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Abstract

The purpose of this research is to investigate a set of multiple

criteria, composition models for hierarchical organizations. It presents a

generalized decomposition approach to an overall organizational resource

allocation problem. This approach generates in a three-level, decision-making

hierarchy applicable to the composition models. For each model, the basic

decisions and coordinative mechanisms used at every level within this

decision-making hierarchy are detailed. Potential shortcomings of the models

are cited. Through the use of a simple example the potential for the

nonoptimality of the models' solutions is demonstrated. The results of the

study indicate that these models may offer little assistance in allocating

resources in real world hierarchical organizations.

Keywords: Composition Models, Decomposition Models, Goal Programming,
Resource Allocation, Hierarchical Decision Making





I. Introduction

This paper analyzes a group of three-level resource allocation models.

The models include:

Ruefli's (1971a, 1971b) Generalized Goal Decomposition (GGD) Model

Freeland's (1973, 1976) and Modified GGD (MGGD) Model,
Freeland and Baker's (1975)

Davis (1975) and Davis and

Talavage's (1977)

Davis (1978) and Whitford
and Davis' (1983)

Centralized Goal Decomposition (CGD) and

Hybrid Goal Decomposition (HGD) Models

Generalized Hierarchical Model (GHM) , and

Davis and Whitford* s (1985) Reformulation of Freeland's MGGD (MGGD II)

Model

Sweeney, et al . (1978) have characterized the formulation and structure

of these models as a "composition approach*' to organizational decision-

making. Unlike the decomposition approach which begins with an overall

problem and derives an ensemble of decisions to effect its solution, the

composition approach begins with an ensemble of subproblems (or decisions)

that emulate the organization's actual decision-making structure. In

discussing these models, Sweeney et al . focus attention on two formulations:

(1) the Ideal Organizational Problem ( IOP) which is the problem that the

organization would like to solve and (2) the Decision Process Model (DPM)

which consists of i) a mathematical statement of the subproblera's solved by

each of the separate units of the organization and ii) an algorithm for

solving the subproblems. Sweeney, et al . suggest that an analysis of the IOP

and DPM' s formulations and solutions can provide a basis for assessing the

efficacy of the current or proposed organizational structure and its

coordinating mechanisms. If the solutions to both problems are the same,

Sweeney, et al . define the DPM to be "coordinable
.""

This paper will develop a framework for comparing the IOP and DPM' s of



these 'composition models". In deriving this framework; two specific tasks

will be undertaken. The first task requires the derivation of a generalized

decomposition approach for an organization's overall resource allocation

problem. This derivation, which is presented in Section 2, generates a three-

level, decision-making hierarchy which is applicable to each of the models.

The second task, given in Section 3, is to specify and compare the basic

decisions, the coordinative mechanisms and solution algorithm used by each

composition model. Section 3 also analyzes the relationship between these

composition models and mathematical decomposition procedures and identifies

potential difficulties for each model. Section 4 presents a simple but

straightforward problem in its IOP format. Next it is shown that each models'

solution procedure (i.e., its DPM) has a potential path towards a nonoptimal

solution of the IOP. This nonoptimality , however, does not arise from the

organizational architecture of the model, but rather from nonunique solutions

and/or nonunique coordinative information that arise during the solution

process

.

Because the source of these nonoptimal solutions arises from the-

mathematical structure of the composition models and not the structure of the

organization, the precise definition of the DPM is shown to be at best

ambiguous. These findings suggest that one should be extremely cautious in

allocating an organization's resources or in recommending the restructuring of

an organization based upon the results of any of these models as they are

currently formulated.



2. DEVELOPMENT OF THE DECOMPOSITION APPROACH

This section focuses upon an overall resource allocation problem faced by

a three-level, hierarchical organization. This overall problem (which is

assumed to be an IOP) possesses a structure which can be decomposed into a

three-level decision-making hierarchy.

The overall organizational problem is defined in equations (1) through

(4).
1

*>* E
k=l

[Z
l=r i+1

C
i
X
i

+« + WX + \\ + Yk + C
G,

G
k ">

k-1 k

r
k + -

s.t. I. ,. B.X. - I Y. + I Y. - G, =
i=r

k-l
+ 1 l 1 \ k \ k k

(2.k)
r
k + -

l -
J.-,

B!X, - I ,y, +1 ,y, = g,1=r
k-l

+1 x X
"k

k
"k

k k

for k=l , . . . , M

D.X. {£} F. "(3.i)

for i=l , . .
. , N

r
k-l

P
k
G
k fy G

o
(4)

with all variables >_ 0, and where I and I , are (ra^ x m^) and (m x m )

* k

identity matrices, respectively. At this point, the mathematical formulation

Omission of all cost vectors, C, creates a pure goal programming
structure. In certain situations, non-zero cost vectors may be desirable; see
Davis (1978).



given in equations (1) through (4) will be treated as a problem statement

only. Specific definitions will begin shortly.

It should be noted that each of the composition models' cited in the

introduction use a different set of variable definitions and, in some cases,

slightly different constraints in the original statement of his (their)

models. Although the IOP's variables and constraints may differ slightly from

the original formulations, they are applicable to all of the models. As will

become apparent, the essential differences among the models are not their

original variable/constraint definitions, but rather the implicit approach

that each model employs to "decompose" and solve the overall problem.

Figure 1 gives a variable/ constraint diagram for this problem. In

Figure 1, each row of boxes represents a specific equation of the overall

problem. The defining equation is given in the upper left-hand corner of the

leftmost box while the boxes contain the decision variables for each

equation. By grouping equations (2.1) through (2.M), the classic block-

angular structure of the overall problem is apparent. Thus, a two-level

decomposition approach to the problem can easily be applied where equations

(2.1) through (2.M) define the restricted master program, and equations (3.1)

through (3.N) and (4) define the appropriate column generators."

The structure of this overall problem permits the consideration of a more

sophisticated decomposition approach. It is evident that the overall problem

is nearly separable into M subprobleras; only constraint (4) prevents this

separation. Therefore, to permit separation, constraint (4) will be initially

neglected, and the vectors, (Gi,...,Gw), will be assumed to be constant. The

2 The terms, block-angular structure, restricted master program, and
column generators are standard terminology in decomposition theory. An
excellent presentation of this theory is given in Lasdon (1970).
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first of the M subproblems would then consist of constraints (2.1) and (3.1)

through (3.ri) with the first term of the summation (k=l) in equation (1)

serving as its objective function. Because Gi is assumed to be a constant,

it can be placed in the right-hand-side vector of equation (2.1). The

resulting subproblera is shown graphically in Figure 2 as SP.l. In Figure 2,

each of the M subproblems, SP.l through SP.M, possesses a similar block-

angular structure. For the subproblem SP.k, constraint (2.k) defines the

restricted master program, while constraints (3.rj
c
_, + 1) through (3.r^)

define column generators supporting k-th the restricted master.

In the overall problem, the subproblems are coupled through constraint

(4). This coupling is illustrated in Figure 2 by the dashed lines. Hence, a

mechanism through which constraint (4) can generate the composite goal vector

(Gi,..., Gjjj) is required. The incorporation of such a mechanism represents

the third level of decision-making employed by the decomposition procedure.

The next section discusses the three procedures which have been employed in

existing three-level composition models.

In contrasting the three-level decomposition approach with the two-level

approach applicable to block-angular structure of Figure 1, several

fundamental differences emerge. First, the single restricted master program

resulting from constraints (2.1) through (2.M) in Figure 2 has now been

replaced by M restricted master programs defined for each constraint (2.k)

(k=l,...,M). For the two-level model in Figure 1, constraint (4) defines an

appropriate column generator for the restricted master program. For the

three-level approach in Figure 2, constraint (4) must be used to develop a

Under the assumption that there are M restricted master programs, there
exists a series of integers Tq , r,, ..., rw, such that column generators
rk-l + l» ..., r^ are associated with restricted master (2.k). Thus if there
are in total N column generators Tq must equal zero, and rw must equal N.
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coordinative mechanism for the M separate restricted master programs. Perhaps

the most fundamental difference, however, is that under the three-level

decomposition procedure, no single decision-making subsystem has been assigned

the task of optimizing the organization's overall objective function. That

is, each of the M restricted master programs will consider only the k-th term

of the summation given in equation (1). Both the two-level and three-level

decomposition procedures will, however, use equations (3.1) through (3.N) to

define column generators that support their respective restricted master

programs.

An organizational hierarchy based upon this three-level decomposition

approach is depicted in Figure 3. The two lower levels of the organization

result from the application of a given decomposition of subproblems SP.l

through SP.M. The restricted master program for each subproblera, SP.k

(k=l,...,M), will be called management unit or manager k. Manager k will

coordinate the decision-making of the i-th operating unit, OIL ,

( i=rj
c_^

+ l , . . . .r^) . Each subordinate operating unit will iteratively generate

a proposal vector, X^(t), for its manager at iteration t. To coordinate the

generation of this proposal vector, X^(t), manager k must generate the

coordinative input vectors, Y.(t) ( i=r
lc
_^ + l , . . . ,r^) . OU^ will then

incorporate its Y.(t) vector into the decision-making process. Furthermore,

OU^ is responsible for assuring that the proposal vector, )C(t) satisfies

constraint (3.i). In generating a composite proposal vector for OIL , X (t),

manager k must also insure that constraint (2.k) is satisfied while

simultaneously attempting to minimize the k-th term of the summation given in

equation ( 1 )

.

Finally, to coordinate the simultaneous solution of the M subproblems,

SP.l through SP.M, a third level of decision-making is introduced as the
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central unit (CU). The CU will interact with each management (k=l , . .
. ,M)

.

This interaction again will be iterative in nature. To coordinate manager

subsystem k' s decision, the CU will generate the external goal vector,

Gk(t+l). In generating G^Ct+l), the CU satisfies constraint (4) and

ascertains the degree of success that manager k(k=l,...,M) has experienced in

meeting its current goal vector, Gift.). To expedite the latter each manager

must generate a feedback vector, 1*^(0 (k=l,...,M), that the CU can

incorporate into its decision process at the next iteration. Once the CU

generates the vector GiXt+l), manager k incorporates it into the right-hand-

side of its constraint (2.k) on the next iteration.
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3. DEFINITION OF THE COMPOSITION MODELS

As seen in Table 1 the composition models' CU utilize three basic

decisions processes; these are given in equations (5) through (15). The

managers all use a linear goal programming decision process, given in

equations (16) through (21). Finally, the OUs utilize two basic decision

processes which are given in equations (22) through (29).

Central Unit Decision Process (CUDP)

CDDP I (Generalized Linear Programming or the Dantzig and Wolfe Decomposition

Algorithm

Min EJJ^IC " n
k
(t)]G

k
(t+l) (5)

k

s - c
-

ELi ¥V t+1) # G
o

(6)

G (t+1) > for k=l, ..., M (7)

Feedback Information: I", (t+1) = II, (t)
k k

CUDP II (Bender's Positioning Algorithm)

Min Z^
+l

Cj^t+1) (8)

s.t. Cj.Ct+1) + [ILjs) - C
G

]G
k
(t+l) >

k

z*(s) + [n
k
(s) - C

G
]G
k
(s) (9)

k

for k=l, ..., M; s = 1, ..., t

<=i P
k
G
k
(t+1) $1 G (l0)

G
k
(t+1) > for k=l M (11)

Feedback Information: r (t+1) = H, (t)
k k



Table 1

Decision Processes Utilized by the Composition Models

Level of the Hierarchy

12

Composition
Model

Author (s) Model
Central
Unit

Management
Unit

Operation
Unit

Ruefli GGD CUDP I MUDP OUDP I

Freeland MGGD CUDP II MUDP OUDP I

Davis and

Talavage CGD CUDP III MUDP OUDP I

Davis and

Talavage HGD CUDP I/III MUDP OUDP I

Davis' GHM CUDP III MUDP OUDP II

Davis and

Whitford MGGD- I

I

CUDP II MUDP OUDP I
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*
In equation (9), zv' s ) ^- s tne °P c imal value of manager k' s objective

function, i.e. the optimal value of equation (16) on iteration s for s=l,

t.

GDDP III (Goal Programming)

Min ^+1 [C
G

G
k
(t+1) + W

k
S
k
(t+1) + W

k
S
k
(t+1)] (12)

k

s.t. G„(t+1) + I sf(t+l) - I s7(t+l) =
K. m, k. m. ic

G
k
(t) + I" (t+1) for k=l, ..., M (13)

Z
k=l

P
k
G
k
(t+1) $1 G (14)

G
k
(t+1), s£(t+l), S~(t+1) >0 for k=l, ..., M (15)

Feedback Information: I" ( t+1) = Y^(t) - Y~(t)

Manager k's Decision Process (MUDP)

MDDP (Goal Programming)

Min Z* C±X*(t) + <Y+CO + <y^t) + W-Y-(t) + w'y^t) (16)
k-1

• e
'

E
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1 K 1 K.

Y
k
(t), Y~(t), y

k
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(21)



Operating Unit i' s Decision Processes (OUDP)

OUDP I (Generalized Linear Programming - the Dantzig and Wolfe

Decomposition Algorithm)

14

Min [C. - n.(t)B. - n.
I (t)B ,.]X.(t+l)

1 k 1 k li

s.t. D.X.(t+l) {j} F.

x
i
(t+i) >

(22)

(23)

(24)

Coordinative Input: Y.(t+1) =

n
k
(t)

• • • •

Ln'(t).

OUDP II (Goal Programming)

MinC.X. (t+1) + W^U+l) + w%+
(t+l) + W. 4*7 (t+1) +w. ij».(t+l)

l l k k k r
i k i k T

i
(25)

s.t

B.
l

• •

B._

rCt+l)
x.(t+i) i . , + i

*T(t+i)

f.u+i)
i

f.(t+n
i—i

= Y^t+l)

D.X.U+1) {^} F.

X^t+1), f*(t+l), <|£(t+l), ^.(t+l), i|)~(t+l) >

(26)

(27)

(28)

Coordinative Input: y.(t+l) =

B.
i

X.(t) -
l

r<ctr rY„(tP

Lyw (t)J Ly.tt),

(29)

Because the management units serve as the primary coo. dinators botween the CU

and the OUs , their decisions will be discussed first.

On iteration t, each manager (k=l,...,M) has an external goal vector,

Gj
c
(t), which has been generated by the CU, and an internal goal vector, g^

,

which is assumed to be constant throughout the iterative solution process.

For each subordinate OU^ ( i=ri
c
_i+l > • • • » rv) i

manager k has a set of vectors,

{X
i ( 1 ) , . . . ,X^( t)

}
, which OU.^ has generated during the preceding iterations.
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These vectors may be interpreted as a series of operating proposals. Using

equations (19) and (20), manager k generates a composite proposal

*
vector, X.(t), for each of its subordinate operating units as a convex

combination of the previous vectors or operating proposals. The B^ and

*
B! matrices linearly relate these composite proposal vectors, X.(t), to the

external goal vector, G^(t), and the internal goal vector, g^, through

equations (17) and (18), respectively. In these constraints, the deviation

vectors, Y,(t) Y,(t), y.(t) and y (t), are computed. The objective function
rC K K K

of manager k minimizes the weighted sum of these deviation vectors in

conjunction with the actual cost (if applicable) of the composite proposal

vectors. This objective function corresponds to the k-th term of the

summation in equation (1). Therefore, in solving its decision on iteration t,

management unit k generates the optimal set of composite operating unit

proposal vectors X.(t) for i=r
lc
_, +1 , . . . ,r^ and an optimal set of deviation

vectors Y, (t) , Y, (t), y (t) and y (t). Associated with this solution are two

simplex multiplier vectors, II, (t) and II' ( t) , for equations (17) and (18),
K K

respectively. From this solution, manager k extracts the coordinative inputs

for the decisions at the other levels of the organization. These coordinative

inputs include the feedback vector, T (t), for the CU and the coordinative

input vector, y.i.t), for OU^ (i=rj
c+

,+l, ..., r^) . The formulation of these

coordinative inputs depend upon the CU's and OU's decision processes.

The CU coordinates its managers. This is achieved through the generation

of the set of external goal vectors, (G-, ( t+l ) , . . . ,Gw( t+1 ) ) , which will be used

by the managers on the next iteration. In the three decision structures used

by the CU, equation (4) of the overall problem is considered during the

generation of the external goal vectors. However, the basic strategy employed

4 See Davis and Whitford (1985).
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by the CU to generate the goal vectors differs for each decision process. In

the CUDP I, the CU simply minimizes the reduced cost of the external goals

with respect to managers' optimal solutions for the previous iteration. Thus,

the CU behaves like a column generator for equation (4) in Figure 1. That is,

the CU is acting as if the Dantzig-Wolfe (1960) decomposition procedure were

applied to the block-angular structure displayed in Figure 1.

CUDP II uses the computational approach of Benders' (1960) decomposition

procedure to generate partitioning constraints upon the feasible goal space

given by equation (4). This approach allows the CU to generate any goal

vector, (G^(t+1), ..., GM(t+l)), contained in the feasible region defined by

equation (4). With CUDP I, the CU can only generate extreme points of this

feasible region as potential goals, see Freeland (1976). Like the CUDP I,

CUDP II uses the simplex multiplier associated with equation (17) as the

primary feedback mechanism from the management subsystem k.

On iteration t+1 , CUDP III uses the deviation vectors, Y (t) and

Y (t), obtained from manager k' s decision on the previous iteration as a

source of feedback information. Using this information and the goal vector

which the CU generated on the previous iteration for manager k, G^t), the CU

can generate the "effective goal vector" which manager k' s current decision

* *
(X (t),...,X (t)) would satisfy as an equality. This effective goal

k-L k

vector is given as the right-hand-side to equation (13). The deviation

vectors S, (t+1) and S. (t+1) are then introduced to the left-hand-side of

equation (13) in order to compute the deviations of GJt+l) from this

effective goal vector. Like CUDP II, equation (13) allows the CU to generate

any composite goal vector (G
1
(t+1), ..., G^t+l)) satisfying equation (4) for

consideration by the management subsystems on the next iteration. Through

this procedure, the CU attempts to adjust the composite goal vector so that
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the combination of the cost (if applicable) of the goals and the weighted sum

of the resulting deviations from the effective goal vectors, <\(t) + I\ (t)

(k=l,...,M), are minimized.

The operating units have two basic decision processes. The first is

simply the basic column generator for equation (3.i) derived from the

application of the Dantzig-Wolfe decomposition procedure to the subproblem

(SP.k). In this approach OU^ attempts to minimize the relative cost of its

proposal, X^(t+1), with respect to its manager's current solution while

simultaneously insuring the feasibility of X^(t+1) with respect to equation

(3.i). The coordinative inputs to OIL are the simplex multipliers associated

with its superordinate manager's equations (17) and (18).

The formulation of OUDP II is similar to the CUDP III. However, the

formulations differ in that the CU subsystem must be concerned with the

current solutions for all the management units, while OU, is concerned only

with the current solution of its manager's problem. The coordinative input

for OU^'s decision is its goal vector, Y-(t+l), which its manager generates

using equation (29). If OLL^ (i=rj
c_^ + l, ..., r^) could generate a proposal

vector, X^(t+1), that fulfills each of the goals contained in y (t+1)

(i=r^_^+l, ..., r^) then the management unit k could completely satisfy its

current goals, G^(t) and g^. Equation (26) allows OIL to estimate the

deviations from G^(t) and g^ that will result from itc proposal, X
i
(t+1). The

feasibility of X
i
(t+1) with respect to equation (3.1) is also insured. The

selection of the optimum X^(t+1) is determined by the minimization of the

cost of the proposal vector (if applicable) and the penalty weights for the

deviations .
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4. POTENTIAL PATHS TOWARD NONOPTIMALITY

A simple example has been formulated to show how all the three-level

composition models can generate undesirable behavior. For brevity, this

example will be discussed only for the GGD and the MGGD-II models as well as

the GHM. These three models contain all the basic decision processes given in

Table I.

The example begins by assuming that there are OUs 1 and 2, subject to

managers 1 and 2, respectively. The operating constraints for OU 1 and 2 are

identical and defined as

50 < X. < 100 (i=l,2)

while C
t

= (i=l,2). The CU's single constraint is

G
l

+ G
2

= 100

with G
1
and G

2
> , while CG

= Cq = 0. For Manager 1 , B^ = 1 and

W = W~ = 10 . Similarly for Manager 2, B
2

= 1 and W* = W~ = 10 . The

resulting overall problem is given below:

(30)

(31)

(32)

(33)

(34)

(35)

(36)

G
1
+ G

2
= 100 (37)

Y
l* V Y

2' V G
l'

G
2 " ° (38)

Min Z = ioy| + 10Y + lOY^ + 10Y
2

s.t. X
1

+-Y
l

+ Y
l

" G
l

h
+

- Y + Y
2

l
2

"G
2

h > 50

h < 100

> 50

< 100
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The optimum solution for this problem is

X = X
2

= G. = G
2

= 50 and y| = Y
{

= Y* = Y
2

=

with Z* = 0.

4.1 Analysis of the Models' Solutions

All of the composition models begin by solving the OUs' problems on

iteration 1 given as

Min X.(l) (39)
1

(i-1,2)
s.t. 50 < X (1) < 100 (40)

For the i-th OU's problem, there are multiple optimal basic feasible solutions

with Xj(1) equal either 50 or 100. Let us assume each OU returns X^O) = 100

(i=l,2). Also for each model an initial goal allocation is expected from the

CU. Because no coordinative inputs have been generated by the managers, the

CU problem is given as

Min OGjCl) + 0G
2 (1) (41)

s.t. G^l) + G
2
(l) = 100 (42)

GjU), G
2
(l) > (43)

There are two optimal basic feasible solutions to this problem with

[G,(1) = 100, G-Cl) = 0} or {G (1) = 0, G„(l) = 100 } - Assume the first

basic feasible solution is chosen.

At this point, Ruefli's GGD model can be eliminated from any further
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investigation. On every iteration using CUDP I, the CU's problem will have

the form

Min - n^t-DG^t) - n
2
(t-l)G

2
(t) (44)

G
x
(t) + G

2
(t) = 100 (45)

G^t), G
2
(t) > (46)

Of the two basic feasible solutions for the CU defined on iteration one, one

or the other must be optimum at every iteration. That is, on every iteration

the CUDP I will set either G,(t) or G
2
(t) to 100 and the other goal to 0. The

optimal assignment G,(t) = Go(t) = 50 can never be generated as a basic

feasible solution. The GGD algorithm is destined to a suboptimal solution and

is likely to demonstrate an oscillation in the overall objective Z(t).

For the GHM on iteration 1, the manager l's problem is given as

Min 10Y*(1) + 10Y~(1) (47)

100^(1) - Y*(l) + Y~(l) = 100 (48)

XjU) = 1 (49)

XjCl),
yJ(1),

Y~(l) > (50)

The optimal basic feasible solution has X (I) = 1 with both Y (1) and

Y (1) equal to 0. Manager 2's decision is given as

Min lOY^d) + 10Y~(1) (51)

100X
2
(1) - Y

2
(l) + Y~(l) = (52)

X
9 (l) = 1 (53)
:

.+
X
2
(l), Y

2
(l), Y

2
(l) > (54)
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The optimal basic feasible solution is X„(l) = 1 and Y_(l) = 100 with

Y~U) - .

On iteration 2, OU, has the problem

Min 10T|(2) + 10*~(2) (55)

s.t. X
x
(2) - 4-|(2) + ¥~(2) = 100 (56)

with 50 < X
x
(2) < 100; f*(2) , ¥~(2) > (57)

The optimal basic feasible solution gives Xi(2) = 100 with

f~(2) = vt(2) = 0. For 0U
2 , the problem is

Min 104^(2) + 10C(2) (58)

s.t. X
2
(2) - ¥+(2) + V 2) = ° (59)

with 50 < X
2
(2) < 100; ^(2) , Y~(2) > (60)

to which the optimal basic feasible solution is X
2
(2) = 50, 4" (2) = 50 and

?2<2) = .

Using CUDP-III, the CU on iteration 2 has the problem

Min 10s|(2) + lOS^U) + 10S~(2) + 10S~(2) (61)

s.t. Gj(2) + s|(2) ~ S
l
(2

|?

= 10 ° (62)

G„(2) +S+(2) -S7(2) = 100 (63)
i- l L

G
L
(2) + G

2
(2) = 100 (64)

with all variables > 0.

There are again multiple optimal basic solutions to solutions to this problem

which assign either Gj(2) = 100 and G
2
(2) = or vice versa. Assume the basic

feasible solution G^2) = 100, G
2
(2) = and S.(2) = 100 is again chosen.
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Manager l's problem on iteration 2 is given as

Min L0Y|(2) + 10Y~(2) (65)

s.t. 100X (1) + 100X^2) - y|(2) + Y~(2) = 100 (66)

X
L
(1) + X^2) = 1 (67)

with all variables > 0. The obvious optimal solution gives either

X (1) or X (1) = 1 and all other variables equal to zero.

Manager 2 has the problem

Min lOY^) + 10Y~(2) (68)

s.t. 100X
2
(1) + 50X

2
(2) - Y^(2) + Y~(2) = (69)

X
2
(l) + X

2
(2) = 1 (70)

with all variables > 0. The optimum solution to this problem is X (2) = 1

and Y (2) = 50 with all other variables equal to 0.

On iteration 3, the CU has the problem

Min 10S*(3) + 10S
2
(3) + 10S~(3) + 10S~(3) (71)

s.t. G
t
(3) + s"J"(3) - S~(3) = 100 (72)

G
2
(3) + S

2
(3) + S~(3) = 50 (73)

G
{

(3) + G
2
(3) = 100 (74)

with all variables > 0. Again, there are multiple optimum basic solutions to

this problem giving either G
{
(3) = 100 with G

2
(3) = or Gj(3) = G

2
(3) = 50.

IE the first basic solution is chosen, then working through the GHM algorithm

the CU's decision on iteration 4 will be identical to that iteration 3. If

the CU has identical solutions on successive iterations, the managers' and
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OUs' problems on iteration 5 will be identical to their problems on iteration

4. Thus, the GHM converges to nonoptimal solution. If the CU on iteration 3,

chooses the second basic solution with G,(3) = G2O) = 50 then the GHM can

proceed to generate the overall optimum solution. Hence the efficacy of the

CHM is associated with which basic solution the computer code chooses.

Because the managers' problems are the last set of problems solved on

iteration 1, the CU and OU problems are identical for the MGGD-II and the GGD

models because no coordinative information is yet available. Hence the

managers' problem will also be identical. Specifically for manager 1 we have

Min 10Y|(1) + 10Y~(1) (75)

s.t. 100X^1) - y|(1) + Y~(l) = 100 (76)

X^l) = 1 (77)

with all variables > 0.

In the optimal basic solution X (1) must equal 1; however, either Y (1)

or Y (1) must serve as the second degenerate basic variable. We note that

further interactions with the OU will not eliminate the degeneracy as the

deviations have been reduced to zero. Computationally the choice of which

deviation is basic will likely be determined by aumerical roundoff. Assume

that Y (1) is made basic. Then 11.(1) = 10 and constraint (9) becomes

CjCt) - lOG^t) > + 10(100) = 1000 (78)

Equation (78) will remain in the CU's constraint for all subsequent

iterations

.

At this point the algorithm can be stopped; achievement of the optimum

solution is no longer possible. To see this recall that in CUDP-II,
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(equations (8) through (11)), the objective function £.(t) + C„(t) , must equal

the value of the overall objective function, i.e., equation (1), at

optimality. Choosing Y.(l) as a basic variable introduced a constraint in the

CU's problem that will require C,(t) > 500 whenever the optimal value of

G,(t) = 50 is assigned. Because this constraint will remain for all

iterations. We can never generate the optimum solution requiring £.(t) =

with G,(t) = 50. If Y.(t) had been chosen to be the degenerate basic

variable, then constraint (9) becomes

C.(t) - 10G (t) > -1000 (79)

which would be introduced to the CU's problem on the next iteration. The

optimal solution, C.(t) = and Gi(t) = 50 satisfies this constraint. In

conclusion, a simple choice of a degenerate basic variable determines whether

the optimum solution can be achieved or not.

In Davis and Whitford (1985), it was argued that the manager and its OUs

must be required to interact until an optimal solution for the ensemble of

decision-makers is secured for the current G^(t). The necessity of this

requirement can be demonstrated in studying manager 2's problem on iteration 1

given as

Mir, lOY^D + L0Y~(1) (80)

s.t. 100A
2
(1) - y|(1) + Y~(l) = (81)

X
2
(l) = 1 (82)

The optimal solution for this problem is X (1) = 1 and Y (1) = 100 with

H-(l) = -10. If this simplex multiplier were passed to the CU, then

constraint (9) gives
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C,(t) - 10G
2
(t) > 1000 - 10(100) (83)

Obviously, the essential solution to generate the overall optimum solution,

namely £9
(t) = and G

2
(t) = 50 will not satisfy this constraint.

Suppose, however, OU2 and MU2 are allowed to interact on iteration 1

until the optimal solution to subproblem SP.2 for G
2
(l) is ascertained.

Specifically, TI (1) = -10 was passed to the OU who generated the optimum

solution to the following problem

Min 10X
2
(D (84)

s.t. 50 < X
2
(D < 100 (85)

as X
2
(D = 50 .

Manager 2 would then have the revised problem on iteration 1 given as

Min 10Y
2
(1) + 10Y~(1) (86)

s.t. 100A
2
(1) + 50X

2
(1

(
) - Y

2
(l) + Y

2
(l) = (87)

x
2
(i) + X

2
(l') = 1 (88)

where both proposals generated by 0U
2
would be considered. The optimal

solution to this problem is X ( 1 * ) = 1 and Y*(D = 50 with H
2
(l) = -10 .

Associated with this solution, constraint (9) yields

S
2
(t) -10G (t) > 500 - 10(100) = -500 (89)

We quickly note that 5«(t) = and G
2
(t) = 50 will satisfy this constraint

4.2 Nonoptimal Paths in Two-Level Hierarchies

Even the two-level Freeland and Baker (1975) model is not immune from a

path to nonoptimality . For the two-level model, the managers (the lowest
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level in this formulation) must have a feasible G,(l) and GoCD to solve their

respective problems. Because no coordinative information is available on the

first iteration, the CU decision is again identical to that of the GGD model

on iteration one. Let G^O) = 100 and G
2 (D = be the initial goal

allocation. Manager l's problem is then given as

Min 10Y|(t) + 10Y~(t) (90)

s.t. x
L
(t) - Y[(t) + Y~(t) = 100 (91)

X.(t) > 50 (92)

X.(t) < 100 (93)

with Y (t), Y~(t) > 0. Obviously X^t) = 100 is one basic variable for

constraint (93) in the optimum solution. The slack variable to constraint

(92) must serve as another basic variable. The third basic variable

associated with constraint (91) will be degenerate and can be either

Y (t) or Y (t) = 0. If Y (t) is chosen to be basic, then as discussed

earlier, constraint (4) gives

C,(t) - 10G
L

(t) > 1000 (94)

which will be introduced to the CU's constraint set. At this point, the

optimal solution ?.(t) = and G^(t) = 50 can neve' - be generated. This fact

is extremely troubling since the two-level model represents a direct

application of Benders, (1960) partitioning algorithm for which optimality has

presumably been demonstrated.
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5. CONCLUDING REMARKS

Our analysis in the previous section leads to two observations. First,

the mathematical limitations of the potential feasible solutions for the CUDP-

I technique are simply too restrictive to ever expect optimality of the

model's limiting solution with respect to the overall problem. This

corroborates Freeland's (1976) work.

However, the existence of a potential path for a nonoptimal solution for

all the other decision processes at the various levels of the composition or

decomposition models is alarming. One cannot be sure that these models will

always generate a nonoptimal solution, but in many applications the potential

for nonoptimality clearly exists. The primary source of the potential

nonoptimality is a nonunique solution for the managers' goal programming

problem. This situation arises when either there are multiple optimum

solutions or a manager's optimal solution is degenerate. The complexity

arising in the simple example considered earlier is significantly increased

when larger problems with hundreds or thousands of decisions variables are

considered. Computational experience with larger applications has shown that

degeneracy is almost always present in the model's solutions, especially at

the managerial level [see Whitford and Davis (1983)].

It is also interesting and disturbing that accepted decomposition

methods, such as Benders' partitioning algorithm, also experience

computational difficulties in solving linear goal programming formulations at

the managers' level of hierarchy. (Although not discussed in this paper, the

Dantzig-Wolfe decomposition algorithm also demonstrates computational

difficulties with the linear goal programming formulations.) Thus one must

conclude that composition models or any model which incorporate linear goal

programming problems within the decision-making hierarchy should be used with
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great care unless the robustness of the algorithm can be demonstrated.

There is a positive result to this paper despite the previous pessimistic

observations. Specifically, all the models are addressing the same overall

problem. Thus, the potential for comparing the coordinative schemes for

various solutions does exist. Further, recent work by BenAfia and Davis

(1986) on a two-level hierarchical model indicates that the sources of

nonoptimality can be removed simply by replacing the linear formulation of the

penalty costs on the goal deviations with a quadratic formulation.

Unfortunately, the introduction of this type of nonlinear formulation

significantly increases the computational requirements and the complexity of

computer codes used to solve the model.
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