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ABSTRACT An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable
energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally
modeled as a deterministic optimization problem to minimize the operation cost of conventional generation
units (CGUs) subject to AC optimal power flow (AC-OPF) equations, operation constraints of RESs, shunt
FACTS devices, and CGUs. To cope with the uncertainties of load and RES generation, robust and stochastic
optimization and linearized formulation have been used to achieve a sub-optimal solution. To arrive at a
more optimal solution, an evolutionary algorithm-based adaptive robust optimization (EA-ARO) approach
to solve the non-linear and non-convex optimization problem was proposed. A hybrid solver of grey wolf
optimization (GWO) and teaching learning-based optimization (TLBO) was proposed to solve the AC-SCUC
problem in the worst-case scenario to obtain robust and reliable optimal solution. Finally, the proposed
method was simulated on standard IEEE test systems to demonstrate its capabilities, and the results showed
the proposed hybrid solver obtained robust optimal solutions with reduced computation time and standard
deviation. Moreover, the numerical results proved the proposed strategy’s capabilities of improving the
economics of generation units, such as lower operational cost, and enhancing the performance of the
transmission networks, such as improved voltage profile and reduced energy losses.

INDEX TERMS AC security constrained unit commitment, evolutionary algorithm, adaptive robust opti-
mization, shunt FACTS devices, renewable energy sources.

NOMENCLATURE PY, QG, RY  Active power, reactive power, and reserve
INDICES AND SETS of the CGU (p.u.)
PL, O Active power and reactive power flow on
n.j, g t.k,1,f Indices of bus, bus, CGU, time, RES : power anc P
e Rt ’ ’ ’ the transmission line (p.u.)
load, and shunt FACT PR OF Active power of the RES and reactive
Tn, Yg, YT, . ) p
o Yr T Set of bus, CGU, time, RES, load, and power of the shunt FACT (p.u.)
R SLs TF shunt FACT Pt Q" Uncertain variable of active and reactive
loads (p.u.)
VARIABLES P" Uncertain variable of the maximum active
Cost  The cost function of CGUs ($) power of the RES (p.u.) )
fi.fo  Auxiliary functions in per unit (p.u.) V., 0 Yoltz:jge magnitude in p.u. and its angle
in ra
X, W, v Binary variables showing the presence,
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CONSTANTS
R AG 4D
ﬁ F i L A Incidence matrices of buses and the RES,
’ buses and the CGU, buses and the load,

buses and the shunt FACT, and buses and
the transmission line considering the cur-
rent flow direction.

BL, GL Susceptance and conductance of the
transmission line (p.u.)

MinUp, Minimum up and down times of CGU (h)

MinDw

ne, ng, N, The number of simulation hours, the num-
ber of load buses, and the number of RESs

PP, QP Active loads and reactive loads (p.u.)

PO, ¢ Minimum and maximum active power of
the CGU (p.u.)

P Maximum active power of the RES (p.u.)

oF, QF Minimum and maximum reactive power

o of the shunt FACT (p.u.)

0°, QG Minimum and maximum reactive power

o of the CGU (p.u.)

RP Reserve requirement (p.u.)

r¢ Maximum reserve of the CGU (p.u.)

RU, RD Up and down ramp rates (p.u.)

5" Maximum capacity of the transmission
line (p.u.)

SU, SD Start-up cost and shut-down cost (p.u.)

V.,V Minimum and maximum value of voltage
(p-w)

o, B,y Fuel cost function coefficients of CGU

in ($), ($/MWh), and ($/MWh?), respec-
tively.

I. INTRODUCTION

A. MOTIVATION

The security-constrained unit commitment (SCUC) is a chal-
lenging problem in power systems, which determines the
commitment statuses and dispatch levels of conventional
generation units (CGUs) and other generation resources to
provide electricity to meet the forecasted load for a short-term
interval, such as 24 hours [1], [2]. Traditionally, the prob-
lem was based on the minimum fuel cost of CGUs and
the requirement to satisfy transmission network constraints
and technical limitations. However, with the advancement of
various technologies, such as energy storage systems (ESSs),
renewable energy sources (RESs), and flexible AC transmis-
sion system (FACTS) devices, the SCUC problem included
the optimal operation of these systems [3]. Based on their
optimal energy management, ESSs and RESs reduced net-
work losses and power demand from CGUs, which improved
network security [4]. FACTS devices can also enhance net-
work security by incorporating reactive power controls and
voltage regulations [5]. The problem lies in the uncertain-
ties of load forecast, power generation by RESs, and other
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challenges. As a result, probabilistic, stochastic, and robust
model approaches were employed for the SCUC plan. prob-
abilistic and stochastic programming methods need accu-
rate information from the probability distribution function
(PDF) with uncertain parameters. A significant number of
scenarios must be generated to achieve reliable and opti-
mal solutions using stochastic approaches [6]. Accurate PDF
identification required statistical information in a long-term
study period of one year, so obtaining the PDF was time-
consuming [7]. Furthermore, studying various scenarios to
solve the problem required long computational times, which
was evident for large-scale networks [7]. With the advance-
ment of robust optimization, researchers turned their attention
to robust modeling of the SCUC problem. In this type of
models, the optimal solution was obtained for the worst-
case scenario [8]. Therefore, the optimal solution for other
scenarios may be different from, and more favorable than,
that in the robust model.

B. LITERATURE REVIEW

Numerous studies were carried out to model and solve the
SCUC problem. A SCUC model was presented in [9] that
considered the line outage distribution factor (LODF) index
that investigated the N—1 contingency and developed a
SCUC plan with shorter computational time. In [10], the gen-
eration unit reserve modeling was added to the SCUC prob-
lem with N-1 events to dispatch power with the consideration
of wind generation uncertainty. The SCUC scheme subjected
to reliability constraints considered a high number of trans-
mission lines based on DC power flow (DC-PF) model, and
achieved shorter computational time [11]. The SCUC mod-
eling with a battery storage device was described in [12],
in which load uncertainty modeling was based on information
gap decision theory (IGDT). The uncertainty in the power
generation of wind farms reduced the flexibility of the power
system. Therefore, a demand response program (DRP) used
in [13] improved the flexibility of the transmission network
following the SCUC problem model. Robust optimization
was employed to model the uncertainties in the electrical
and gas systems. The robust modeling of the SCUC was
presented in [14], where they obtained an optimal robust
solution in the worst-case scenario for the uncertainties of the
network’s equipment availability. In [15], researchers mod-
eled the reliability-constrained SCUC scheme with electric
vehicles (EVs) in parking lots and the DRP, where the model-
ing of load and EV uncertainties were addressed by a stochas-
tic modeling approach. References [9]-[15] used the DC-PF
model in the SCUC scheme achieved shorter computational
time. In DC-PF model, due to the neglect of reactive power,
voltage drop, and power losses, the computational errors were
expected to be non-trivial. A SCUC model was presented in
accordance with AC power flow (AC-PF) in [16]-[18] that
addressed this issue. The AC-SCUC modeling was described
in [16]. It explored the flexibility of the power system in the
presence of wind farms, controlled the structure of the trans-
mission network that used a linearized AC-PF, and achieved
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TABLE 1. Taxonomy of recent research works.

Ref SCUC based on  Uncertainty Problem Using
power flow of model model FACTS
AC DC device

[9] No Yes Stochastic DC-PF-based No
MILP

[10] No Yes Stochastic =~ DC-PF-based No
MILP

[11] No Yes Stochastic =~ DC-PF-based No
MILP

[12] No Yes IGDT DC-PF-based No
MILP

[13] No Yes ARO DC-PF-based No
MILP

[14] No Yes ARO DC-PF-based No
MILP

[15] No Yes Stochastic DC-PF-based No
MILP

[16] Yes No Stochastic ~ AC-PF-based No
MILP

[17] Yes No Stochastic ~ AC-PF-based Yes
MILP

[18] Yes No Stochastic =~ AC-PF-based No

MINLP

Proposed Yes No EA-ARO AC-PF- Yes

model based
MINLP

low computational time. The linearized AC-SCUC scheme
was also formulated in [17], and it considered the models of
FACTS devices and energy storage devices. In [18], the evo-
lutionary algorithm was utilized to solve the AC-SCUC prob-
lem, which used a combination of the genetic algorithm (GA)
and the particle swarm optimization (PSO) algorithm.

C. RESEARCH GAPS AND CONTRIBUTIONS

Table 1 summarizes the literature review. Based on the
reviewed literature, the identified main research gaps were
as follows:

- Researchers in [9]-[15] considered the DC-SCUC
model and evaluated the operation and security objec-
tives of the power system that posed three major prob-
lems: first, because reactive power and voltage was
ignored, DC-SCUC model did not investigate the neg-
ative effects of increased voltage deviation caused by
active load and reactive load on operation and security
of the system. Second, DC-SCUC model was unable to
replicate the operation and planning of FACTS devices,
and these elements had the capability to improve the
technical and economic indices of the power system. The
third problem referred to the significant inaccuracies
when compared to the exact SCUC model with AC-PF.
The errors in network losses, reactive power flows, and
bus voltage magnitudes can be considerable.

- In [16]-[18], the AC-SCUC model was studied. In [18],
traditional evolutionary algorithms (EA), such as PSO
and GA, was used. The optimal solution to the problem
was obtained using algorithms that require high number
of iterations for convergence. Therefore the computa-
tional time was high. Most research studies presented
the AC-SCUC model on small-scale networks. Studies
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such as [16], [17], expressed the SCUC model based
on linearized AC-PF. Although the computational time
improved with this method, it yielded a significant com-
putational error of approximately 2.5 to 3% for active
and reactive powers, and an error of more than 10% for
network losses.

- In the robust modeling of the SCUC problem, research
on adaptive robust optimization (ARO) was proposed,
and in some studies, the IGDT approach was proposed.
These techniques can be used to model the problem with
mixed-integer linear programming (MILP) and linear
programming (LP) formulations by exploiting the dual-
ity theory. Furthermore, in the MILP model, if integer
variables depend on uncertain parameters, the modeling
the ARO problem becomes more complicated. However,
based on the aforementioned first and second research
gaps, a significant computational error was observed
for SCUC problem. Additionally, the implementations
of some elements in the linear SCUC model were not

applicable based on DC-PF.
To address the first research gap, the AC-SCUC problem

was expressed in the presence of RESs and shunt FACTS
devices. In the deterministic model of the proposed scheme,
minimizing the fuel, starting up, and shutting down costs
of the CGUs were considered as objective functions. The
problem also included AC-PF constraints, transmission net-
work technical constraints, CGU operation models, spin-
ning reserve formulations, as well as operational constraints
associated with RESs and shunt FACTS devices. This prob-
lem had mixed integer non-linear programming (MINLP)
frameworks, with binary (continuous) variables that were
independent (dependent) for the uncertain parameters. The
uncertain parameters in this problem were the forecasted
load and active power output of RESs, for which the robust
optimization was employed. In this paper, in consideration
of the third research gap, the evolutionary algorithm-based
ARO (EA-ARO) were used to model the uncertainties. In this
method, a bi-level model that did not require the use of
duality theory or linearization of equations for the robust
AC-SCUC problem was expressed, and its optimal solution
was obtained by the EA. To address the second research
gap, this paper presented a hybrid evolutionary algorithm
of grey wolf optimizer (GWO) and teaching-learning-based
optimization (TLBO) that achieved the optimal solution. The
decision variables in the proposed algorithm were updated in
three phases/processes: teacher, student, and GWO process.
The number of updated phases was more than one, while
non-hybrid EA such as PSO, GA, and GWO used one or
two updated processes. Therefore, it was expected that the
optimal solution obtained from the hybrid TLBO and GWO
algorithms had a low standard deviation in the final results
and low computational time with respect to non-hybrid EA.
Contributions of this work include:

- Modeling of the AC-SCUC problem based on accurate
nonlinear power flow in the presence of shunt FACTS
devices and RESs generation in the power systems.

123577
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- Modeling of uncertainties in the load forecast and active
power generation of RESs in the AC-SCUC problem
using adaptive robust optimization based on the evolu-
tionary algorithm.

- Using the hybrid TLBO and GWO algorithms to obtain
areliable optimal solution, in a comparatively low com-
putation time, with low standard deviation.

D. PAPER ORGANIZATION

The rest of the paper was organized as follows: Section II
formulated the AC-SCUC plan and considered RESs and
shunt FACTS devices. Section Il introduced the robust model
of the AC-SCUC based on EA-ARO and described its solu-
tion method. Finally, Sections IV and V presented numerical
results and conclusions, respectively.

Il. THE AC-SCUC FORMULATION

This section presented the AC-SCUC problem model with
transmission network and the presence of RESs and shunt
FACTS. This problem minimizes the operating cost of CGUs,
including fuel, start-up, and shutdown costs, while it is con-
strained to AC-OPF equations, CGU scheduling, and opera-
tion of RES and shunt FACTS. Therefore, the problem model
was formulated as follows:

min Cost

2
— Z Z (“gxg,f+ﬁgpgt+yg (sz) )

geYgter +SUgWg_¢ + SDng,[
ey
Subject to :
R pR G pG
D AenPeit D AP
KETR geYs
_ZAﬁjpf{/t_ZAln lDt Vn,t (2
jeTn leYy,
F AF G
D ALAQ i+ D ALQ = D A
feYr g€Yg JjeTNn
= > AP0 Vn.i 3)
IETL

GL . cos (On, — 0.1)
njt G (Vn,) —Vn,tvjsf{_}_BlL sin (Qn,t QJ./'J)

Vn,j, t )
Qn]t BL'(V”t)2

B cos (0,r — 6;1)
F Vi Vi . vajito O
n,t J~f{ Gs sin (Gn,t—ei»t) ’ v

J(EE )+ (2h,,) <5E, v ®
V<V <V Vnit (7
Xgr—Xgr—1 < Wg; Vg, (®)
Xgi—1—Xgy < Vg, Vgt 9

Xgt — Xg1—1 = Xg ¢ Vg, t > 12,

123578

T € [t + 1, min (t + MinUpg — 1, n,)] (10
Xgi—1 —Xgy <1 —Xxg¢ Vg, t2>2,

t € [t + 1, min (r + MinDw, — 1, ;)] (11)
—RDgxg; < PG, —P{, | < RUgx; Vgt (12)
PSxg, < PY, <Pixg, Vgt (13)
Qngg,t < Qgt < ngg,z Vg, t (14)
PSxgs < PS, + RS, < Pix,: Vgt (15)
0<RG, <R, Vg1 (16)
> RS, =RP Wi (17
geY¢
PR =PL, Vit (18)
of <0f, <0 V.1 (19)

Eq. (1) presented the objective function of the problem,
which was equal to the total fuel, start-up, and shutdown of
costs of CGUs [19], [20]. The AC-OPF constraints of the
transmission network in the presence of CGUs, RESs, and
shunt FACTS were given in Equations (2) to (7) [21]-[23];
these equations corresponded to the balance of active power,
reactive power, active power and reactive flow through the
transmission line, capacity limit of the transmission line, and
voltage limit [24]-[27] of the network bus, respectively [28].
The CGU scheduling constraints were formulated in Equa-
tions (8) to (17) [21], [28]. Thus, constraints (8) and (9)
represented the logical limits for determining the start-up and
shutdown status of the CGU [19], [20]. Equations (10) and
(11) provided the minimum up time and minimum down time
limitations for a CGU, respectively [20]. According to (10),
if a CGU was started, it must operate for a given minimum
timeframe [20]. Moreover, according to (11), if the CGU
was shutdown, it had to be connected to the network after
a minimum time elapsed [19]. The limitations of the ramp-
up (RU) and ramp-down (RD) rates were given in (12) [20].
According to this constraint, the hourly increase/decrease
in the CGU active power was due to the mechanical pres-
sure limit on the generator shaft and could not exceed the
RU/RD [19]. Formulae corresponding to the CGU capability
curve were presented in (13) and (14), that indicated the
permitted range of active power and reactive power changes
in the CGU, respectively [28]. The reserve power of CGUs
could be calculated from (15), which was limited by (16). The
reserve power of all CGUs, as in (17), must be greater than
the reserve requirement for the network [29], [30]. Finally,
the RES and shunt FACTS operating equations appeared in
(18) and (19), respectively. Generally, RESs were part of
non-dispatchable distributed generation (DG). RESs had zero
operating costs; thus, according to (18), RESs generated the
maximum active power proportional to the available primary
energy [28]. According to the IEEE-1547 standard [31], only
the power generation capability of the RESs was consid-
ered in this paper. Moreover, the capability of shunt FACTS
devices in the transmission network was investigated, where
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these devices could be modeled as sources to change their
reactive power in the ideal state, as given in (19) [32].

Ill. PROPOSED EA-ARO MODEL FOR SOLVING

AC-SCUC PROBLEM

In the presented model formulations (1)-(19), active loads,
reactive loads, and maximum power generation limit of
RESs were treated as uncertain parameters. Therefore, prob-
abilistic, stochastic, and robust optimization approaches can
be used to model these parameters. The probabilistic and
stochastic programming approaches required accurate PDFs
of the involved uncertainties, and a large number of sce-
narios to obtain a guaranteed solution, that increased the
computational times [7]. In contrast, the robust optimization
approaches focused on the worst-case scenario, and conse-
quently the computational time was less than the stochastic
approaches’ times. Also, the optimal solution in the other sce-
narios had more favorable conditions with respect to robust
optimization results [6], [8].

In this paper, the EA-ARO method was used to obtain the
optimal robust solution in the worst-case scenario. In many
studies, such as [6], [14], [19], the ARO technique was
used. However, ARO and other robust optimization methods,
such as the boundary uncertainty-based robust optimization
(BURO) model [33], were applicable to linear optimization
models. Due to the use of AC power flow equations, the plan-
ning and operation problems in the power system were in
the form of MINLP or nonlinear programming (NLP). These
models need to be converted to a MILP or LP model, so that
the ARO method and other robust optimization techniques
could be used. This approach generally leads to two issues as
follows:

- Most linear models for power system problems are based
on DC power flow. In this model, reactive power, voltage
drop, and network losses were set to zero. Therefore,
the model was not suitable for problems that required
analysis of the operation of reactive power devices
in the power system. For network expansion planning
problems, newly installed equipment was based on the
growth of active load only. However, increase in load
may be related to the increase of both the active and
reactive loads, which may lead to issues in network
expansion [21], [28].

- In previous studies, a linearized AC power flow was uti-
lized. This had the potential to yield improved modeling
accuracy compared to the DC power flow method. How-
ever, the resulting inaccuracy may still be significant for
some power system operational variables, such as losses
and reactive power levels [16], [17].

To eliminate the inaccuracy from power flow model sim-
plifications, use of the practical model for power system
problems was desired. Therefore, the EA-ARO technique
could be applied as NLP and MINLP to these problems. The
ARO method can be implemented with NLP problems; but
in these problems, the requirements of the complementarity
(equilibrium) constraints and duality gap complicated the
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problem-solving [6]. The following section described the
process of the proposed technique.

A. MODELING OF UNCERTAINTIES BASED ON THE
EA-ARO TECHNIQUE
The modeling process of the EA-ARO technique was the
same as the ARO method. In this method, the first step was
to determine the matrix of uncertain parameters, which is
expressed for the problem (1) to (19) by considering P, QP,
and P" as uncertain parameters given as (20).

PD

i=|0" (20)
—R
P

where, u denotes the predicted value of the uncertain param-
eters. The actual value of an uncertain parameter is unknown,
therefore it was considered as an uncertain variable [19],
in which case the uncertainty matrix () is written as:
PL[
u=| 0" 1)
P

In (21), the number of columns in the matrix u is the
number of simulation hours n;, and the number of rows is
2 x n; + n,. The terms n, and n; represent the number of
RESs and loads, respectively. The set of uncertainties for the
ith row of the matrix u is defined as follows [34]:

u; € R" : 1 Z —|Mi,z~— u,-,,| <A

i = ny rexy Uit

Vu, € [ﬁi,z — Uiy, Uip + ﬁi,t]

Vi e U (YL, YL, Tr) (22)

where, u shows the uncertainty deviation for the variable u.
The symbol A refers to the uncertainty budget that varied
between zero and one. If it is zero, then the correct value of
the variable u will be equal to its predicted value u, which
indicated a deterministic problem model. In robust model-
ing, the value of A is greater than zero, and [ﬁ —u,u+ 12]
represented the range of changes of the uncertain variable.
The robust model solution was optimal only in the worst-
case scenario, and this scenario was obtained from the U set.
The optimal robust solution and the worst-case scenario were
determined simultaneously with the ARO and/or the EA-
ARO technique [34]. To better understand this, the assumed
deterministic problem model is as follows:

min f1(z) + f2(y) (23)
Subject to: g(z) < 0 (24)
hz,y) =0 (25)
ki(y) <0 (26)
k() =0 27
k3(y)=1u (28)

In the above problem, z and y are the problem variables,
it was assumed that the value of the variable z is independent
of the value of the uncertain parameter (%), known as here
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and now decisions [7]. The opposite is true for variable y,
which was referred to as wait and see decisions [7]. In the
proposed AC-SCUC problem, variable z is the vector of the
binary variable [x w v]T, and y is the vector of the continuous
variables [PY Q¢ PL QL PR QF v 9 RC]T. The function f;
was the sum of the costs of no-load agx, ;, start-up SUgwy 4,
and shutdown SDgv, ; of all the CGUs presented in (1), and
the other terms of (1) are expressed in function f,. Constraint
(24) refers to logical Eq. (8) to (11) in the AC-SCUC problem,
and constraints (12)-(15) are modeled in (25). Additionally,
the constraint (26) refers to the Egs. (6), (7), (16), (17) and
(19), constraint (27) includes Egs. (4)-(5), and constraint (28)
contains Egs. (2)-(5) and (18) in the AC-SCUC problem.

As mentioned earlier, robust optimization simultaneously
determined the values of an uncertain variable, u, and the
problem variables, z and y, in the worst-case scenario.
Therefore, based on [19], the robust model for the problem
(23)-(28) is:

minz,y (f1(z) + max,f2(y(u))) (29)
Subject to: constraint (24), constraints (25)-(28) using
y(u) in substitution for y, and u foru  (30)

ue U U; 31)

ielJ (YL, Yz, Yr)

The problem described by (23)-(28) had the expression
min to determine the optimal value of the variables z and y;
because of that, the worst-case scenario determining the value
of u adopted the expression max in the objective function of
the robust problem (29). As the variable y was dependent on
the uncertain variable u, the expression max was used only
for the function f>. The constraints of the robust problem
in (30) were equal to the constraints of the deterministic
problem, that is (24)-(28), substituting y(u) for y, and u for
u. The constraint (31) referred to the range of change of
the uncertain variables. To achieve an optimal solution, the
problem generated by (29)-(31) was modeled based on [24]
as follows:

. ) 7 -
mszl(z) + (runeagy (z,u'}é]?(z,y)ﬁ(y(z u))) (32)

Subject to: Constraint (24) (33)

Problem (32)-(33) refers to a bi-level problem, where the
first term of the objective function (32) is min, f(z), and
the constraint (24) or (33) referred to its upper-level model.
Moreover, the second term of the objective function was
related to the lower-level model. The value of the lower-
level problem variable, y, generally depended on the value
of the upper-level problem variable, z, so the expression y(z,
u) is used in the second term of the objective function (32).
The constraints of the lower-level problem were equal to the
sets U and Y'(z, u), where the feasibility region of Y'(z, u)
according to model (29)-(31) would be:

yIh(z, y(z, u)) <0, ki(y(z, u)) <0

T(Zs M) = { kZ(y(Za u)) = 0, k3(y(Z, l/l)) =u

’ } (34)
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B. SOLUTION PROCEDURE OF THE EA-ARO ALGORITHM
Problem (32)-(33) has a nonlinear bi-level optimization
framework. In this section, the hybrid evolutionary algo-
rithms of GWO [35] and TLBO [36] was used to achieve
a reliable optimal solution. The decision variables in the
proposed hybrid evolutionary algorithm were updated in two
processes, namely the TLBO and GWO, it was expected for
this algorithm to achieve the optimal and reliable solution
in the shortest computation time. Another advantage of this
algorithm was that the adjustment parameter did not require
definitions [35], [36]. To present the solution procedure
for the problem (32)-(33), in accordance with the proposed
algorithm, the first step was to determine the decision and
dependent variables. In the proposed method, the values of
the decision variables were determined by the hybrid GWO
and TLBO algorithm, and the dependent variables were cal-
culated according to the values of decision variables and
equality constraints used numerical solution methods, such
as Newton-Raphson. In the upper-level model of the problem
(32)-(33) and the AC-SCUC, z—the vector [x w v]T—is the
decision variable. In the lower-level model of the problem,
the uncertain variable u—the vector [P* Q" P"]T in the
robust model of the AC-SCUC—is the decision variable.
In this problem, y; and y; are also used as decision and
dependent variables in the function f>, where the vectors
[PS 0% OF RO and [PL QY PRV 01T are yqg and y; in
the AC-SCUC problem, respectively. Also, in this problem,
the fitness function (FF) was proportional to (32) and the AC-
SCUC problem model (1)-(19) was written as (35):

Miny .y
fi
deTG ZGT {agxg s + SUgwg  + SDgvg 1}

+ Z Z /Lgtmax (0, xg,s — Xg1—1 — Wg.1)

geYgteXr
sd
+ g max (O, Xg 11— Xg1 — vg,t)

min(t+MinUpg—1,n7)
MinUj
+2 2 > m”

8€YG t € Yr T=t+1
t#1
X max (O, Xgt — Xgt—1 — xg,,)

min(t+MinDwg—1,n7)

MinDw
Z Mg,

T=t+1

LD

8€YG t € Yy
t#1

X max (0, Xg -1 —Xgr— 1 +xg,r)
+ maxpu gu uMinpG oG RG oF pR pL oL V.0
gl

2
deTG ZteT ﬂgPGf +7e(Pg)}

+ Z Z ug tmax( sz 1 Rngg,,>
geYgteXr

+ YD max (0, ~RDgxg — PG, + P, )
geYgteXr
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G G =G
+ Z Z ugtmax< i T Rg _pgxg,f)
geYgter
re G G
£ 0t ma (0.~ PG, KE)
geYgteXr

+ Z wmax | 0, RP —

2 R

teYr geYc

L
Y ( o (L, )+ (2,,) -5 )
njeYy teYr

+ >0 > wy max (0, V., —V) +uy max (0,V — V)

neYy teYr
(35)

In equation (35), the constraints (6)-(12), (15), and (17)
were added as a penalty function to the objective function
of (32) [37]. The penalty function for a constraint of a < b
has the relation p.max(0, a - b) based on [37], where u
represents the price of the penalty and is considered the deci-
sion variable. Constraints (8)-(11) are related to the upper-
level problem, so their penalty functions were added to the f;
function. Other constraints are part of the lower-level problem
constraints, so their penalty functions were added to the
f> function. In addition, in these conditions, the decision-
making (DM) variables were in the form of (36).

DM = [x wv P Q" P" PC oY oF RC M]T (36)

The problem was solved using the following steps:

- Step 1 (Initialization step): This process determined N
random values for the DM vector, where the random
values x, w, v, P4, Q“, P", P9, QC, RC, OF, and pn
respectively corresponded to the sets {0, 1}, {0, 1},
{0, 1}, U, U, U (13), (14), (16), (19) and the interval
[0, +00). Then the dependent variables were calculated
for N random values of the DM vector. The value of
PR, proportional to (18), is P". The values of variables
PL, QF, v, and 0 were also calculated using AC-PF
equations, i.e., constraints (2)-(5), based on Newton-
Raphson numerical solution method. Lastly, the fitness
function, or FF, of the proposed problem were calculated
using (35).

- Step 2 (Updating decision variables): In this section,
N values of the DM vector were updated using the
hybrid GWO and TLBO algorithm, first the teacher
phase and then the student phase of the TLBO algorithm
were implemented; thus, the GWO algorithm updated
the decision variables. Then, similar to the first step,
the values of dependent variables and the fitness function
were calculated. If the value of the FF was more optimal
than the previous step, then the new values of decision
variables were equal to the values obtained in this step.
Otherwise, those were equal to the values of decision
variables in the previous step.

- Step 3 (Checking the convergence): It was assumed
that the optimal solution was available after maximum
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FIGURE 1. Flowchart of hybrid algorithm of GWO and TLBO for the
proposed AC-SCUC model.

iterations (iter,,y ). Hence, the second step was repeated
as much as iter;; .
In the end, the flowchart of the hybrid GWO and TLBO
algorithm for the robust AC-SCUC problem (32)-(33) is
shown in Fig. 1.

IV. NUMERICAL RESULTS AND DISCUSSION

The numerical results of the proposed AC-SCUC problem
applied to the modified IEEE 6-bus and IEEE 118-bus
networks were described in this section. In the EA-ARO,
the term u is considered to be equal to r.u, where r represents
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Bus 1 s Bus 2 Bus 3
Bus 4 Bus 5 'y Bus 6 |
SvCl —— svC2 ——

v v

FIGURE 2. Single-line diagram of modified IEEE 6-bus network [38].

TABLE 2. Specifications of generation units and shunt FACTS
devices [32], [38].

Network component Gl G2 G3
Min (P) (MW) 1 1 0.5
Max (P) (MW) 10 10

Min (Q) (MVAr) -3 -3 -1.5
Max (0) (MVAr) 6 6
RU/ RD (MW) 4 4 2
Max (R) MW) 3 3 1.5
SU/ SD ($) 200/ 200 200/ 200 150/ 150
MinUp/ MinDw (hour) 3/3 3/3 5/'5
a($) f($/MWh)/ y 500/25/0.003  500/25/0.003  600/35/0.004
($/MWh?)

Network component G4 Wi SVC1 SVC2
Min (P) (MW) 0.5 0 - -
Max (P) (MW) 6 10 - -

Min (Q) (MVAI) 15 - 1 1
Max (Q) (MVAr) 3 - 5 5
RU/ RD (MW) 2 - - -
Max (R) (MW) 15 - - -
SU/ SD ($) 150/ 150 - - -
MinUp/ MinDw (hour) 5/5 - - -
a($) B ($/MWh)/ y 620/37/0.004 - - -
($/MWh?)

the “uncertainty level” . Also, the population size (N) and the
maximum iterations (ifery, ) for the hybrid GWO and TLBO
(GWO + TLBO) algorithm were 50 and 3000, respectively.

A. THE MODIFIED IEEE 6-BUS NETWORK

1) DATA

Modified IEEE 6-bus networks [28] in the presence of CGUs
(G1 to G4), RESs (wind farms) (W1), shunt FACTS devices
with static var compensators (SVC1 and SVC2) are pre-
sented in Fig. 2. This network had a base power and voltage
of 100 MW and 230 kV, with the allowed voltage range of
[0.95, 1.05] p.u. [21]. The specifications of transmission lines
were extracted from [28], the data for generation units and
shunt FACTS devices are listed in Table 2 [28], [32], [38].
The term P is the product of the capacity of wind farms and
the daily power rate curve. The capacities of wind farms are
presented in Table 2, and the daily power rate curve of this
renewable source is plotted in Fig. 3(a). The network had a
peak load of 25 MW with a power factor of 0.9, of which 40%,
30%, and 30% were respectively consumed in buses 3, 4, and
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FIGURE 3. Daily curves of a) Load factor and wind farm power rate [39],
and b) reserve demand in a bus with a generation unit [39].

TABLE 3. Convergence results of different solution algorithms for an
uncertainty budget of 100% for modified IEEE 6-bus network.

Parameter r Algorithm
CSA KHO TLBO GWO GWO+TLBO
Convergence 0 1289 1236 989 1007 782
iteration 0.1 1402 1347 1056 1083 845
02 161l 1553 1107 1155 903
Convergence 0 89.3 78.9 64.2 63.5 54.2
time (sec) 0.1 9838 87.1 69.5 68.7 59.1
02 1079 95.6 74.6 73.4 63.8
Mean value 0 65567 65273 64311 64477 63488
of objective 0.1 67892 67672 66692 66812 65796
function (§) 0.2 70471 70223 68187 69291 68280
Standard 0 2.86 2.51 1.69 1.87 0.92
deviation 0.1 3.98 3.36 1.86 2.11 0.93
(%) 02 508 413 202 245 0.93

5. Also, the amount of load during other hours was obtained
from the product of the load factor’s daily curve and the peak
load, which is plotted in Fig. 3(a). Finally, it was assumed that
each bus with a generation unit had a daily reserve demand
curve (RP), as shown in Fig. 3(b) [39].

2) INVESTIGATING THE CAPABILITY OF THE PROPOSED
ALGORITHM

In this section, the crow search algorithm (CSA) [40], krill
herd optimization (KHO) [41], TLBO, GWO, and hybrid
TLBO and GWO (TLBO 4 GWO) algorithm were con-
sidered to obtain the optimal solution of the robust AC-
SCUC problem with an uncertainty budget of 100%. The
results are summarized in Table 3, and the reported results
in this table were the average of 10 simulations for each
algorithm. The population size of 50 and the maximum num-
ber of iterations equal to 3000 were selected, and the values
of regulation parameters of each algorithm were selected
from [35], [36], [40], [41]. Based on Table 3, it was observed
that when compared to the other algorithms mentioned in this
table, the hybrid TLBO-GWO algorithm obtained the
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minimum mean of the objective function (32), i.e., $63488 in
the shortest computational time of 54.2 seconds, and the low-
est number of convergence iterations of 782 for the determin-
istic model of the AC-SCUC problem (r = 0). This algorithm
had a low standard deviation of 0.92%, when compared to
CSA, KHO, TLBO, and GWO algorithms. Increasing the
degree of uncertainty (r) also increased the mean of the
objective function, the computational time or convergence
time, the number of convergence iterations, and the stan-
dard deviation of the solution. This was because increased
uncertainty level in worst-case scenario, based on model (32)
and [6], [8], meant a reduction in the feasible region of the
robust problem when compared to that of the deterministic
problem. However, for different values of r, the proposed
hybrid TLBO and GWO algorithm outperforms the other
algorithms based on simulation results that included low
standard deviation, convergence iteration, computation time,
and minimum objective function, which was similar to the
results from the deterministic model. It was observed that
the standard deviation changes minimally with the changes
in the uncertainty level; that was not the case in the CSA,
KHO, TLBO, and GWO algorithms. This suggested that the
proposed algorithm could find a reliable optimal solution
with a low standard deviation that had a low dependence on
the feasibility region and the volume of the problem. Finally,
the results of this section confirmed the second research gap
in Section 1 and demonstrated the third contribution provided
in Section 1.

3) PERFORMANCE EVALUATION OF GENERATION UNITS
AND SHUNT FACTS DEVICES

Fig. 4 illustrated the daily load curve of the network and
the active power of wind farms in the robust AC-SCUC
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FIGURE 5. The daily active power curve of a) G1, b) G2, c) G3, and d)
G4 for an uncertainty budget of 100%.

problem for an uncertainty budget of 100%. According to
Fig. 4(a), the injected active power of wind farms was equal
to their maximum capacity for the network, this was echoed
in Fig. 3(a) and the data of Table 2 and can be attributed to
zero operation costs of these resources. Following Fig. 3(a),
increasing the uncertainty level to achieve the worst-case sce-
nario and reducing the feasible region of the robust problem,
when compared with the deterministic problem, (r = 0)
increased the active load of the network and reduced the
capacity of active wind farms. In Fig. 4(b), the net power
demand of the network—which was equal to the difference
between the load of the network and the generation power of
wind farms—increased with the increase in uncertainty levels
during all simulation hours. This was because the peak load of
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FIGURE 6. The daily reserve power curve of CGUs for an uncertainty
budget of 100%.

the network (25 MW) was approximately 150% greater than
the capacity of wind farms (10 MW), referring to the data in
subsection 4.A.

Fig. 5 presents the daily active power curve of CGUs in the
robust AC-SCUC problem for an uncertainty budget of 100%.
In this figure, G1 and G2 could produce active power to
supply power consumption of the network in all simulation
hours because, as presented Table 2, they had a lower fuel
price («, B, y) than other CGUs. Due to the high operation
cost, G3 and G4 were not operated to supply energy during
some hours, during which they had zero active power. In the
robust model ( = 0.1 and r = 0.2) compared to the
deterministic model (r = 0), Gl and G2 supplied active
power that was near the difference between their capacity and
the required reserve (}_’G —RD) during more hours. Moreover,
the number of hours with zero generation of active power
by G3 and G4 in these conditions decreased compared to
the case of r = 0, and the generation of these resources
increased in the robust model compared to the deterministic
model of the AC-SCUC problem. As shown in Fig. 4(b),
the net load consumption increased with the increase of the
uncertainty level. In addition, the daily reserve power curves
of CGUs in the robust model of the proposed problems with
an uncertainty budget of 100% was shown in Fig. 6. Com-
paring Fig. 6 with Fig. 3(b), all CGUs were procured R” at
all simulated hours and did not incur more reserves than that.
Also, in Bus 2 with wind farms and G2, only G2 provided the
demand reserve power for Bus 2, and wind farms did not play
arole in providing reserves. Wind farms could provide energy
because of their zero operating costs to minimize operating
costs or their energy costs in the objective function (32).

The daily reactive power curves of CGUs and shunt FACTS
devices in the robust AC-SCUC model with an uncertainty
budget of 100% are shown in Fig. 7. According to Fig. 7(a),
only G3 and G4 were used to supply reactive power to Bus
3 because it was desirable to operate generation resources
G3 and G4, which were close to the load, to reduce network
losses. Other units used their maximum capacity in supplying
power and reserve, and so they had no role in supplying
the network reactive loads. The peak reactive power of the
network was 12.1 MVAr (=25MW) x tan(cos~1(0.9))), 30%
of which—3.6 MVAr—appeared at Buses 4 and 5. According
to Table 2, the capacity of each of the SVCs installed in these
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uncertainty budget of 100%.

TABLE 4. Economic and technical results of the robust AC-SCUC plan for
an uncertainty budget of 100%.

r 0.5 0.4 0.3 0.2 0.1 0
Operation cost ($) 69523 69523 69171 68280 65796 63488
Total start up and 0 0 0 0 0 0

shut down cost ($)

The robustness cost 6035 6035 5683 4792 2308 0

of robust model ($)

Energy loss (MWh) 16.09 16.09 16.01 1581 13.66 1143

Maximum voltage 0.040  0.040 0.040 0.040 0.039  0.038
deviation (p.u)

buses was equal to 5 MVAr, thus they provided all the reactive
loads for the buses, as seen in Fig 7(b). Also, increased
uncertainty level, outlined in Fig. 7, increased the reactive
load of the network and the reactive power generation of
CGUs and shunt FACTS devices were also increased. Finally,
ancillary services were considered, such as setting up reactive
power reserves for CGUs, that enabled them to participate
in ancillary services when the commitment of a unit was not
economically viable. It was expected that the cost of shutting
down and restarting the unit would be reduced to zero. This
was true for G3 and G4 in Figs. 5-7. This demonstrated the
first contribution given in Section 1.

4) STUDY OF ECONOMIC AND TECHNICAL BENEFITS

Table 4 shows the values using economic indices (such as
operation and shutdown/start-up costs and the robustness
cost of robust model) and technical indices (such as energy
losses and maximum voltage deviation) in the robust AC-
SCUC formulation for an uncertainty budget of 100%. This
table shows the increased uncertainty levels increased the
operating costs of CGUs until they reached saturation point
at r = 0.4, meaning that further increasing r did not cause
changes in operating costs. Also, the cost of shutting down
and restarting CGUs was always zero because, according
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TABLE 5. Convergence results of different solution algorithms for an
uncertainty budget of 100% for IEEE 118-bus network.

Parameter r Algorithm
CSA KHO TLBO GWO GWO+TLBO

Convergence 0 2711 2659 2136 2311 1722
iteration 0.1 2820 2761 2221 2408 1804
02 2929 2870 2315 2501 1897

Convergence 0 133.1 122.5 108.1 111.2 99.1
time (sec) 0.1 1442 1313 1145 1194 104.8
02 1544 1412 120.3 126.2 109.3

Mean value of 0 333 33.1 32.5 32.6 31.9
objective 0.1 34.5 34.3 33.5 33.7 32.8
functionM$) 02 361 359 349 350 343
Standard 0 3.93 3.62 1.98 2.09 0.93
deviation (%) 0.1 5.08 4.71 2.36 2.48 0.93
02 6.51 5.80 2.79 2.99 0.94

to Figs. 5-7, CGUs could participate in ancillary services,
such as reserve adjustment and reactive power supply, that
eliminated or reduced the cost. The robustness cost of robust
model referred to the difference between cost in robust (r >
0) and deterministic (r = 0) formulations. According to
Table 4, increased uncertainty level (to 0.4) resulted in an
increased cost to $6035. Hence, it could be said that con-
sidering forecasting error of uncertainty parameters in the
proposed scheme increased the CGUs’ operation cost with
respect to the deterministic model, where the maximum value
of this robustness cost is 6035$. Energy loss was equal to the
total network losses on the operation horizon, or 24 hours,
and the maximum voltage deviation can be calculated as max
(I1 — Vy.¢1). Based on the results in Table 4, increasing r led
to increased energy losses that reached its saturation point
of 16.09 MWh at » = 0.4. Compared to the deterministic
model of the proposed problem (r = 0), this value grew by
about 39.8%. Increasing r also increased the maximum volt-
age deviation, and it reached its saturation point of 0.04 p.u.
at r = 0.2. This rate of voltage deviation was less than its
maximum allowable values of 0.05 p.u., 1-1.05, or 0.95-1.
Therefore, in the worst-case, favorable operational and eco-
nomic conditions can be achieved by adopting the proposed
AC-SCUC plan, which demonstrated the first and second
contributions given in Section 1.

B. THE IEEE 118-BUS NETWORK
The IEEE 118-bus network included 54 CGUs, 186 transmis-
sion lines, and 91 buses, the data from which were consistent
with the data presented in [42]. Load characteristics, such
as power factors and daily load curves were the same as
the data presented in Section 4.1. Based on the results of
optimal planning for wind farms in [43], this network had four
wind farms with capacities of 500, 800, 200, and 500 MW
that were respectively installed in buses 10, 15, 30, and 75.
Their daily power rate curve was the same as in Fig. 3(a).
Finally, the daily curve of the reserve demand for buses with
generation units was 10 times the hourly data presented in
Fig. 3(b).

The convergence results of the robust AC-SCUC optimiza-
tion in the uncertainty budget of 100% obtained by CSA,
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KHO, TLBO, GWO, and TLBO + GWO for IEEE 118-bus
network is reported in Table 5. Accordingly, TLBO + GWO
could be achieved to minimize cost in the lower convergence
iteration and calculation time in comparison with CSA, KHO,
TLBO, and GWO. Also, it included low standard deviation in
the final solution, where fluctuated uncertainty level is low,
while this issue is not true for other solvers. Therefore, sub-
section IV-A-2, solver of TLBO + GWO, included suitable
capabilities with respect to other algorithms.

The economic results of the AC-SCUC plan for the trans-
mission network are presented in Fig. 8, which showed the
diagram of the total costs of fuel, shutdown, and restarting of
CGUs in terms of the uncertainty level (). Accordingly, in the
zero-uncertainty budget for the AC-SCUC plan, increased
uncertainty level did not change the cost of CGUs. According
to Section 3.1, zero uncertainty budget meant a deterministic
model in which the value of the uncertainty variable was
equal to the predicted values of the uncertainty parameter,
and the value of u is zero. Thus, changing the value of » did
not affect the value of #. Nonetheless, for other values of the
uncertainty budget, increasing r increased the cost of CGUs
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until it reached saturation. The saturation zone was created
using the technical limitations of the network and CGUs.
At higher uncertainty budget values, the saturation point was
set at a lower level of uncertainty, as in Fig. 8, because the
change percentage for uncertainty variables was higher when
compared to the deterministic model for larger values of the
uncertainty budget. The opposite was true for low values of
the uncertainty budget.

Fig. 9 showed the curves of the network technical indices,
such as energy losses and maximum voltage deviations,
in terms of the uncertainty level for different values of
the uncertainty budget based on the robust AC-SCUC plan.
These curves exhibited the same trend as the cost curves
presented in the Fig. 8. In the case corresponding to the zero-
uncertainty budget, changes in the uncertainty level did not
cause a change in the values of technical indices. Moreover,
for higher values of the uncertainty budget, increasing r led
increased mentioned indices until they reached the saturation
point for a certain value of r.

V. CONCLUSION

This research attempted to solve the AC-SCUC problem
considering the uncertainty of load forecast and RESs gen-
eration forecast in the presence of shunt FACTS devices.
The objective of the proposed model was to minimize the
operating costs of CGUs subject to AC power flow equations,
operation constraints of RESs and shunt FACTS devices,
and the operation models of CGUs. In this study, an EA-
ARO technique was utilized to model the load uncertain-
ties and the generation power uncertainties of the RESs and
to achieve the optimal solution of the nonlinear AC-SCUC
problem. The resultant model was solved using a GWO and
TLBO hybrid algorithm. Based on the numerical results, it
was observed that the hybrid GWO and TLBO algorithm
achieved the most optimal and reliable solution in the least
computational time with the minimum iterations to converge:
the standard deviation of the final solution was approximately
0.9%, and its dependence on the feasible region and the
problem complexity was very low. In addition, studies of
the proposed AC-SCUC model showed low-cost CGUs were
always utilized near their capacities to supply power and
reserve. However, for CGUs with high fuel prices, their par-
ticipation in supplying power was not economically justified
for some hours. It can save the shutdown and restart costs
by participating in ancillary services, such as reserve and
reactive power. Finally, the proposed method provided the
optimal scheduling for active power, reactive power, CGUs
reserves, and reactive power of shunt FACTS. Furthermore,
it yielded desired results in terms of the network operational
metrics, such as energy loss and maximum voltage devia-
tion, even in the worst-case situation. In worst-case situation,
the voltage deviation was always less than its maximum limit
of 0.05 p.u., and the energy loss in the worst-case situation
with a high uncertainty budget and high uncertainty level was
about 40% when compared to the scenario corresponding to
the deterministic model.
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