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Abstract
Theoretical calculations have been carried out for forced 

convective transport for uniform streaming and uniaxial and 
biaxial extensional axisymmetric flows past single spheres. 
Homogeneous and heterogeneous chemical reactions, both of first 
and of second order have also been or are presently being 
treated. Orthogonality and other properties of Legendre 
functions have been used, together with introduction of an 
eigenfunction expansion, to reduce the mathematical description 
from a partial differential equation with variable coefficients, 
which is nonlinear for homogeneous second order chemical 
reactions, to a system of coupled ordinary differential equations 
for the radial modes. The numerical solutions of the latter have 
been obtained using the robust, adaptive grid algorithm of 
Pereyra and Lentini. Plots of the radial functions for given 
Peclet and Damkohler numbers give insight into the role and 
interaction of L and of rB (the number of terms necessary for 
convergence of the expansion and the finite radius at which the 
boundary conditions at infinity are imposed). From the radial 
modes, local and average Nusselt and Sherwood numbers, as well as 
the temperature and concentration fields, can be obtained. Plots 
of radial function families provide new insights that complement 
physicochemical understanding gained from isocontour plots of the 
temperature and concentration fields. Plots of local interphase 
transfer coefficients reflect the behavior of the flux field over 
the sphere surface and show how the average coefficients arise.
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1. INTRODUCTION

This preliminary report covers a limited set of computations 
on several novel, potentially significant physicochemical 
processes while pointing out some computational and 
presentational limitations.

All but one of the basic elements of the physicochemical 
processes are hardly novel. We consider steady forced convective 
diffusion of temperature or of a reactant undergoing a 
homogeneous or a heterogeneous chemical reaction. The reaction 
may be first or second order. The geometry is spherical. The 
domain is the semi-infinite one external to a solid sphere. The 
convecting velocity field, moreover, is axisymmetric, solenoidal, 
and satisfies the steady, linearized Navier-Stokes equation and 
the no-slip condition at the surface of the sphere.

What is novel about this forced convective 
diffusion-reaction problem is the remaining element, the boundary 
condition imposed on the velocity field far from the sphere. It 
is not always the uniform streaming flow of Stokes (1842; see 
also Lamb, 1932? Happel and Brenner, 1965; Leal, 1992) but 
includes the low Reynolds number, axisymmetric extensional motion 
important in the rheology and flow of dispersions and elsewhere 
(see, e.g., Leal, 1992). This lends an importance to the problem 
beyond that of being an R e d  convective diffusion-reaction class 
of problems that are axisymmetric yet not the simplest problem of 
this class. The incorporation of axisymmetric extensional flows 
into the class of forced convection problems nonetheless enlarges
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the class considerably, taking it in fundamentally new directions 
having significantly different ranges of applications.

The biaxial extensional flow approaches the sphere from the 
poles at z = ± oo and departs in the equatorial latitudes, doing 
so radially symmetrically in the equatorial plane. The uniaxial 
extensional flow has the same streamlines as the biaxial one; the 
direction of the flow is, however, reversed along the same 
streamlines, approaching the sphere at the equatorial latitudes 
and departing in the opposite directions, from the poles of the 
sphere.

For a more complicated yet axisymmetric flow, what are some 
of the issues which might arise? For a given Peclet number, will 
the average Sherwood numbers have about the same values for the 
biaxial and uniaxial flows? Or will the magnitudes of the 
locally enhanced contributions in the stagnation region(s) of one 
flow, which correspond roughly to locally reduced contributions 
in the separation region(s) of the other flow, be significantly 
different? Or, again phrased oversimplistically, will they be 
comparable? Or will the area of enhanced (reduced) equatorial 
interphase mass transfer be greater or less than the area of 
reduced (enhanced) transfer at the poles for the uniaxial v s . the 
biaxial flow, whether or not the magnitudes of the fluxes are 
comparable in those regions.

The study of extensional flows for the forced convective 
diffusion problem without reaction was initiated by Shah and Reed 
(1994). For the convective diffusion problem, the passive
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additive could be either temperature or concentration (Shah and 
Reed, 1994). The passive additive field 9(r,0) was obtained as a 
function of the Peclect number Pe, as were the average and local 
Nusselt numbers for heat or mass transfer, Nu and Nu(0); in 
chemical engineering, the latter are more commonly called the 
average and local Sherwood numbers, Sh and Sh(0), respectively, 
if the passive additive is the concentration field c(r,0). In 
the present study, samples of c(r,0), Sh, and Sh(0) are reported 
as functions of Pe and of Dan (or Dar) , the second (or first) 
Damkohler group, which is the chemical rate constant made 
dimensionless with the diffusive (or convective) time scale. 
Answers to such questions as were posed above will be answered in 
the course of this research program.

The effects are already subtle for the convective diffusion 
problem, and inferences about magnitudes of local fluxes and 
resultant averages over the sphere surface for convective 
diffusion-reaction conceivably could follow intuitively from the 
results for convective diffusion in the absence of homogeneous 
reactions. Conversely, the qualitative effects of the reaction 
may not be so trivially inferred from convective diffusion alone. 
Overall mass transfer coefficients for a given flow, whether 
biaxial or uniaxial, would be enhanced by reaction and 
increasingly so by a faster reaction. Yet local effects for 
biaxial flows could conceivably be affected differently by 
reaction than those for uniaxial flows.

In Section 2, we sketch the theoretical analysis leading to
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the system of ordinary differential equations for the radial 
modes for axisymmetric extensional flows convecting a diffusing 
chemical species that may undergo a first order (or no) reaction? 
from the radial modes, the full concentration field can be 
obtained, as can the local and average Sherwood numbers. In 
Appendix II, the analogous analysis and results are outlined for 
a uniform streaming flow and for a second order reaction.

In Appendix I, a variety of results are presented. The 
computational limitations that can arise and the manner in which 
different limitations manifest themselves are discussed, both 
there and in Section 3, in which the perspective is broader than 
the litany of specific cases discussed in Appendix I. Finally, 
in Section 4 we stress the importance of the research program 
that is under weigh.

2. PHYSICOCHEMICAL BACKGROUND AND THEORETICAL FORMULATION

If by any physicochemical process the concentration of a reactant 
is maintained constant at the surface of a solid sphere, and if 
the reactant is yielded up to a surrounding fluid where it 
undergoes an irreversible first order homogeneous chemical 
reaction, as well as forced convective diffusion, then the 
reactant concentration satisfies the dimensionless partial 
differential equation

Pe v* Vc = V2c -Danc, for l<r<°o, (1)
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subject to the boundary conditions

= 1, at r = 1, (2)

c->0, as r -*• oo. (3)

The axisymmetric extensional velocity field convecting the 
reactant satisfies the adherence condition at r =1. The boundary 
condition at infinity is, in circular cylindrical coordinates,

(vp,v2) -*• ± (P/ ~2z) * (4)
with the plus sign indicating the biaxial flow, the negative sign 
the uniaxial flow. If further the velocity field is solenoidal 
and satisfies the linearized Navier-Stokes equation, then it may 
be expressed in terms of the spherical geometry as

vr = ± F(r) (l-3cos20 ) , (5)
ve = ± G(r) (3sin0cos0), (6)
v* = 0' (7)

in which

F(r) 1 /

G(r) = 1 - —  r*

and in which +/“ refers throughout to biaxial/uniaxial 
extensional flow.

The radius a of the sphere has been used as the 
characteristic length scale, and the strain rate |E| of the flow 
far from the sphere has been employed to form the characteristic
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velocity |E|a. The Peclet and the first and second Damkohler 
numbers are defined in the usual manner for a first order 
reaction, except that in an unusual though not singular manner 
the characteristic length is taken to be the radius a throughout 
(i.e, in the Sherwood numbers Sh and Sh(0), as well):
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The local value of the Sherwood number is the local 
dimensionless flux at the surface,

The dependent variables c(r,0), Sh(0), and Sh, are to be 
determined in terms of the parameters Pe and Dan (or Daj) . The 
second Damkohler group has the advantage that it may be 
expressed solely in terms of physicochemical properties (the 
chemical rate constant and the molecular diffusivity) and the 
radius. All convective effects then reside in the Peclet number.

The eigenfunction expansion

in which the Pt(cos0) are Legendre functions and the radial 
functions c^(r) are the unknowns to be determined, is introduced

(8)
The average or overall mass flux Sh is then given by

(9)

(10 )



into Equation (l) and boundary conditions (2) and (3), along with 
(5), (6) , and (7). Several properties of the Legendre functions 
are then used (Shah and Reed, 1994), the last of which is their 
orthogonality (e.g., Abramowitz and Stegun, 1964). The result of 
the calculations is an infinite system of coupled ordinary 
differential equations for the radial functions,

in which,

The velocity field plays the role of a pair of variable 
coefficients (Equations (5), (6)) in the forced convective
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subject to the boundary conditions
(12a)
(12b)
(13)

In these equations, for £<0, ct - 0.



diffusion partial differential equation for c(r,0), Equation (1) . 
If there were no angular velocity component and if the radial 
component depended solely upon the radius, then the radial modes 
c^(r) would not be coupled to one another. That is, if v = 
v r(r)ir# then the system, Equations (11), would not be coupled. 
Neither is true, so that v0 = ve(r,0) * 0 and vr = vr(r,0) for 
different reasons necessitate no small amount of theoretical 
calculations in order to arrive at Equations (11), which become 
the corresponding equations of Shah and Reed (1994) upon setting 
Dan = 0. The treatment of second order reactions for uniform 
streaming flow and the reduction to the corresponding system of 
ordinary differential equations is presented in Appendix II.

Numerical methods would be required in the solution of 
Equations (11) because of the variable coefficients in r, even if 
they were not coupled. Equations (11), (12), (13) constitute the
boundary value problem which we solve using the adaptive grid 
method of Pereyra and Lentini (Pereyra, 1967, 1968, 1975, 1978; 
and Lentini and Pereyra, 1974, 1978).

3. COMPUTATIONAL FEATURES

To implement the algorithm, the series must be terminated at 
a finite value L (i.e., ce(r) = 0, £>L), and the infinite domain 
must be made finite by selecting a finite radius r„ (denoted by R 
on the figures) at which the boundary conditions (13) are 
imposed. L must be large enough that the series (10) has
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converged to the desired accuracy. Unfortunately, L cannot be 
known a priori because it must be specified before the ce(r) can be

computed. The optimal selection of L depends upon Pe, Da,,, r,,,, 
and the computer available for the computations. Similarly, the 
optimal selection of rw depends upon Pe and Dan for a given 
computer.

Generally speaking, for a given computer, as Pe and Dan 
increase, L must be increased and r* decreased. The tolerance 
and the initial and the maximum number of mesh points must also 
be specified, and they play crucial roles which are both subtle 
and interrelated, not only with one another, but with the 
parameters of the problem Pe and Dan and with the other major 
players of the algorithm, L and rw.

In earlier research on the forced convective diffusion of a 
passive additive by a uniform flow (Spears and Reed, 1991? Reed, 
Spears, and Shah 1994), and for forced convective diffusion by 
the same flow of a reactant undergoing a first order reaction 
(Reed, 1994) or a second order reaction (Shah, Kleinman, and 
Reed, 1994), moderate to high values of Pe and of Daj or n could 
be reached on the local IBM 4381, the exception being a 
relatively mild one for Pe and a much stronger one for Da, for 
the second order homogeneous reactions.

In the research described above, for which the convecting 
velocity is an extensional one, we are limited to much smaller 
values of Pe and Da, or ,, by the IBM 4381.

In this preliminary report we do not attempt to present —
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indeed, we do not yet have —  extensive results. Instead, we 
focus on some of the different kinds of difficulties that can 
arise for the various problems, as well as indicating some 
typical results (Appendix I) .

On the IBM 4381, the maximum number of radial modes L+l for 
which computations can be carried out is about 33. More 
recently, computations have been carried out on the IBM RS 6000 
and HP 9000 series, for which significantly higher values of L 
could be computed. This has enabled us to compute more 
accurately with more realistic values of r*. In particular, for 
rw too small, the radial functions —  and thence most derivative 
results except occasionally the average Nusselt and Sherwood 
numbers —  can be distorted by the relatively close proximity of 
r. to r=l.

In addition, the radial plots for the first vintage of 
results are all shown as one plot to a page (with typically 6 
radial functions to a plot). This made it difficult to compare 
different cases, and it made it difficult to get an overview of 
all of the radial functions for a single case. Our first 
improvement was to reduce the plot size while putting more plots 
(6) to a page; this enabled us to present cQ - CL, for L up to 
35, on a single page. With the acquisition by UMR of the NIC 
(numerically intensive computers, in local terminology) IBM RS 
6000 and the HP 9000 workstations, we can reach significantly 
higher values of L than 35. Because smaller plots cannot be read 
and more curves to a plot make for "too busy" a plot, rather than
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attempting to display all radial plots on a single page, we have 
now developed the capability of sequential pages, each with 6 
plots to a page.

In Appendix III, radial plots for computations on the HP 
9000 for L = 70 are shown for Pe = 10 and r = 100. An r of 100CO 00

is a factor of more than two larger that what could have been run 
on the IBM 4381 for the same case, yet it is clear from the plots 
that the series has converged by L=70. For still larger values 
of Pe, values of L of order 100 become necessary, a capability we 
have for the plots. But for L very much beyond 100 we encounter 
memory limitations on the HP 9000. Thus, although these 
computations are CPU intensive, they are not inordinately so, as 
measured against our local capabilities. The computations are 
above all memory intensive. With the 128 MB of RAM available on 
the cluster of IBM RS6000 and HP9000 machines which are used as 
campus-wide, multi-user computers, we typically have difficulty 
with runs projected to require - 100 MB.

4. SIGNIFICANCE OF AND PERSPECTIVES ON THE RESEARCH

There are several features of the past, present, and future 
research that are noteworthy.
(i) For the practicing engineer, but no less for the

scientist and engineering scientist, the overall 
dimensionless interphase transfer coefficients Nu and 
Sh are of the greatest importance and will be used in
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applications, both widely and immediately.
(ii) But the local Nusselt and Sherwood numbers Nu(0), Sh(0) 

are also of direct utility, as well as being of 
fundamental significance, for the local properties 
Nu(0) and Sh(0) offer insight into the manner in which 
the macroscopic properties Nu and Sh arise.

(iii) The temperature and concentration fields e(r,0) and 
c(r,0) are too often considered to be only a means to 
an end by the practicing engineer, the end being the 
dependence of Nu and Sh, or perhaps Nu(0) and Sh(0), on 
Pe (and on Dan for reacting systems). Yet 9(r,0) and 
c(r,0) in turn provide insight into the nature of Nu(0) 
and Sh(0), just as they provide insight into Nu and Sh.

An understanding of the character of the passive additive 
field and especially its boundary layer(s) and its wake(s) 
enables one to develop intuition and to make engineering 
estimates of the manner in which and the extent to which, for 
instance, chemical reactions affect the concentration field and 
thereby enhance mass transfer. In a multiparticle system, 
knowledge of the passive additive boundary layers and wakes 
enables one to make estimates of the interparticle distance at 
which interphase transfer could no longer be assumed to be an 
additive property of the individual particles, even in the 
absence of meaningful hydrodynamic interactions.
(iv) Finally, in the same manner in which Fourier modes and 

spectra offer an alternative way of thinking about
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fields, so also do radial functions provide a deeper 
insight into 0(r,0) and c(r,0). And the number of 
coupled modes in a given modal differential equation 
that arise from different convective, diffusive, or 
reactive contributions has the same sorts of advantages 
in offering completely different perspectives that 
Fourier modes and modal coupling have in wave and other 
physical and chemical phenomena, right up to the level 
of complexity of pattern and chaotic behavior.

Overriding all of the above, however, are the completely 
different classes of flow fields and concomitant new classes of 
forced convective diffusion and diffusion-reaction problems 
attacked in this research program.

There are a number of different research directions in 
this general area which could be pursued. For forced convective 
diffusion about a solid particle, with or without chemical 
reaction, in addition to the convective to diffusive effect as 
measured by the Peclet number Pe, there is the inertial to 
viscous effect characterized by the Reynolds number Re. Because 
Pe = Re Sc or RePr, an increase in Re has a profound effect on 
forced convection. This is true not solely in the sense of 
increasing Pe parametrically, but in modifying the very nature of 
the velocity field? with increasing Re the velocity first 
manifests fore-aft asymmetry of the streamlines, then a clear 
momentum boundary layer-wake, and eventually a closed, 
recirculating wake (e.g. Batchelor, 1967). This research
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direction, in which Re is increased, has been taken earlier by 
A. Acrivos, B. T. Chao, D. W. Moore, B. A. Finlayson, and others. 
The present research is predicated in the first instance on an 
(r,0)-separable velocity field, and in the second on the 
0-dependence being exactly expressible in terms of a finite 
number of Legendre functions. The Pi's approach does not 
preclude velocity fields that do not satisfy the linearized 
Navier-Stokes equations. And although there are approximate 
solutions to the full Navier-Stokes equations for uniform 
streaming flow past a solid sphere for Re > 1, there are no such 
exact solutions.

The PI has elected to limit the present stage of his 
research program to Re < 1 —  physically, to small particles or 
very viscous fluids —  but to consider other flows than the 
uniform streaming flow, and for the case of a uniform streaming 
flow to incorporate reactions into the flowing medium or at the 
surface of the solid sphere.

The Pi's overriding concern was thus not to simply 
extend the range of the values of the parameters for a given 
class of problems, but to carry the research into entirely new 
classes of problems, either by dent of new classes of convecting 
velocities or by dent of incorporating homogeneous second order 
reactions, rather than just bringing first order ones into the 
ambit. The classes of problems would also be enlarged to include 
consideration of heterogeneous reactions, both linear and 
nonlinear.
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