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Summary

:

We consider a model of search vhen the distribution of prices (wages)

is unknown. The effect of changing the objective function from
minimizing expected cost to maximizing expected utility is examined.





1. Introduction

2/
A considerable literature— analyzes the behavior of an indi-

vidual who is to buy one unit of a good in a market with differing prices

for the good. The consumer is assumed to sample, at a fixed cost, from

a known probability distribution over a finite set of potential prices,

and to minimize the expected sum of price plus search costs. The optimal

strategy is characterized by a reservation price, with search ceasing as

soon as a price quotation no higher than the reservation price is elicited.

Rothschild [2] is rightly critical of the assumption that the

searcher behaves as if he knew the distribution of prices, and looks

instead at an environment where a searcher with prior beliefs about the

unknown price distribution "learns" through Bayesian updating of beliefs

as prices are observed.

For this environment, the characterization which would be

analogous to a reservation price is the reservation-price property:

the existence of a threshold price function which determines a reserva-

tion price for each history of observed price offers. Rothschild

establishes^ the reservation-price property for an expected-cost minimiz-

ing search strategy, in the case where the searcher's prior beliefs have

a Dirichlet distribution (cf below). Bayesian updating with a Dirichlet

prior has the crucial neutrality property; observing price p, does not

affect the relative perceived likelihood of prices p. and p,., j, k ^ i.

This paper considers the extension to an expected-utility-

maximizing searcher with the option of purchasing different quantities

of the commodity. In particular, we consider a searcher who derives

utility from leisure and a consumption good. A price quotation for the



good can be obtained by foregoing a fixed amount of leisure. After any

price is observed, the searcher may exchange any (or all) of his (or

her) remaining leisure for the consumption good at this price. The

quantity ultimately purchased will in general depend upon the prices

he has observed.

In the case where the commodity in question is a durable good,

and the quantity purchased is invariant with respect to the price, we

might expect that the quality of the good is not invariant. If so, the

quality may be treated as a proxy for quantity purchased. Thus even for

durable consumer goods expected-cost minimization may yield different

results from expected-utility maximization.

We show that for expected-utility maximization the reservation-

price property may not hold. This is demonstrated by means of a simple,

non-pathological example where prior beliefs have a Dirichlet distribu-

tion, as in Rothschild.

We also show that if we assume a searcher's indirect utility

function globally satisfies a particular inequality, then his expected-

utility-maximizing stopping rule will exhibit the reservation-price

property if he has a Dirichlet* prior . The inequality which guarantees

the reservation-price property is satisfied for all direct utility func-

tions which are homogeneous.

2. Preferences and Beliefs

A searcher faces one market where the numeraire good, leisure,

is exchanged for a consumption good. A price quotation can be elicited

by foregoing c units of leisure.
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Suppose the individual has decided to cease searching upon

observing the (relative) price p. The quantity to purchase is then

3/
determined by the standard (full-information) consumer problem,—

u(p,I) = max w(x,L) subject to I - L - px £ (1)

x,L

2 1
where w(*): R -> R is the direct utility function, (x,L) the vector of

consumption of the purchased good and leisure, and I the "current income"

or the finite leisure endowment I less leisure foregone for search, w

is assumed to be concave and continuous. As properties of (1) have been

well-studied, x, L, and w(») will be submersed, and the analysis concerned

with the indirect utility function u(p, I) and the decision whether to

search again with current income, and quoted price-, given updated beliefs.

The environment is the formal extension of Rothschild's model

to expected-utility maximization, altered only to maintain consistency

with that objective. Search is without recall, eliciting each time an

element of the finite set

P = fPp P 2 > • • •» Pn
>

labelled ascendingly, so p, < p . .—

The actual (but unknown) probability distribution over P, a

multinomial, is characterized by II = (ir, , ..., tt ) e A, where A is the
1 n

simplex in R , tt . the probability that any given price quotation will be

p.. The searcher updates by Bayes 1 rule a subjective prior distribution

over A as price quotations are obtained. If this experience is summarized

by N = (N, , -.., N ), the number of times each price has been observed,

let p = /EN. and u. = pN., i = 1, ..., n. Then



(y,p> e r = A x [0,1]

completely characterizes experience. With an observation of p., (v»p)

becomes

h. (p,p) =
i

^L pi-l Vp yi+l JjL JL_] m
1+p' '"' 1+p » 1+p ' 1+p ' '"' 1+p' 1+pJ

'
u;

Let A(p,p) be the current prior over P for a searcher with history (y,p).

Note that

lim A.(u,p) = V., i = 1, •••, n . (3)

p+0
X 1

We maintain the assumption that the searcher's prior is a

Dirichlet distribution (in which case updated beliefs are also Dirichlet),

which has been completely characterized.

Proposition 1 (Rothschild [2}): A searcher has a Dirichlet

prior if and only if it is possible to parametrize his experience so

that

^(p.p) = U- for all (p,p) £ r .

By (3) above, then, all searchers come with enough experience to behave

as if their priors were Dirichlet.

3. The Optimal Strategy

Let

V^p.p.I) = I X
±
(u,p) u(Pi ,I) . (4)

i

V (u,p,I) is the expected (indirect) utility for a consumer allowed to

search only once, assuming history (u,p), and holding current income I

(after costs of this one allowed search have been paid). Designate
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V
T
(y,p,I) = I A

i
(M,p) max {uCp^I), V

T_ 1
[h.(u,p), I-c]} (5)

i

V (p,p,I) is then the expected attainable utility for an individual who

can search at most T times, has prior experience (p,p), and income I

after costs of the first search have been paid. Clearly

V
T_ 1

(u,p,I) <_V
T
(u,P,I) < u(

P;L
,I)

for all T, so the V (u,p, I) converge.

Defining

V(p,p,I) - lim V (u,p,I) , (6)

it is clear that

V(y,p,I) = E A^y.p) max{u(p
±
,I), V[h

±
(u,p) ,I-c] } , (7)

so the optimal stopping policy is to cease search, upon eliciting price

p. with experience (u,p) and income I, if u(p.,I) >^ V[h. (u,p) ,I-c] , other-

wise to search again.

Rothschild [2] proves that the optimal strategy for an expected-

cost-minimizing searcher implies a finite number of searches. His argument

extends to this model, although finite income implies finite search

trivially.

4. Non-Reservation-Price Examples

In general, searchers who learn about the unknown distribution

of prices do not exhibit the reservation-price property. Rothschild's

example imagines that P = {1, 2, 3}, c = .01 (I >^ .5), and prior beliefs

admit only two possible price distributions: a) prob (3) = 1, or b)
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prob (1) = .99, prob (2) = .01. Then an initial quote of 3 will end

search, but an initial price of 2 will cause further search, as a much

better price is expected.

In his example, a lower price offer has a direct effect, higher

attaintable utility if search ceases (u(2,I) > u(3,I)J. It also has an

indirect effect, measured in utility terms as V[h„(y ,p) ,I-c] - V[h_ (u,p) ,I-c]

In this case, the indirect effect of a lower price quote swamps the direct

effect. When that cannot happen, the reservation-price property obtains.

Proposition 2. If for all (u,p) e A, all I > 0,

|u(p
k
,I) - u(p

i
,I)| > |v[h

k
(y,p),I-c] - V[h

i
(u,p),I-c]| , (8)

then

V[h.Gi,p),I-c] < u(p
±
,I) < u(p

k
,I) (9)

implies

V[h
k
(u,p),I-c] £ u(p

k
,I) . (10)

That (9) implies (10) is the reservation-price property. We adopt and

maintain the notational convention p. > p, .

Proof: Trivial if V[h (y,o),I-c] < V[h . (u,p) , I-c] . If not, by (8),

u(p
k
,I) - u(

?i
,I) > V[h

k
(u,p),I-c] - V[h

i
(p,p),I-c] ,

so

u(p
k
,I) - V[h

k
(y,n),I-c] > u( Pi ,I) - V[h.(ii,p),I-c] > .
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When the searcher's objective is to minimize expected cost, the

indirect effect of a lower price quote is solely the informational value

of that price (the expected-cost evaluation of the effect upon updated

beliefs). In the case of a Dirichlet prior, the informational value

of a lower price cannot swamp its direct effect, and Rothschild is able

to prove that expected-cost-minimizing searchers with Dirichlet priors

exhibit the reservation-price property.

However, the Dirichlet assumption is not sufficient to establish

the reservation-price property for expected-utility-maxiraizing search, as

now computing the indirect effect of observing a lower price must take

into account the expected change in the marginal utility of leisure.

That is, while the nominal cost of search is fixed, the expected cost

in foregone utility will depend on price observations.

Consider a simple illustration. Let

x + 40 , if x > 2/3 ,

w(x,L)
Il22x - 40 2/3, if < x < 2/3 ,

P = {
X
/320,

1
/4, 3}, and

l/o l/o 3 ;/ 1
(u,p) =

(

x
/8, V8,

J
/4; "74)

is the searcher's experience. Search cost, c, is 1, and income after

the first search is 2.

It is obvious that one or two searches will be optimal. If the

first search elicits p = 3, the posterior is (y,p) -

A second search would yield expected utility

1
/10,

1
/10,

8
/10;

1
/5

EU =
1
/10 w(320,0) + 1

/10 w(4,0) +
8
/10 w(

1
/3,0) = 40.4
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Without search w(2/3,0) = 40 2/3 can be achieved, so search ceases.

Suppose instead the first search observed p = /4. The

13 3 1
posterior is then (u,p) = ( /10, /10, /5; /5). A second search

would yield expected utility

EU = 1
/10 w(320,0) + 3

/10 w(4,0) + 3
/5 w(

1
/3,0) = 49.2

,

while stopping after the first search can only attain w(8,0) = 48.

So, in this example, if the first search elicits the highest

price, 3, search stops and 2 units are purchased. But if the first

price quoted is lower, /4, expected utility is maximized by searching

again. Note that allowing for partial purchase after the first search

would not alter the example.

Also, as the example relies only upon the value of the indirect

utility function at a finite number of points, a smooth utility function

approximating the w function above would not change the conclusion.

Similarly any sufficiently small perturbation of this utility function

will give rise to the same search behavior. In particular, the preferences

over x and L could have been strictly monotonic and convex without alter-

ing the conclusion.

5. A Reservation-Price Theorem

The following property is useful for reservation-price behavior:

|u(p
k
,I-c) - uCp^I-c)! <_ |u(p

k
,I) - u(p

i
,I)j, any P i >Pk

E P, and I > c .-'(*)

Proposition 3: If w(x,L), the direct utility function, is

homogeneous of degree h, property (*) obtains, for all h >^ 0.
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w(ax,aL) = a'w(x,L) for all a >

implies u(p.,al) = a u(p.,I) for all a >

Thus,

h
[u(p, ,1) - u(p.,l)] ± u(p, ,1) - u(p ,1)

I-c
u(p

k
,I-c) - uCp^I-c) = l-j-

Theorem. Assume property (*) , and that prior beliefs

are Dirichlet . Then the stopping rule for an expectedr-

utility-maximizing searcher exhibits the reservation-

price property.

The proof, which is nearly parallel to Rothschild ' s argument, is presented

in the Appendix.

6. Concluding Remarks

From the theorem we see that the reservation-price property

obtains if the searcher has a (direct) utility function which is

homogeneous of degree h, any h >_ 0. Thus, marginal utility of income

can diminish (at arbitrarily high rates) without destroying the reservation-

price property so long as it diminishes "regularly." In the example, the

marginal utility of income is constant for low income, then diminishes,

then is once again constant. This suggests that third-order considerations

are related to the question of reservation price behavior.



Appendix

Theorem II. Assume property (*), and that prior

beliefs are Dirichlet. Then the stopping rule for

an expected-utility-maximizing searcher exhibits

the reservation-price property.

Proof: Given Propositions 1 and 2 above, it is sufficient to prove

that

X
1
(y,p) = u

±
(11)

implies, for all positive integers, s:

|u(p
k
,I) - u(p.,I)| > |v[hj(u,p),l-c] - V[h*(u,p),I~c]| , (12)

where

r

h^(u,p)
li

x
P^P Mn

1+sp '
'*•» 1+sp ' "•* 1+sp * 1+sp

a second-order approximation to the updating of experience which would

result from observing price p. s times.

It is sufficient to prove that, for all positive integers, t:

|u(p
k
,I) - u(Pi ,I)| > |V

t
[hJ(M,p),I-c] - V

t
[h*(u,p),I-c]| (13)

which is done by induction. By (11),

VhJ<|..p).I-c] --^1 [y.u( P .,I-c)l +
I
g^u(p.,I-c) .

Thus,

V
1
[h
k
(p,p),I-c] - V

1
[h^(y,p),I-c]
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=
(ifi^J

[u(p
k
,I-c) - u(Pi ,I-c)] < u(p

k
,I-c) - u(P± ,I-c)

< u(p
k
,I) - u(Pi ,I) ,

with the last inequality resulting from property (*). So (13) holds

for t"l. The following lemmas show that if (13) is satisfied for

t=*T-l, it must be true for t=T.

Lemma 1. u(p, ,1) _> u(p.,I) implies

V
T
[h£(u,p),I-c] > V

T
[hJ(u,p),I-c] .

Proof: As shown above,

V
1
thk

(y,p),I-c] - V
1
th^(y,p),I-c]

sp&[u(Pk,I-O-u(Pi,I-c)]>0

Presume the lemma holds for t=T-l, and adopt

h
k
h
i
(y,p) = hjjh^u.p)] = h

±
h
k
(u,p) .

Then,

V
T
[h
k
(u,p),I-c] - V

T
[h^(y,p),I-c]

—
—j E u

j
[max{u(p

j
,I-c), V

T_ 1
[h*h.

j

(y,p), I-2c]}

- max{u(p,,I-c), V_ . [h%. (y,p) ,I-2c}} ]

j T-l L
i j

sp
1+sp

[max{u(p
k
,I-c), V

T_ 1
[h
k

A
(y,p) , I-2c]

}

s+1.- max{u(Pl ,I-c), V
T_ 1 [hJ

T -L
(M,p),I-2c]}] (14)
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In the right-hand side of (14), the terms in brackets within Z

i

are of the form J(A,B,C) = max (A,B) - max (A,C), with A = u(p.,I-c),

B - V
T_1

[hfh.(y i p),I-2c], and C = V
Jul [hJh. (v»p)»I-2c]. By the induction

hypothesis, B _> C, so all these terms are nonnegative.

The last term in brackets is of the form J(A,B,C,D) = max (A,B) - max (C,D)

with A = u(p
k
,I), B = V^jEhJ

J
'(p,p),I-2c], C = u(p

±
,I), and D = V

T_ 1
(h

i

A
(u,p), I-2c],

By convention, p. _> p , so A > C, B > D by the induction hypothesis, so this

term is nonnegative. (14), a weighted average of nonnegative quantities,

is nonnegative.

Lemma 2. If (13) holds for t=T-l, then

s.
max{u(p ,I-c), V

T_ 1
[h^h

j
(u,p),I-2c]}

s
max{u(p ,I-c), v

T_ 1
th

±
h (u,p),I-2c]}

< u(p
k
,I) - u(Pi ,I) (15)

Proof: The left-hand side of (15) is of the form J(A,B,C) max (A,B) - max (A,C),

with A = u(Pj ,I-c), B = V
T_1 [hJhj

(u,p),I-2c], and C = V^BlJhj (p,p) , I-2c]

.

< B - C < u(p
k
,I-c) - u(p

±
,I-c) < u(p

k
,I) - u(Pl ,I) . (16)

The first inequality comes from Lemma 1, the second from the induction

hypothesis, the third from property (*). If C > A, then B ^ A, and

J = B - C. If C < A, either B < A and J = A-A=0_<B-C, or B > A

and J=B-A<_B-C. So J < B - C, and (16) provides the desired conclusion.

Lemma 3: If (13) holds for t = T-l, then

max{u(p
k
,I-c), V

T_ x
[h
k

X
(ji,p) , I-2c] }

- raax{u(Pi ,I-c), V^IhJ (u,p) ,I-2c]

}

< u(p
k
,I) - u(Pi ,I) . (17)
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Proof: The left-hand side of (17) is of the form

J(A,B,C,D) = max (A,B) - max (C,D), where A = u(p ,I-c),

B = V
T_1

[h^
-L
(y,p),I-2c], C = u(Pi ,I-c), and D = V^lh* X

(p,p) , I-2c]

.

By Lemma 1, B > D.

< A - C < u(p
k
,I) - u(Pi ,I) (18)

The first inequality is by convention, the second is property (*) . To

show J j< A - C, four cases must be considered:

1. A>B, C>D, soJ = A-C

2. A>B, C<D, soJ = A-D<A-C
3. A<B, C<D, soJ=B-D<A-Cby the induction hypothesis.

4. A < B, C >^ D. This implies B-D>A-Dj>A-C, which would

contradict the induction hypothesis, so this case may be discarded.

Thus, J <^ A - C, end (18) provides the conclusion.

Lemma 4: If (13) holds for t = T-l, it holds for t=T.

Proof: Use Lemmas 2 and 3 to calculate:

V
T
[h£(u,p),I-c] - V

T
[hJ(u,p),I-c]

1+sp
Z u [max{u(p ,I-c), V

T
,[\h (u,p),I-2c]}

- max{u(p ,I-c), V
T_ 1 [hJh

(p,p),I-2c]}]

sp

1+sp

s+1
tmax{u(p

k
,I-c), V

T_ 1
th
k

(u,p),I-2c]}

- max{u(Pi ,I-c), V
T_ 1

[h
±

1
(u,p),I-2c]}]
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