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Abstract 

Increasing threats to U.S. national security satellite constellations have resulted in an increased interest in 
constellation resilience and satellite redundancy.  CubeSats have contributed to commercial, scientific and 
government applications in remote sensing, communications, navigation and research and have the potential to 
enhance satellite constellation resilience.  However, the inherent size, weight and power limitations of CubeSats 
enforce constraints on imaging hardware; the small lenses and short focal lengths result in imagery with low spatial 
resolution.  Low resolution limits the utility of CubeSat images for military planning purposes and national 
intelligence applications.  This paper implements a super-resolution deep learning architecture and proposes 
potential applications to CubeSat imagery. 
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1. Introduction 

CubeSats [5] have the demonstrated potential to contribute to commercial, scientific and government applications 
in remote sensing, communications, navigation and research at a fraction of the size, development costs and launch 
costs of the large, multi-function satellites designed to support Cold War military requirements.  However, the reduced 
size, weight and power margins inherent in CubeSats also have disadvantages.  Smaller satellites are typically limited 
to single payloads or functions.  For traditional electro-optical (EO) imagery applications, high resolution (HR) 
requires large lenses and long focal lengths, which in turn require large satellites to support them [3].  Past research 
has demonstrated that on-board image processing techniques can make more efficient use of limited satellite resources 
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[4, 6, 9, 13].  Work in pixel registration [13], feature classification [4], parallel computing [6], and radar interferometry 
[7] has laid the groundwork for the collection of EO imagery using multiple CubeSats flying in close formation. 

Despite the data handling improvements, there remains one fundamental limitation of CubeSats for EO imaging 
applications: the small lenses and short focal lengths result in imagery with low spatial resolution.  These low 
resolutions (LR) are sufficient for scientific applications such as weather forecasting and agricultural assessments [14, 
17], but are insufficient for defense mission planning and intelligence operations.  There are two primary methods for 
improving spatial image resolution: hardware solutions focus on improved camera capabilities and analytical methods 
that focus on software solutions [9].  Hardware improvements are often restricted by cost, large size, or technology 
readiness limitations – all three of which are impractical for the CubeSat concept.  Additionally, optical imaging 
hardware is subject to the Rayleigh criterion in which light diffraction limits the best possible resolution [11].  Thus, 
a computational algorithm solution is required to improve EO spatial resolution of CubeSat images. 

This paper proposes a deep learning pipeline using a Convolutional Neural Network (CNN) to implement a single-
image super resolution (SISR) model.  Section 2 provides background context for the super-resolution problem.  
Section 3 discusses the development of the CNN model and selection of the model performance metrics.  Section 4 
covers model performance for various hyperparameters, in terms of the Peak Signal to Noise Ratio (PSNR) and the 
Structural Similarity Index (SSIM), as compared with a benchmark single-image super-resolution (SISR) model, the 
Efficient Sub-Pixel Convolutional Neural Network (ESPCN) [18].  Section 5 discusses areas of future work, followed 
by concluding remarks in section 6. 

2. Background 

There are two primary methods of image super-resolution: single-image super-resolution (SISR) and multi-image 
super-resolution (MISR) [15].  SISR requires a training database of low-resolution (LR) and high-resolution (HR) 
pairs with specific features and segments common to both and annotated for machine learning algorithms.  There are 
three main categories of SISR algorithms: interpolation-based algorithms reconstruct HR images using existing pixels 
to interpolate probable missing pixels; reconstruction-based algorithms use a priori knowledge (down-sampling, 
blurring and warping) to recover the HR image; learning-based algorithms use dictionary pairs of training and testing 
images to estimate HR images [21].  SISR techniques are fast, less computationally intensive and are capable of 
producing sharp HR images for specific applications. 

Multi-image super-resolution (MISR) is a well-studied problem which typically consists of three stages: 
registration estimates the shifts between LR images, relative to a reference image, with sub-pixel accuracy; 
interpolation obtains a uniform HR image from a non-uniform composite of LR images; and restoration removes the 
image blur and noise.  MISR can be further sub-divided into frequency domain techniques and spatial domain 
techniques [19].  The relative motion between LR input images produces the sub-pixel shifts necessary to achieving 
higher resolution enhancement by accounting for information from adjacent image frames, given sufficiently accurate 
motion estimation [2]. 

Shi, et al describe some of the underlying research that has gone into their selection of a CNN to perform the 
SISR operation [18].  A CNN is trained to recognize specific patterns in an LR image and represent those patterns in 
an HR image.  The convolutional layers allow the training of pattern recognition to be less computationally complex 
compared to more traditional approaches such as decision forests and backpropagation.  CNNs do not synthesize a 
high-resolution image from low resolution images, which is the goal of MISR techniques.   

3. CNN Model Development and Training 

The CNN model proposed in this paper is based on the Efficient Sub-Pixel Convolutional Neural Network 
(ESPCN) introduced by Shi, et al in 2016 [18].  The model uses a series of convolution layers to develop low-
resolution feature maps which are then converted to a high-resolution image at the final layer.  The equations 
governing the behavior of the input and hidden layers are those developed by Shi, et al and are shown in equations (1) 
and (2) below [18].  

 
  𝑓𝑓1(𝐼𝐼𝐿𝐿𝐿𝐿; 𝑊𝑊1, 𝑏𝑏1) = 𝜙𝜙(𝑊𝑊1 ∗ 𝐼𝐼𝐿𝐿𝐿𝐿 + 𝑏𝑏1)      (1) 
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  𝑓𝑓𝐿𝐿(𝐼𝐼𝐿𝐿𝐿𝐿; 𝑊𝑊1:𝐿𝐿, 𝑏𝑏1:𝐿𝐿) = 𝜙𝜙(𝑊𝑊𝐿𝐿 ∗ 𝑓𝑓𝐿𝐿−1𝐼𝐼𝐿𝐿𝐿𝐿 + 𝑏𝑏𝐿𝐿)     (2) 
 
Where 𝐿𝐿  is the number of network layers, 𝐼𝐼𝐿𝐿𝐿𝐿  is the LR input image, and 𝑊𝑊𝐿𝐿, 𝑏𝑏𝐿𝐿, 𝑙𝑙 ∈ (1, 𝐿𝐿 − 1) are learnable 

network weights and biases respectively.  𝑊𝑊𝐿𝐿  is a 2D convolution tensor of size 𝑛𝑛𝐿𝐿−1 × 𝑛𝑛𝐿𝐿 × 𝑘𝑘𝐿𝐿 × 𝑘𝑘𝐿𝐿, where 𝑛𝑛𝐿𝐿 is the 
number of features at layer 𝐿𝐿, 𝑛𝑛0 is the number of bands in the image, and 𝑘𝑘𝐿𝐿 is the filter size at layer 𝐿𝐿. 

Finally, the output layer performs the sub-pixel convolution to output the super-resolved image.  Again, the output 
layer of the model uses the equations developed by Shi, et al, shown in equation (3) below [18].  

 
  𝐼𝐼𝑆𝑆𝐿𝐿 = 𝑓𝑓𝐿𝐿(𝐼𝐼𝐿𝐿𝐿𝐿) = 𝑃𝑃𝑃𝑃(𝑊𝑊𝐿𝐿 ∗ 𝑓𝑓𝐿𝐿−1𝐼𝐼𝐿𝐿𝐿𝐿 + 𝑏𝑏𝐿𝐿)      (3) 
 
Where 𝐼𝐼𝑆𝑆𝐿𝐿 is the super-resolved output image and 𝑃𝑃𝑃𝑃 is a periodic shuffling operator that reshapes tensor elements 

from 𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶 ⋅ 𝑟𝑟2 to 𝑟𝑟𝐻𝐻 × 𝑟𝑟𝑊𝑊 × 𝐶𝐶, via the mathematical representation shown in equation (4).  Note that the 
authors were able to avoid this periodic shuffling during network training and instead pre-shuffled the training data to 
match the required output, thus saving computational time during network training. 

 
  𝑃𝑃𝑃𝑃(𝑇𝑇)𝑥𝑥,𝑦𝑦,𝑐𝑐 = 𝑇𝑇⌊𝑥𝑥 𝑟𝑟⁄ ⌋,⌊𝑦𝑦 𝑟𝑟⁄ ⌋, 𝐶𝐶 ∙ 𝑟𝑟 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦, 𝑟𝑟) + 𝐶𝐶 ∙ 𝑟𝑟 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑟𝑟) + 𝑐𝑐   (4) 

 
A graphical representation of this shuffling operation can be seen in Figure 1 below. 

 

With this ESPCN model as a basis for reference, this paper uses a similar CNN as shown in Figure 2 below, adapted 
from [12].  Note that while the ESPCN model illustrated in Figure 1 uses two hidden layers before the sub-pixel 
convolution output layer, the model used in this paper includes two additional hidden layers to extract additional 
feature maps, as well as a dropout regularization layer, at the cost of a slightly increased training time. 
 

Fig. 1.  Diagram of the Efficient Sub-Pixel Convolutional Neural Network developed by Shi, et al. [18] 
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Fig. 2.  (a) Python-generated summary of the CNN model implementation; (b) Python plot representation of the same CNN network [11] 

One additional modification made to the original ESPCN network is the conversion of the input images from the 
Red, Green, Blue (RGB) color space to the Luminance, Chrominance (YCbCr) color space.  This is a lossless, 
reversible transformation that results in a single luminance signal (Y), which is a weighted combination of the R, G, 
and B color bands.  The transformation also results in two chrominance or color difference signals, a blue projection 
(Cb) and a red projection (Cr).  The Y signal is then split out of the resulting transformation and passed as a single 
channel image input to the CNN.  Using a single channel input image has the advantage of reducing the 
computational complexity required of the CNN.  The resulting enhanced output Y channel is then recombined with 
the original Cb and Cr channels and transformed back to the RGB color space for the final super-resolved image. 

This color space transformation method is effective because human visual perception is much more sensitive to 
variations in brightness (luminance) than chrominance [10].  Thus, the network achieves an improvement in the 
apparent resolution. 

 

 
Fig. 3.  OV-1 for Single Image Super Resolution CNN implementation 

Any image processing algorithm requires an objective measure of performance, typically via quantitative image 
quality assessment methods, as described by Sara, et al [16].  This model uses two common measures of 
performance, Peak Signal to Noise Ratio (PSNR) [8] and the Structural Similarity Index (SSIM) [20].  PSNR is the 
ratio between the maximum signal and the corrupting noise that affects the high-resolution reconstruction (i.e. the 
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super-resolved image output by the CNN).  PSNR is typically expressed in terms of a logarithmic decibel scale 
where a larger number indicates better performance, as determined by equation (5). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ∙ log10 (

𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼2

𝑀𝑀𝑀𝑀𝑀𝑀 ) = 20 ∙ log10 (
𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼
√𝑀𝑀𝑀𝑀𝑀𝑀)  

   = 20 ∙ log10(𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼) − 10 ∙ log10 𝑀𝑀𝑃𝑃𝑀𝑀     (5) 
 

Where 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 is the maximum possible pixel value of the image; in the case of an 8-bit color scale, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 = 255. 
While PSNR is simple to understand and implement and has a clear physical meaning, it often doesn’t cleanly 

align with perceived image quality [16].  Therefore, this model also uses as a normalized reference method to 
predict the perceived quality of digital images, using the similarity between two images [16, 20].  The SSIM method 
is predicated on the assumption that spatially close pixels have strong inter-dependencies.  That is, pixels that are 
spatially close are more likely to represent the same object within an image.  SSIM is expressed as a decimal 
between 0 and 1, where 1 indicates perfect similarity.  SSIM is determined by equation (6). 

 
  𝑃𝑃𝑃𝑃𝑆𝑆𝑀𝑀(𝑥𝑥, 𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1)(2𝜎𝜎𝑥𝑥𝑦𝑦+𝑐𝑐2)

(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1)(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2)
       (6) 

 
Where 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦  are the averages of 𝑥𝑥 and 𝑦𝑦, 𝜎𝜎𝑥𝑥2 and 𝜎𝜎𝑦𝑦2 are the variances of 𝑥𝑥 and 𝑦𝑦, 𝜎𝜎𝑥𝑥𝑦𝑦 is the covariance of 
(𝑥𝑥, 𝑦𝑦), and 𝑐𝑐1 and 𝑐𝑐2 are stabilization terms in the case of very small denominator values.  𝑐𝑐1 = (𝑘𝑘1𝐿𝐿)2 and  𝑐𝑐2 =
(𝑘𝑘2𝐿𝐿)2, where 𝐿𝐿 is the dynamic range of the pixel values and 𝑘𝑘1 = 0.01 and 𝑘𝑘2 = 0.03 by default. 

This model uses both PSNR and SSIM to evaluate the quality of the output images, as discussed in the following 
section. 

4. Model Results 

This section compares the results of the CNN described above against the original ESPCN described by Shi, et al 
[18].  The CNN was trained with a variety of learning rates, optimizers, and scaling factors as well as with and without 
a 30% dropout regularization.  Table 1 shows the hyperparameters used during the model training process.  All model 
configurations were trained using 100 epochs and a default scaling factor of three (i.e. the model attempts to generate 
a super-resolved image with three times the resolution of the input image). 

 

Table 1: CNN hyperparameter variations 

Learning Rate Optimizer Dropout Regularization 
0.01 Adam 30% 

0.001 RMSprop None 
0.0001 Adagrad  

 
The model was trained using the University of California, Berkeley, Computer Vision Group, Berkeley 

Segmentation Data Set 500 (BSDS500) [1], consisting of 500 training images and 200 testing images with an 80/20 
training/validation split. 
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Figure 4 shows a sample of the resulting super-resolved images from the various hyperparameter combinations in 
table 1.  The Adam optimizer with a learning rate of 0.001 and dropout regularization of 30% showed a slightly better 
performance than with no dropout.  More experimentation would be necessary to know whether or not that 
configuration yields consistently better performance or if the improvement was due to the stochastic nature of the deep 
learning pipeline. 

 
 
Having identified the CNN hyperparameter configuration with the best performance, the next step is to experiment 

with changing other factors in the training scenario.  The additional modifications included increasing the number of 
training epochs and experimenting with different scaling factors, as shown in Table 2. 

 

Table 2: Additional CNN hyperparameter training variations 

Fixed Hyperparameters Scaling Factor Epochs 
LR = 0.001 2 100 

Optimizer = Adam 4 200 
Dropout = 30%   

 

Fig. 4: Results of CNN hyperparameter training variations 
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Figure 5 shows the model training results for varying image scaling factors and training epochs; note that figures 
4(b) and 5(b) were generated from the same model configuration.  As expected, changing the scaling factor of the 
model has a significant effect on the super-resolved image output by the model.  Changing the scaling factor is 
analogous to zooming in or out on an image; a larger scaling factor has the effect of zooming in and causing additional 
pixilation. 

Interestingly, while increasing the number of training epochs does improve the model performance, the 
improvement is slight (0.83 dB) for a scaling factor of two, moderate (2.94 dB) for a scaling factor of three and 
negligible (0.11 dB) for a scaling factor of four.  This may be due in part to the fact that Shi, et al originally designed 
their ESPCN model to scale images by a factor of three [18] and in part due to the stochastic nature of deep learning.  
Depending on the desired application for the super-resolved images, the user can decide whether or not the slight 
performance improvement from additional training epochs justifies the extended training time. 

As an example of the subjective visual comparison of the resolution improvement, Figure 6 shows a side-by-side 
comparison of the low-resolution input, high-resolution target, and super-resolved model output.  Visual inspection 
of Figure 6 shows that the model is able to produce an image that has a resolution better than the input image but not 
yet approaching the resolution of the target image. 

The final step in performance analysis is to evaluate a selection of the MSE plots generated during the model 
training process.  Recall that PSNR is determined by the maximum pixel value and the MSE (equation (5)).  Figure 7 
confirms that the Adam optimizer does tend to outperform RMSprop and Adagrad, regardless of the other 
hyperparameter settings. 

 

Fig. 5:Training results from CNN epoch number and scaling factor training variations 

Fig. 6: Side-by-side comparison of (a) low-res input image, (b) high-res target image, and (c) super-resolved model output 
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In their paper proposing the ESPCN network, Shi, et al compared the performance of their network against a 
selection of publicly available benchmark datasets, including the Berkeley segmentation dataset BSDS500 [1].  In all 
cases, Shi, et al were able to achieve superior performance in terms of PSNR and model run time.  This paper only 
uses BSDS500 dataset however, given the extensive comparisons across multiple datasets by Shi, et al, comparing the 
performance of this CNN with the ESPCN will provide a snapshot of capabilities, in terms of PSNR.  Shi, et al also 
use model run time of the ESPCN compared to other super resolution techniques and networks such as bicubic, 
SRCNN and TNRD [18].  Shi, et al conducted their experiments using a K2 GPU which was not available for training 
this model.  Since it isn’t possible to conduct a viable comparison of performance time without comparable hardware, 
the performance comparison is limited to PSNR without consideration of the time required to train the network or to 
super-resolve a single image.  Shi, et al did not report performance results using the SSIM metric.  Table 3 shows a 
comparison of the average PSNR scores between the CNN in this paper and the ESPCN. 

In an effort to make the performance comparison as relevant as possible, the model hyperparameters were set to 
equal those used by Shi, et al in the ESPCN network.  The learning rate was set to 0.0001 and the network was 
trained for 100 epochs.  The comparison varied the optimizer, whether or not the network uses dropout 
regularization, and the scaling factor between 3 and 4 (Shi, et al did not report results using a scaling factor of 2). 

Table 3 clearly shows that the original ESPCN network proposed by Shi, et al outperforms the CNN 
modifications made for this paper using the BSDS500 images.  Shi, et al did not report which optimizer they used to 
train their network, nor did they report whether or not they used any type of regularization.   

A final consideration when evaluating network performance differences is the fact that this CNN only enhanced a 
single band (Y) of the input image, whereas Shi, et al enhanced all three bands of the low-resolution RGB input 
image.  The inclusion of the two additional hidden layers and the dropout regularization helped improve the 

performance of this network, such that it begins to approach the benchmark ESPCN performance established by Shi, 
et al.  However, that improvement does not offset the loss of performance incurred from enhancing only one color 
band versus enhancing all three bands.  Additional information regarding nuances of the network and details of the 
training methodology would enable a more comprehensive comparison of network performance. 

Table 3: Comparison of average PSNR with baseline ESPCN network 

Fig. 7: Selected MSE plots from CNN hyperparameter training variations 



 William Symolon  et al. / Procedia Computer Science 185 (2021) 213–222 221
 Symolon, et al. / Procedia Computer Science 00 (2021) 000–000  

5. Future Work 

The original concept for this model was to implement a multi-image super resolution deep learning pipeline capable 
of receiving four low-resolution images and outputting a single high-resolution image.  Project timelines and 
implementation difficulties resulted in the need for a simplified single-image super resolution network architecture.  
Future work will expand the model to be capable of accepting multiple low-resolution image inputs and synthesizing 
a single high-resolution image. 

As noted in section 4, the CNN network used in this paper only enhanced a single band (Y) of the input image, 
resulting in reduced computational complexity which then also caused a corresponding reduction in network 
performance.  Developing a network capable of improving resolution across all three color bands is an important area 
of future study. 

Since the ultimate goal of the research is to improve CubeSat image resolution, the network will need to be modified 
to accept low-resolution, overhead, remote sensing images which generally have a high number of very small objects 
within the image frame.  Future versions of the network must be sensitive enough and have a sufficient number of 
layers to extract a large number of feature maps and synthesize those feature maps into a coherent high-resolution 
image. 

As a final goal for the research, in addition to being capable of accepting multi-image inputs, the network would 
be dynamically scalable, capable of identifying the number of low-resolution input images being provided and 
generating a network of sufficient breadth and depth to process those images. 

6. Conclusion 

Traditional high-resolution, electro-optical satellite imagery requires large lenses and long focal lengths, which in 
turn require large satellites to support them [3].  Of the two primary methods for improving spatial image resolution, 
hardware solutions are less practical for CubeSats due to the larger costs, physical size, and diffraction-limited 
resolution commonly associated with current state of the art imaging hardware.  Thus, a software solution is an 
attractive alternative to improve EO spatial resolution of CubeSat images. 

This paper implements a modified version of the ESPCN proposed by Shi, et al [18] and compares network 
performance in terms of the super-resolved image PSNR.  The initial results indicate that this network does not achieve 
an average PSNR as high as that of the ESPCN.  Nevertheless, the PSNR and SSIM results obtained from this network 
still provide a measurable improvement in resolution over the low-resolution input images and represent a step toward 
providing usable high-resolution imagery from low-resolution CubeSat images. 
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