
times the area of the lesion. For larger lesions, all non-lesion 
pixels that satisfy the skin color definition (i.e. not non-skin) 
were included in the average. (These limits are approximate 
and are given as limits that perform well; they can be varied.) 
Blotch, Globule and Dot Area Detection 

All of these features are dark structures in pigmented 
lesions but not considered part of the pigment network 
(Seidenari06) or in the case of blotches, obscuring the pig 
ment network. Blotches are large structures, globules 
medium-sized structures, and dots the Smallest pigmented 
structures, although limits of their sizes are not usually given. 
One exception to this absence of defined limits is the largest 
size of dots, sometimes given as 0.1 mm, (Carli00) which can 
be taken as the lower size limit of globules (Carli00). Gener 
ally, no precise size limitations are given, and in the consensus 
dermoscopy meeting (Argenziano03), dots and globules were 
often combined in descriptions as dots/globules. The sizes 
given here may be taken as arbitrary, because we used similar 
structure measures for the three dark structures and what was 
not found in one category was found in a category of another 
S17. 

Blotch Detection 
Blotches are nowhere precisely defined in the literature. 

except that they are dark and structureless, i.e., without a 
pigment network. Blotches for benign (dysplastic) nevi (FIG. 
21) are less eccentric, smaller and less numerous than those 
for melanoma (FIG. 22). We found them and found critical 
features regarding them using the following methods. The 
background skin color was computed as above. Using both 
relative and absolute colors, blotches were detected automati 
cally by using thresholds in the red and green color planes. 
Relative color blotch detection was found to produce better 
diagnostic accuracy than absolute blotch detection. 
(Stoecker()5a). 
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FIG. 21 shows a dysplastic nevus with the outline of the 
largest blotch found automatically. The centroid of the tumor 
is marked with a square; the centroid of the largest blotch is 
marked with a circle; the intercentroid distance is marked as 
the line between the two centroids. The eccentricity index is 
0.21. The irregularity index is 12.4. 

FIG. 22 shows an invasive melanoma with the outline of 
the largest blotch found automatically. The centroid of the 
tumor is marked with a square; the centroid of the largest 
blotch is marked with a circle; the intercentroid distance is 
marked as the line between the two centroids. Boundaries for 
this blotch are sharp and clearer than for the blotch in FIG. 21. 
The eccentricity index is 0.30. The irregularity index is 12.8. 

Relative color blotch detection was accomplished by the 
following screen: 

(Rski, -RR, threshold bioticial ) OR ((Rski, 
RRei threshold bioch 2) AND (Gski-G-G, et threshold bioch)). 
The first part of the rule before the “OR” was used to find the 
darkest blotches with less erythema. R and G, respec 
tively, are the red and green averages for the background skin. 
R, G, and B denote the red, green and blue value of the pixel 
under consideration. Ret test, in-140 typically, 
Ret threshold blotch21 10 typically, and Get threshold 140 typi 
cally, with R., ranging from 115-165 or other simi 
lar limits, R, 2 ranging from 85-135, and 
G, as it, ranging from 115-165. 
Fuzzy Blotch Detection 

Another implementation is the two-dimensional fuZZy 
implementation, using two membership functions for red 
color drop: 

Raa, thresholasRskin-RsRa threshaia, and for green color 
drop optimizing alpha cuts, and 100<G-G-180, with opti 
mization of alpha cuts. Typically, R =100 and 
R-2-180, with these thresholds varying up to 20%. 
An example of a typical fuzzy blotch trapezoidal detection 
membership function is shown in FIG. 23; this membership 
function can be applied to either red or green drops, with 
varying limits. 
Globule Elimination 

Globules can be distinguished from blotches by their 
smaller size. For images of typically 1024x768 resolution, 
blotches had a size exceeding 800 pixels, on the order of 0.5 
mm diameter. Therefore, the blotch requirement A2800 
is included to eliminate globules. The number is intended as 
a typical limit; note that the blotch size floor is the same as the 
globule ceiling and thus can be varied without harm to the 
method. Although 800 is typical, other values can be used. 
Blotch Features 

Nine indices were used to characterize the automatically 
detected blotches. The most useful blotch eccentricity index 
is the blotch eccentricity index, given by 

D 

VA 

where D is the Euclidean distance between the centroid of the 
largest blotch and the centroid of the lesion and A is the lesion 
area. This had a high significance for melanoma, p<0.001, for 
chi-squared Statistical analysis. 
The second index is the relative size of all blotch areas, 

obtained by dividing the sum of all blotch areas found by the 
area of the lesion and is represented as: 
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where n is the number of blotches for the skin lesion and B, is 
the area of blotch i within the lesion. The third index is the 
relative size index for the largest blotch and is denoted as: 

where B is the area of the largest blotch region within the 
skin lesion. The fourth and fifth indices are the size of the 
largest blotch found (B) and the number of blotches 
detected within the lesion (n), respectively. The sixth index is 
the irregularity of the largest blotch and is given by: 

where P is the perimeter of the largest blotch within the 
lesion. The seventh index is the blotch dispersement index, 
the average distance of the blotches from the centroid of the 
lesion, scaled by the square root of the lesion area, repre 
sented as 

D=X. 

where D, is the distance of the i' blotch from the lesion 
centroid and the other variables are defined as stated above. 

The eighth blotch index is the average melanoma color 
index MI taken from the melanoma relative color index (see 
percent melanoma color determination, below) over the 
blotches. The ninth blotch index is the median variance in 
intensity, O... in any chosen color plane, within the 
blotches. The tenth blotch index is the variance in mean 
intensity among the blotches, O, ... All ten indices 
(E.R.S.n.B.I. DMI, within-bloc, among-blotches) a 
candidates for use as inputs to a classifier Such as an artificial 
neural network (ANN). In one implementation, six of the 
indices were used. Relative indices generally provide better 
discrimination, with E providing giving the greatest signifi 
cance (lowest p value) for discrimination, as in Tables 2 and 3. 
E, the eccentricity of the largest blotch, provides the best 
melanoma discrimination of those indices tested. 

TABLE 2 

Absolute Indices 

Indices Melanoma Nevi p value 

E = O.174 0.158 O.O73 0.12 <O.OOO1 
Eccentricity 
Largest Blotch 
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TABLE 2-continued 

Absolute Indices 

Indices Melanoma Nevi p value 

R = Relative O.180 - 0.21 O.O8 O15 O.O6 
area, all 
blotches 
S = Relative O.162- 0.21 O.O7 O.15 O.12 
area largest 10 
blotch 
B = S34O7.08 13350.11 O.09 
No. of pixels 123511-64 45142.08 
largest blotch 
n = Number 22.07 - 34.09 9.88 - 29.84 O.40 
of blotches 15 
I = Irregularity 10.177.11 S.O1 7.36 O.88 
largest blotch 

TABLE 3 2O 

Relative Indices 

Melanoma Nevi p value 

O.177 0.154 O.1110.135 <O.OOO1 
O.29 O.23 O.15 0.2O O.OO47 25 
O.26 O24 O.14 - 0.2O 0.0765 
65435.17 29064.67 0.72O7 
98892O7 71848.39 

43.46 81.45 1930 - 42.26 O.O894 
10.75 - 6.42 7.727. SO O.2782 
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Globule Detection 

Relative Color Globules 

Method 1 35 

The background skin color R. G. B., was found by 
implementing the background skin routine. Globule detec 
tion was accomplished by the empirically optimized thresh 
olds: 

(R-R-R, treshold globule) AND (Gskin 
G>G, threshold globule). In practice, Ret threshold globule 93 and 
G, at 98 Work Well, but these can vary consid 
erably, by at least 40 in either direction. The number of 
globules found by the relative method was somewhat smaller 
than that found by the absolute method after optimization. 
When too few globules are found, the method loses sensitivity 
for melanoma detection because Some borderline melanomas 
with few globules are not detected. When too many globules 
are found (false globule detection), the method loses speci 
ficity because too many benign lesions are found with false 
globules. 
An additional problem is the elimination of dark areas 

within blotches. Some lighter blotches have dark areas that 
are small enough to be found by the above criteria. To elimi 
nate these Small dark globule-colored areas within larger 
blotches, we demanded that the globule be significantly 
darker than the Surrounding area. For a typical globule, inten 
sity drops from neighborhood pixels, R neighborhood 
Rotte-10 AND Gneighborhood-Gglobuleo. where R 1S iobatie 

defined as the average red value within the globule and Reigh- 60 
borhood is the average value of the closest A/2 pixels outside 
the globule and outside all other globules, where A is the 
number of pixels within the globule. Green values are defined 
similarly. This floor was found to identify too many globules 
and was modified as follows. 

Modification of Techniques 
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Red and green pixel values were used as in previous related 

work (StoeckerO5a). Red and green pixel thresholds were 
iteratively adjusted by observation of the globule areas 
obtained until the globule areas found by both methods were 
felt to be fairly similar, with both methods finding areas 
corresponding closely to globules. After optimization, the 
absolute method unavoidably found greater globule areas and 
numbers. Because both methods found some dark border 
areas as globules, we added a constraint that either R or G-0. 
Because thin hairs were sometimes found as globules, we 
used a modified version of the digital hair removal algorithm, 
with elimination of filtering for pre-processing (Chen05). 
Blotch and Dot Elimination 

Blotches can be distinguished from globules by their larger 
size. No standard definition of maximum globule size is 
known. We estimated that for our images of typically 1024x 
768 resolution, blotches have a size exceeding 800 pixels, on 
the order of 0.2 mm diameter, so the globule requirement 
A-800 was included to eliminate blotches. For images 
of different magnification or resolution, the requirement is 
proportional. Again 800 can vary, as the maximum size of 
globules is the same as the minimum size for blotches. 

Dots are eliminated by demanding that the candidate glob 
ule area have a size greater than approximately 30 pixels, i.e., 
A->30 is included to eliminate dots. This size of 30 may 
be modified, as the minimum size of globules is the maximum 
size of dots. 
The final step for blotch elimination, using hard thresholds 

as above, was modified to demand that R and G drops from 
background to globule exceed the median drop for each glob 
ule that met size constraints. Excess globules were found, and 
this was further modified by demanding a floor to the glob 
ule-background difference of Renai?-R-6 
AND Gneighborhood Gglobule2. 
Method 2 

Globules can also be detected by constructing a histogram 
for the image of the drops between the candidate globule 
areas and the globule neighborhood as noted previously, 
R.neighborhood Relobuie and Gneighborhood globuie where 
R is defined as the average red value within the globule 
and R, is the average value of the closest A/2 an 
area. A routine demands that each drop be greater than an 
optimized histogram threshold. In practice, these thresholds 
are in the neighborhood of 0.9 and 0.85. This is equivalent to 
the demand that when the average red of the candidate globule 
is compared to the average red of the Surrounding area, the 
candidate globule must have ared drop greater than 90% of all 
globule candidates. Similarly, the rule for green demands that 
the candidate globules must have a green drop greater than 
85% of all globule candidates. 
Fuzzy Globule Detection 

Another implementation is the two-dimensional fuZZy 
implementation, using two trapezoidal membership function 
limits for red color drop: R issR 
R&R 2 and similarly, for green color drop. 
Grizzy thresholdiGskin-G-Gnezy tiresidia2. with optimization 
of alpha cuts. Typically R- as Gate? 100 
and Razzy threshold2Gnezy threshola2-180, with these thresh 
olds varying up to 20%. The membership function example 
shown in FIG. 23 can be used for fuzzy globule determina 
tion. 

Globule Features 
A subset of the ten indices used for blotches above is used 

for globules. The eccentricity index is redefined using the 
centroid of all the globules: 
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where D is the Euclidean distance between the centroid of all 
the globules and the centroid of the lesion and A is the lesion 
area. All ten indices (E.R.S.n.B.I.D. MI, O... 
among-glo ...) are candidates for use as inputs to a classifier 

such as an artificial neural network (ANN). In one implemen 
tation, six of the indices are used. Statistics are shown in Table 
4. Note that the globule dispersement index provides the best 
discrimination. 

TABLE 4 

Globule Indices 

Indices 

Absolute Indices: Relative Indices: 
Mean Mean 

Standard Deviation Standard Deviation 

Mela- Mela 
O8. Nevi p value noma Nevi p value 

E = Globule O.193 O.122 O.048 O.188 O. 112 O.148 
eccentricity O.181 O.159 O.171 O.151 
index 
R = Relative O.OO2 O.OO2 0.73S O.OO2 O.OO2 O.323 
area, all O.OO3 OOO4 O.OO3 O.OO4 
globules 
S = Relative O.OO1 O.OO1 O.469 O.OO1 O.OO1 O.389 
area largest O.OO2 O.OO2 O.OO1 O.OO2 
globule 
G = No. 245.63 164.38 O.S47 235.33 150.33 O.775 
of 2S3.17 241.88 25413 231.81 
pixelslargest 
globule 
in A = No. of O.O17 O.O13 O.643 O.O14 O.O14 O.O14 
globules per O.019 O.O23 O.O17 O.O31 
unit lesion 
808 

I = Average 4.6SO 3.203 0.150 4.768 3.1094 O.S13 
irregularity 3.206 3.371 3.495 3.5507 
of globules 
D = Globule O.303 0.174 <O.OOO1 O.28O O.159 <O.OOO1 
dispersement O.2O7 O.193 O.196 O.187 

Dot Detection 
Brown and black dots are sometimes defined as less than 

0.1 mm in size (Carli00) but otherwise nowhere precisely 
defined in the literature. We find them and find critical fea 
tures regarding them using the following methods, which are 
quite similar to our globule detection methods except for the 
size, whose ceiling is the same as the lower boundary for size 
of the globules. 
Relative Color Dots 
The background skin color R. G. B., was found by 

implementing the background skin routine. 
Dot detection was accomplished by first demanding that 

the following empirically optimized thresholds be met: R 
R>93 AND G-G>98. These sizes can vary somewhat; as 
they increase, fewer true globules are found and some mela 
nomas may be missed; as they decrease, more false globules 
are found and some benign lesions may be scored malignant. 
Blotch and Globule Elimination 

Globules can be distinguished from dots by their larger 
size. The estimate of 0.1 mm maximum dot size is imple 
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mented by demanding that candidate dots have a size Smaller 
than approximately 40 pixels, i.e., A-40 pixels is included 
to eliminate globules. This size may be modified. Note that 
Some overlap with globule size is permitted. 

In practice, a blotch-globule mask is constructed with rela 
tive color drops as noted above. The candidate dots should not 
be within the blotch-globule mask except as follows. 

Inclusion of Dots Close to the Edge of Large Blotches 
Larger blotches, those with A30,000 pixels, are 

selected. These masks, and only these masks, are eroded with 
a structuring element of a radius of 25. This allows the detec 
tion of dots that are close to the border of larger blotch masks. 

Candidates for dots are screened, similar to globules, by 
constructing a histogram for the image of the drops between 
the candidate dot areas and the dot neighborhood as noted 
previously, Rneighborhood-R dot and Gneighborhood-Gdor where 
R is defined as the average red value within the dot and 
R, is the average value of the closest area, typically 
equal to that of the dot candidate. A routine demands that each 
drop be greater than an optimized histogram threshold. In 
practice, these thresholds are in the neighborhood of 0.9 and 
0.85. This is equivalent to the demand that when the average 
red of the candidate dot is compared to the average red of the 
Surrounding area, the candidate dot must have a red drop 
greater than 90% of all dot candidates. Similarly, the rule for 
green demands that the candidate dot must have a red drop 
greater than 85% of all dot candidates. 
Dot Features 

Dot features are similar to globule features as above, with 
the definition of eccentricity E used as in globules and the 
elimination of within-dot variance. All nine indices (E.R.S.n, 
B.I.D.M.Canoe. ...) are candidates for use as inputs to 
an artificial neural network (ANN). 
Computing Boundary Gradient Distribution, Method One 
The boundary gradient is determined by first identifying 

the lesion border and the lesion centroid. 
For every border point, excluding those at the edge of the 

image, using any single color plane. Such as luminance or a 
plane found using the Principal Components Transform 
(PCT) or IHP (Gomez06): 

Determine the slope of the line from the border point to the 
Centroid 

Obtain the two arrays of 5 collinear points. The first 5-point 
array is centered at the boundary. The second 5-point 
array is centered 50 points outside the boundary. The 
range for 5 can vary from 3 to 19 and the range for 50 can 
vary from 15 to 150. 

Compute the gradient from the two arrays of points based 
on the intensity values. 

Compute histogram of gradients, where the X-axis is the 
gradient level and the y-axis is the number of border 
pixels with that gradient; Smooth histogram using histo 
gram Smoothing techniques. 

If two peaks, split at interpeak mean. 
If three peaks, split at interpeak means. 
If four or more peaks, split at mean between highest and 

lowest peak. 
For each of these gradients within a given split, replace the 

gradient by the mean gradient for that cluster. This new 
gradient histogram after computing the gradient splits 
may be considered a gradient map, as it maps all gradi 
ents within a given split (all X-axis values within the 
split) to the mean gradient for that split. All borderpixels 
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are thus mapped first to their given calculated gradient 
and then via the new gradient histogram to a mean gra 
dient. 

On lesion border, denote membership at a border pixel in 
one of the two or three values of gradients on the new 
gradient histogram Each set of contiguous border pixels 
that is mapped to the same mean gradient is called a 
cluster. 

Compute eight values: 
1. Sum of sizes of all clusters mapped to lowest and 

highest gradient. Normalize by number of border 
points that are not at the image edge. This yields two 
indices: the fraction of pixels that belong to highest 
gradient cluster and lowest-gradient cluster. 

2. Average size of highest-gradient and lowest-gradient 
clusters. 

3. Mean gradient for highest and lowest gradient splits 
4. Eccentricity (defined elsewhere) of high-gradient 

clusters. 

5. Number of highest-gradient clusters. 

These eight values are saved and used as inputs to the classi 
fier 

Computing Boundary Gradient Distribution, Method Two 
For every 33" border point (range 20-60) find the median 

gradient for the point and the 16 neighbors in either 
direction, proceeding along the border. 

Do a median gradient split (2 groups) and a tertile gradient 
split (3 groups). 

Compare qualities of clustering (standard deviation within 
a group) to determine whether two or three mean gradi 
ents are optimal. 

Map all gradients to two or three mean gradients and pro 
ceed as in method one. 

Note that the high-gradient cluster fraction provides a mea 
Sure of the size of the melanoma clone which may have arisen 
within the benign lesion, and the mean gradient for the high 
gradient split is related to the likelihood of melanoma for that 
clone. Here a clone refers to a group of cells with similar 
characteristics, in this case the malignant part of a lesion that 
is part benign and part malignant. We have determined that 
with such clones, the fraction of border points within the 
high-gradient cluster is typically 0.4, with a typical range of 
0.2-0.6, and that the gradient is fairly high in Such melanoma 
clones. Boundary gradient distribution for melanomas and 
benign lesions, computed by method one, are shown in FIG. 
26. These saved values are used as inputs to an automatic 
classifier such as an ANN. 

Note that neither average nor standard deviation provides 
much melanoma discrimination. Our methods provide better 
discrimination-based on the fraction of border points lying 
within a high-gradient cluster (HGC) and the size and number 
of the high gradient clusters. Note that one melanoma scoring 
system (Nachbar94) finds a higher melanoma index for high 
gradients in more octants. Our method separates out melano 
mas which have a high gradient in a clustered portion of the 
lesion, with high gradient (termed sharp cutoff in some sys 
tems) in the range of 40% more indicative of melanoma. This 
greater indication of melanoma for partially sharp borders 
provides improved discrimination of these lesions with a 
clone of melanoma within a benign lesion. The usefulness of 
this feature is supported by the higher odds ratio for mela 
noma of this partial sharp gradient features, noted in Argen 
Ziano03. 
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Color Characterization 

Prior Art: Constructing Color Histogram And Prior Color 
Measures Pmc and Ccr 

Color Clustering Ratio, Percent Melanoma Color and Fuzzy 
Logic Color. 
The first two features, color clustering ratio and percent 

melanoma color, are based on mapping all pixels within the 
lesion boundary of the relative color image to a three-dimen 
sional quantized relative color histogram H. with the histo 
gram having dimensions 511, as detailed in the following. 
The third feature applies fuzzy logic to determinations based 
on H. 

Assigning Benign and Malignant Bins in H 
Instead of mapping pixels from the images to the bins, 

which would over-represent large lesions or images at higher 
resolutions, the bins instead contain a count of all malignant 
images M and benign images B, for which more than a 
thresholdt of their pixels map to the bin be in the quantized 
H, where t is chosen to reduce noise without interfering with 
the mapping. For a training set with M. malignant lesions 
and B, benign lesions, if M/M.PB/B, the color 
group in bin b, is more representative of a malignant lesion 
and the bin b is labeled malignant. Similarly, if B/ 
BPM/M, the bin b is labeled a benign bin. If M/ 
M-B/B, then the bin is uncertain, and if M/ 
MB/B7-0, the bin is unpopulated. 
Extrapolating to Increase Number of Assigned Bins in H 
A large number of bins b, remain unpopulated or uncer 

tain, even after training runs with large sets have populated H. 
To assess colors from test images that may fall in these bins, 
extrapolation was used. Parameters for extrapolation were 
optimized to yield the following algorithm. For each uncer 
tain or unpopulated bin bin the quantized H, a count is made 
of the adjacent neighboring benign bins to yield count and 
corresponding malignant bins count. Note that neighbors 
are considered in three dimensions. For most bilk, those bins 
not on the periphery of H, there are 26 adjacent neighbors, but 
for b, on a face of H, there are 17 neighbors for be and 
similarly 11 neighbors on an edge of Hand 6 on a corner of H. 
Change b, to a malignant bin if county21 and count, 0 or 
count-countle3. Change to a benign bin if countiel and 
count 0 or count-counte5. Iteration is stopped after 
additional conversions are negligible, which always occurs 
after extending extrapolation 10 bins from the mapped bins. 
An example of the quantized histogram H showing benign 
and malignantbins after this process is completed is shown in 
FIG. 27, which shows three-dimensional relative color histo 
gram bin. The black regions are benign-labeled bins. 
Percent Melanoma Color Feature 
The melanoma color percentage feature P is the percent of 

the lesion with pixels that fall within the malignant region of 
H. If P2D, the lesion is scored malignant. D is chosen so that 
the true positive (tp) and true negative (tn) training set rates 
are equal. D is increased in increments of 0.01 from 0 to 1. For 
each D, for i=1 to 100, the true positive rate tp (fraction of 
melanomas correctly diagnosed) and the true negative rate tin, 
(fraction of benign lesions correctly diagnosed) are deter 
mined from the training images. The threshold D is selected to 
minimize the difference between tp and tin, choosing tim as 
close to tp as possible with tinstp: D={D,0s(tp-tn.)s(tp:- 
tn), i,je(1,....100)}. 
Melanoma Color Index Feature MI 
The melanoma color index MI may be applied to any 

structure or region. This index is the average of the bin score 
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over a structure. The melanoma bin score is the normalized 
count and the benign bin score is the normalized count, 
where count and count are counts of images with pixels 
with the relative color denoted by that bin color. Normaliza 
tion of count and count is accomplished by dividing the 
unnormalized counts by the number of malignant and benign 
images in the entire training set, respectively. In addition, a 
ratio (normalized count)/(normalized count) may be used 
to represent a third melanoma color index. The melanoma 
colorindices may be made fuZZy, with a membership function 
based on the bin score. 

Crisp Melanoma Color Clustering Feature 
The color clustering ratio feature (Stanley03) provides a 

quantitative measure of the grouping of malignant pixels 
within the lesion. Let M denote the set of relative color values 
that map into quantized histogram bins labeled as melanoma 
colors from the training set of images. Let L denote the set of 
pixel locations within the lesion with relative color O that map 
into melanoma colors: L={(x,y)|OreeM}. Let No. 
denote the number of eight-connected neighbors and No. 
denote the number of melanoma-colored eight-connected 
neighbors that are contained in the lesion for pixel (Xy)eL. 
Then, 

represents the total number of melanoma color neighbors for 
all pixels within the skin lesion with relative color values that 
map as melanoma colors. The cumulative total number of 
eight-connected neighbors, for all (x,y)eL, regardless of 
whether the neighbors have malignant mapping, is denoted as 

The color clustering ratio C for a lesion is given as 

If C2K, the lesion is scored malignant. Kis chosen so that the 
true positive (tp) and true negative (tn) training set rates areas 
equal as possible with tnstp while iterating from 0 to 1 in 
increments of 0.001. 

Preliminary Calculations for Fuzzy Clustering Ratio 
A. Surrounding Skin Determination 

To eliminate pixels (red, green, blue) that are non-skin 
colored, and those that are in deep shadow and those that 
represent direct reflection of the flash, several empirical rela 
tionships were determined. The skin pixel finder used in this 
research was derived from an existing dermatology image 
database under the guidance of a dermatologist and has been 
applied to skin lesion analysis in other research (Faziloglu03. 
McLean'94). Surrounding skin color was approximated using 
a uniform region of 20% of the lesions area immediately 
Surrounding the skin lesion. The Surrounding skin region size 
was determined as a function of the skin lesion size (Hance96, 
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McLean.94). The average Surrounding skin color (rig. 
b) is computed within the circular region that is outside of 
the lesion, excluding the non-skin-colored pixels. 
B. Color Histogram Bin Determination 
The fuzzy logic-based techniques developed in this 

research are based on relative color-based histogram analysis. 
The relative color skin lesion image region O, can take on 
the integer values in the range -255.255 for R, G and B. 
Thus, the color histogram has 511 total bins. Requantizing 
the relative RGB histogram bins is appropriate to represent 
discrete ranges of colors that are characteristic of melanoma 
and benign skin lesions. In this research, we are interested in 
applying benign skin colors to color feature determination. 
The 511x511x511 relative color histogram is requantized to 
include 64 distinct colors in each histogram bin. This is done 
by dividing each relative color range by 4, yielding a 128x 
128x128 relative color histogram that is used for analysis. 
Let C denote the set of relative color bins, and let C. 

denote the relative color bin into which the skin lesion pixel 
(xy) maps. Because there are 511 relative colors for R, G and 
B. dividing by 4 will result in histogram bins containing 
4x4x4 relative colors, except for Some bins on the edges of the 
cube that are 4x4x3 and one bin in the corner of the cube that 
is 3x3x3. Based on examining the training relative color 
histograms for the data set used in this research, the bin 
containing-255 for R, G and B was chosen to have only three 
color levels in each dimension (3x3x3) because of the unlike 
lihood of its occurrence in clinical images. 
Color Histogram Analysis Technique 
A. Fuzzy Set Description for Trapezoidal Membership Func 
tion 
A fuZZylogic-based approach is used for representing rela 

tive skin lesion color. Specifically, let B denote the fuzzy set 
(Klir88) with a trapezoidal membership function for relative 
skin lesion color, for the specified skin lesion class. The 
following procedure was used to assign membership values to 
the colors within the color histogram bins defined above 
under the heading, “Preliminary Calculations for Fuzzy Clus 
tering Ratio, A. Surrounding Skin Determination. Using 
batch mode, the training set of images for the specified class 
is used to populate the three-dimensional relative color his 
togram bins, where each bin contains the sum of all skin 
lesion pixels overall training images with relative color map 
ping to that bin. A secondary histogram is defined as a histo 
gram of the three-dimensional relative color histogram. The 
secondary histogram is a function of X which indicates the 
number of bins of the three-dimensional relative color histo 
gram that are populated with X lesion pixels Summed overall 
benign images in the training set. 
The fuzzy set B is determined based on the benign skin 

lesion training data. Membership values are assigned con 
tinuously for each count in the secondary histogram for the 
relative colors, for the specified class. For secondary histo 
gram bin frequency count X, the membership function u(x) 
denoting the fuzzy set (Klir88) is given as 

x / F for 0 < x < F 
ilB = 1 for x > F. 

F is empirically determined as the frequency count Such that 
5% of the total bins comprising the secondary histogram have 
frequency For greater, and X represents the number of hits in 
a bin over the training set of benign images. The membership 
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values are reflective of increasing membership in the speci 
fied class of skin lesions with increasing frequency count. 
B. Fuzzy Clustering Ratio Determination 

In a given skin lesion, the pixels with relative colors that 
had at least a certain degree of membership in the relative 
color fuZZy set B are used for feature calculation. Let IC 
denote the cardinality of the C-cut, i.e. the number of lesion 
pixels where LL(C)2C, for a specified C. on B (Klirs8). 
Let S(B) refer to the support of B, where 10 

S(B)={(x,y): (C)>0 for (x,y) contained in the skin 
lesion, 

and let IS(B) denote the cardinality of S(B), that is, the 
number of pixels within the skin lesion with nonzero mem- is 
bership in B (Klir88). 

The fuzzy clustering ratio feature gives an indicator of the 
grouping of pixels within a lesion region that have at least a 
specified level of confidence as being associated with benign 
skin lesions. The fuzzy clustering ratio feature is computed as 20 
follows. Let M denote the set of relative color values that map 
into relative color histogram bins labeled with L(C)2C. 
for a specified C. on B and (x,y) contained in the skin lesion. 
Let P denote the set of relative color values that map into 
relative color histogram bins labeled with u(C)>0 and 2s 
(x,y) contained in the skin lesion. Let L denote the set of pixel 
locations within the skin lesion region of interest with relative 
color O that map into M, formally L={(x,y)|OneM}. Let 
No denote the number of eight-connected neighbors and 
No denote the number of eight-connected neighbors that 30 
are contained in the lesion region of interest for pixel (x,y)eL. 
The eight-connected neighbors for (x,y)eL that lie outside of 
the lesion region of interest are excluded from calculating 
N and N). Then, 

35 

S = X. NM(x,y) 
(x,y)e. 

40 

represents the total number of melanoma color neighbors for 
all pixels within the skin lesion with relative color values that 
map as melanoma colors. The cumulative total number of 
eight-connected neighbors for all (x,y)eL is denoted as 

45 

50 

includes all neighbors of melanoma color pixels within the 
skin lesion regardless of whether the neighbor is mapped to a 
melanoma color. The color clustering ratio for a skin lesion is 
g1Ven as 55 

60 

Note that R(C.) is computed based on the pixels within the 
skin lesion. The Surrounding skin pixels are only used for 
computing the average surrounding skin color for determin 
ing the relative color of all pixels within the skin lesion. Thus, 
for C.-0, R=1, provided that at least one pixel within the skin 65 
lesion has a non-zero membership value in B. If B represents 
the fuzzy set for benign skin lesion relative color as deter 
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mined from the training set of images, then R(C) represents 
the degree to which the benign colors within the skin lesion 
are the colors perceived to be associated with benign skin 
lesions. As C. is increased, 'B contains pixels that are more 
strongly perceived as benign lesion pixels. 

Benign image training data are used to determine relative 
color histogram bin membership in B. The next step is to 
compute R(C) for all benign and melanoma skin lesions from 
the training data for a specified value of C. A threshold T is 
automatically determined from the ratios R(C.) calculated 
from the training data. The procedure for finding T is pre 
sented in the following section. 

Skinlesions are categorized as either benign or melanomas 
for the data set used in this research. A given skin lesion is 
classified as benign if R(C.)>T. Otherwise, the skin lesion is 
labeled as a melanoma. 

B. Threshold Determination Procedure 
The ratios R(C.) computed from the training data were 

sorted to facilitate automated threshold (K) selection. The 
approach used for automatically selecting K for a particular C. 
is based on computing the true positive and true negative rates 
for the training data. The procedure for choosing the optimal 
K involves iterating K through the sorted ratios R(C.) from 
0.1 in increments of 0.001. For each K, the true positive and 
true negative rates, denoted as tp and tin, are determined from 
the training images. K is chosen as the threshold where the 
tp=tn. 

It is possible that the true positive and true negative rates do 
not become equal over the threshold iteration process due to 
the discrete training set and to differences in the training true 
positive and true negative rates. In this situation, K is deter 
mined as follows. If, while iterating, threshold K, results in 
tp:<tn, and the next threshold K (in the threshold iteration 
process) yields tpatn, then K, is selected as the threshold. The 
other possibility is if, while iterating, threshold K, generates 
tp>tn, and the next threshold K (in the threshold iteration 
process) yields tp:<tn, then K is chosen as the threshold. 
The final melanoma and benign lesion classification results 
are obtained for the training and the test data using the final 
threshold K. The procedure is repeated for specified C. values. 
Physiologic Melanoma or Benign Color Descriptor 
The relative color histogram is mapped for melanoma and 

benign regions. The histogram region with highest relative 
red, for example, is benign (FIG. 27). Melanoma red is there 
fore really pink and not highly saturated and includes an 
admixture of brown. The melanoma red region is thus not as 
red as the benign red region. Mapping determines border bins 
for regions, with enclosed 26-connected regions for mela 
noma colors having a melanoma color index (normalized 
ratio of melanoma pixels to benign pixels) that is greater than 
a threshold K, where K is optimized. The physiologic mela 
noma colors are white, gray, dark brown, blue, pink, red 
brown, light brown, and brown-black. The physiologic 
benign colors are tan, brown and red. These color region 
descriptors are used in the concentric color blotch vector. 
Concentric Color Blotch Vector 
To compute the concentric color vector feature, the color 

pixels are averaged over 4x4 blocks. A median split algorithm 
operating upon the relative color histogram is modified to 
split the lesion into 1-6 colors, with one or more regions for 
each color. For a 3-color split, for example, the red relative 
color histogram is divided into three equally populated 
regions, with low, medium and high relative red values in the 
4x4 blocks of the original lesion. After the lesion is split into 
in colors, 1sns5, if intra-region variance is below an empiri 
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cally optimized limit, the routine quits, otherwise the lesion is 
split into n+1 regions and variance is again computed. Con 
centric decile ring areas are then computed forthelesion, with 
the first decile the inner 10% of points, and the 10" decile the 
outer 10% of points. The feature vector for each decile 
includes for each color region, up to 6 regions 1) relative RGB 
histogram color or physiological color for the region; 2) frac 
tion of lesion decile occupied by the color region; 3) mela 
noma color confidence level for the color; 4) color eccentric 
ity: Scaled distance between color region centroid and lesion 
centroid; 5) Melanoma color index MI. Classifier training 
optimizes the number and range of concentric rings. The 
configuration inner 30%, next 20%, next 20%, next 20% and 
outer 10% is a highly physiological division, but other opti 
mal divisions may be used. The advantage to this representa 
tion is that specific benign patterns for dysplastic nevi Such as 
the peripheral ring pattern (dark network outside) and fried 
egg pattern (dark network or dark blotch in the center) can be 
represented as a vector. The peripheral ring pattern is often 
C-shaped, with that representation appearing in the vector 
components 1) and 4), showing a tan color and a scaled 
distance between centroids computed as a small fraction of a 
lesion radius in the outer two decile rings. Additional patterns, 
including malignant patterns such as central or peripheral 
scar-like depigmentation can be represented. 
Regression: Scar-like Depigmentation 

Regression structures are light structures, lighter than the 
Surrounding skin, and contained within lesions such as mela 
nomas in situ. These were found useful by Massi (MassiO1) 
and yield an odds ratio overall for melanoma of 5.4.3' of 24 
pattern analysis features (Argenziano03). The pathologic sig 
nificance of this feature is “loss of pigmentation and fibro 
plasia, with scattered dermal melanophages in early mela 
noma’ (Argenziano98). Examining 200 lesions for areas 
found automatically (FIGS. 28 and 29) shows that our scar 
like depigmentation detection, using four color algorithms, is 
accurate. The prior art of Tatikonda (Tatikonda02) in finding 
scar-like depigmentation provides almost no diagnostic sepa 
ration, thus additional steps are needed. The following para 
graph details the method used as post-processing for 
Tatikonda-detected scar-like depigmentation areas (FIGS. 28 
and 29). Scar-like depigmentation is combined with granu 
larity by seeking proximity of the two features. 

Four algorithms from Tatikonda with one of the four rep 
resented in FIG. 30 comprise our method and are used to 
screen for significant candidate scar-like depigmentation 
areas within interior lesion pixels (at least 50 pixels from the 
lesion boundary). The other demands placed on the detected 
areas include 1) proximity to granularity detected by the 
previous section; 2) size of both granularity and scar-like 
depigmentation areas; 3) presence of scar-like depigmenta 
tion within a paracentric lesion concentricity decile region 
optimized by classifier analysis and optimizing the ROC 
curve results using the concentricity decile of the Tatikonda 
structures; 4) absence of a halo detected automatically via 
relative color analysis; 5) satisfaction of luminance and his 
togram analysis thresholds. 
Granularity 

Granularity or "peppering is a feature characterized by a 
noisy grayish pixel pattern often found in or near areas of 
regression. Granularity is useful in detecting melanoma in 
situ. The granular regions contain a critical texture that is 
detected by first screening using the method of prior art from 
Tatikonda (Tatikonda02). Granularity detection yields candi 
date areas that are used in combination with scar-like depig 
mentation as below. 
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Salient Point Detection 

Steger's method of line detection (Steger96) models pig 
ment network lines as ridges and applies line detection using 
the Hessian matrix, following Steger's method of 2D line 
extraction (Fleming98). Five candidate planes for the optimal 
grayscale image plane were examined: 1) the blue (third) 
plane of the RGB image 2) the X-CIE (first plane of the 
CIExyZimage 3) the intensity image (R+G+B)/3, 4) the lumi 
nance image (0.29R--0.59G--0.11B) and 5) the first plane of 
the principal component (PCT) image. The blue plane over 
identified network regions and the intensity image at 
sigma=1.02 was found to best represent the networks in terms 
of salient points, although the other three planes produced 
results similar to the intensity plane. Line centers are charac 
terized as having a vanishing first derivative and a high second 
derivative perpendicular to the line. This direction is specified 
by the eigenvector corresponding to the largest eigenvalue of 
the Hessian matrix: 

a sy H(x, y 

where r, r, and r, are partial derivatives of the image 
obtained by convolution with derivatives of Gaussian 
Smoothing kernels. Approximating the image with the sec 
ond-order Taylor polynomial fit to the image at each point, 
setting the derivative along the line to Zero, Substituting and 
solving yields subpixel location of critical points on the center 
of the line that are called salient points. Thresholding by 
choosing sigma in the Gaussian Smoothing function allows 
filtering for high-likelihood line points. 
The identification of the intensity plane (R+G+B)/3, the 

x-CIE (first plane of the CIExyz image, the luminance plane 
(0.29R+0.59G+0.11B) and the first plane of the principal 
component (PCT) image as satisfactory planes for salient 
point detection is new. The intensity plane at Gaussian sigma 
1.02 is optimal, but sigma may vary from 0.9 to 1.2. 
The salient points fail to identify the critical network areas 

unless several types of preprocessing were applied. We apply 
the relative-color blotch mask (R-R-140) OR (R- 
R>110) AND (G-G>140)) to eliminate those areas from 
salient point detection. We eliminate false dark border areas 
by demanding all R, G and B-20. We apply a telangiectasia 
mask to eliminate vessels by demanding that no candidate 
salient point pixel has a drop of G-57 from background and 
R-28 from background. We eliminate bubbles from the can 
didate salient points by demanding that R-230, G-230, 
B<230); these numbers can vary up or down. For any given 
set of images, if a bubble pixel typically exceeds X lumi 
nance, then X works as a threshold for that image set. Typi 
cally X=230 eliminates the bubble pixels without eliminating 
other non-flash and non-liquid surfaces, but 230 may be 
adjusted up or down by as many as about 20 gray-scale values 
for different equipment and lighting conditions. 
The salient point statistics are computed over squares of 

size KXL, where K and L are odd integers. K-L is optimized 
at 27, but can range from 23 to 39. The following variables are 
given to an ANN: block mean, median, and Standard devia 
tion, and each of these divided by the average intensity for the 
block. A seventh variable is the product of the standard devia 
tion and the square of the intensity. 
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The salient point statistics fail to identify melanomas Sig 
nificantly unless the salient point determination is made on 
the outer K% of the lesion, where K is 10%, with a range of 
4% to 20%. 

Salient Point Detection Applied to Bubble Detection and 
Other Structure Detection 

The salient points, with typical values as noted previously 
(typical sigma=1.02 applied to the intensity image) may be 
used to identify bubbles as noted above. With adequate 
brightness screening, bubbles may be identified. The salient 
point mask in FIG. 31B applied to the image in FIG. 31A 
shows identification of bubbles. Bubbles are automatically 
detected, (along with border and other sharp structures), 
sigma=1.02 applied to intensity plane. Bubbles may be iso 
lated by brightness and digital hair removal algorithm mask 
demands. Concomitant screening using the modified digital 
hair removal algorithm mask can be applied. Salient point 
masks may be used with another color plane optimized for 
detection offine irregular blood vessels. This allows detection 
of the telangiectasia and when combined with shape analysis, 
allows the detection of the irregular linear blood vessels seen 
with amelanotic melanoma. 

Salient Point Detection and Other Methods for Irregular Pig 
ment Network Detection 

Statistics of salient points, as detailed above, are used to 
detect irregular pigment network, comprising an alternative 
method to the co-occurrence matrix measures as in the cor 
relation mean and range methods above. It is also possible to 
identify irregular or atypical pigment network by applying 
texture classifiers such as Laws (optimized to a combination 
of Laws 9x9 and 11x11 (Laws80, AnanthaO4) but these filters 
can vary in size from 3x3 to 21x21). 

Clinical Features 

Seven clinical features are obtained and input to the sys 
tem: patient age, gender, lesion location (face, ears, scalp. 
neck, arm, leg, trunk, anogenital, hand, foot), childhood Sun 
burns, recent lesion onset/change, family history of mela 
noma (including melanoma in situ, 1st degree relative), and 
personal history of melanoma (including melanoma in situ). 

Training Endpoints 
The system is trained with a classifier such as an Artificial 

Neural Network (ANN) to optimize discrimination of diag 
noses into two classes for each of two endpoints: 
ENDPOINT NUMBER ONE NEED FOR BIOPSY, 

TWO CLASSES: 1) Need for biopsy of pigmented lesion: 
diagnosis of at least dysplastic nevus with architectural dis 
order and moderate or severe cytologic atypia, cellular blue 
nevus, deep penetrating nevus or Spitz nevus; 2) No need for 
biopsy of pigmented lesion: junctional, compound, or intra 
dermal nevus, dysplastic nevus with architectural disorder 
and mild cytologic atypia, lentigo, blue nevus. 
ENDPOINT NUMBER TWO MALIGNANT PIG 

MENTED LESION, TWO CLASSES: 1) Melanoma or 
melanoma in situ; 2) junctional, compound, or intradermal 
nevus, dysplastic nevus with architectural disorder and mild 
cytologic atypia, lentigo, blue nevus. 

This invention has been described and exemplified with 
reference to specific algorithms, method steps and features; 
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however, as will be understood by one of skill in the art, 
equivalents may be used, and the claims should be interpreted 
to include Such equivalents. 
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The invention claimed is: 
1. A method for automatically identifying a border between 

a skin lesion and Surrounding skin on a digital image of a skin 
lesion comprising: 

a. preprocessing the image to identify pixels that represent 
features other than skin and lesion; 

b. identifying a bounding box in the shape of a rectangle 
having four sides by bounding box methods wherein the 
box borders are determined by a maxima of subtraction 
curves applied to horizontal and vertical projections of 
numbers representing a single-plane image of the lesion 
to determine a first lesion ratio estimate of the image: 
and wherein the absence of a bounding box side indi 
cates that the lesion may extend to the periphery of the 
image, and the presence of a bounding box indicates that 
the lesion does not extend to the periphery of the image: 

c. if one or more bounding box sides are not found, deter 
mining a first estimate of the lesion ratio, which is the 
ratio of the area of the lesion to the area of the entire 
image, using a mean lesion ratio estimate wherein the 
mean lesion ratio estimate is applied to provide approxi 
mate location(s) of any missing bounding box sides; 

d. Subsequently applying a lesion ratio offset, which is a 
correction factor, to the lesion ratio estimate to produce 
a corrected lesion ratio estimate, said lesion ratio offset 
being determined by running an automatic, self-training 
classifier algorithm that incorporates color and histo 
gram data from the area defined by the bounding box 
sides identified in step b or cand/or by an area identified 
by inputting the lesion ratio estimate into a segmentation 
algorithm for identifying a border between a skin lesion 
and the Surrounding skin; and 

e. inputting said corrected lesion ratio estimate into a seg 
mentation algorithm for identifying a border between a 
skin lesion and Surrounding skin; 

whereby said border is determined automatically. 
2. The method of claim 1, wherein said single-plane image 

is represented by assigning weights, which sum to one, to R, 
G, and B or to the color planes being used in a different color 
Space. 

3. The method of claim 1, wherein the classifier algorithm 
applied to discriminate whether or not the lesion extends to 
the periphery of the image is a Supervised feature-based clas 
sifier algorithm. 

4. The method of claim 1 also comprising analyzing 
objects identified by means of a single-plane image repre 
sented by assigning different weights to R, G, and B or to the 
color planes being used in a different color space to create an 
independent histogram pursuit transform plane to identify 
objects to be merged into a lesion area of the segmentation 
algorithm. 

5. The method of claim 1 also comprising identifying non 
skin and nonlesion objects on an original digital image of a 
skin lesion by a method comprising: 

a. analyzing said image with a first digital hair removal 
algorithm; 

b. locating lesion borders on the original image; and 
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c. applying a second, modified digital hair removal algo 

rithm to the original image in which lower thresholds for 
noise are implemented outside the lesion border than 
inside the lesion border. 

6. The method of claim 5, wherein said modified digital 
hair removal algorithm comprises determination of an adap 
tive morphology threshold. 

7. The method of claim 5, wherein said modified digital 
hair removal algorithm comprises an area filter. 

8. The method of claim 5 in which the thresholds for said 
modified digital hair removal algorithm are adjusted for sen 
sitivity by selecting thresholds having the highest signal-to 
noise ratio, and highest hit ratio. 

9. The method of claim 5 in which said first digital hair 
removal algorithm comprises a hair mask and said modified 
digital hair removal algorithm has been modified to comprise 
an algorithm for identifying unusual hair width, wherein said 
hair mask is iteratively dilated by a single unit until there is no 
significant change in the number of pixels present with a 
luminance below the median of luminance of the pixels 
within the hair mask, thereby arriving at an adequate hair 
mask for unusual hair width. 

10. The method of claim 5 comprising detection of bubbles 
in which a minimal luminance threshold is demanded of a 
candidate bubble pixel, and an additional criterion is 
demanded comprising: 

a. the candidate pixel is a salient point; or 
b. the candidate pixel is found by the modified digital hair 

removal algorithm. 
11. The method of claim 1 also comprising identifying 

structures that discriminate malignant melanomas from 
benign skin lesions on a digital image of a skin lesion by a 
method comprising: 

a. detecting dark Structures on said image, and assigning 
numerical values representative of measurements of said 
structures for input into a classifier algorithm; and 

b. running said classifier algorithm to discriminate malig 
nant melanomas from benign skin lesions based at least 
partially on measurements of said structures. 

12. The method of claim 11, wherein said dark structures 
are detected by a method comprising calculating crisp thresh 
olds for inclusion of pixels of said image within said struc 
tures. 

13. The method of claim 11, wherein said dark structures 
are detected by a method comprising calculating fuZZy indi 
ces to determine thresholds for inclusion of pixels of said 
image within said structures, said method comprising select 
ing optimal alpha cuts. 

14. The method of claim 11, wherein said dark structures 
are detected by a method comprising analysis of a local area 
drop histogram. 

15. The method of claim 11, wherein said dark structures 
are given ratings on one or more Scalable indices selected 
from the group consisting of eccentricity, periphery of the 
structure, total area of the structure, area of the structure 
relative to the area of the lesion, total number of structures, 
shape irregularity, clustering, structure color, structure 
brightness variance, and melanoma color index. 

16. The method of claim 11, wherein atypical pigment 
network indices are input into the classifier algorithm. 

17. The method of claim 11, wherein salient point indices 
are input into the classifier algorithm. 

18. The method of claim 11, wherein border gradient indi 
ces are input into the classifier algorithm. 
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19. The method of claim 11, wherein color clustering indi 
ces are input into the classifier algorithm. 

20. The method of claim 1 wherein the segmentation algo 
rithm is a watershed algorithm applied to a single-plane 
image. 

21. The method of claim 20 wherein the watershed algo 
rithm is a flooding algorithm. 

5 

46 
22. The method of claim 1 wherein said automatic classi 

fier is selected from the group consisting of linear classifiers, 
non-linear classifiers, tree-based algorithms, and neural net 
works. 
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