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Shear flow of sphere packings in the geometric limit

P.-E. Peyneau and J.-N. Roux

UR Navier, Université Paris-Est, 2 allée Kepler, F-77420 Champs-sur-Marne, France

Abstract. We investigate the behavior of a model granular material made of frictionless, nearly rigid equal-sized beads, in the
quasistatic limit, by numerical simulation. In themacroscopic geometriclimit (that is the macroscopic, rigid and quasistatic
limits), with either volume or normal stress controlled simulations, static and dynamic macroscopic friction coefficients
coincide, dilatancy vanishes and the material satisfies a Lade-Duncan failure criterion. The macroscopic shear strength stems
from both contact network and force anisotropy.
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INTRODUCTION

Frictionless bead packings are elusive systems that have seldom been studiedper se[1, 2]. Most studies of granular
systems involve a nonzero intergranular friction coefficient, as in real granular materials, and the frictionless caseis
rarely treated. However, the study of this limit may prove valuable. For instance, highly concentrated non-Brownian
suspensions may be modeled as assemblies of nearly touchinggrains bonded by a viscous lubricant that penalizes
the relative normal motion of two particles compared to a relative tangential motion: ideal lubrication effectively
suppresses the tangent forces. Thus, a model material made of frictionless beads should be able to account for the
behavior of a dense suspension in the quasistatic limit. Furthermore, frictionless assemblies only involve a limited
number of parameters and incorporate basic geometric effects also shared by dry granular materials and suspensions.
This is the reason why we investigate the macroscopic behavior of frictionless assemblies of grains and its microscopic
origin.

MATERIAL AND NUMERICAL EXPERIMENTS

We consider packings of equal-sized spherical beads of diametera and massm, enclosed in a cuboidal simulation cell.
Beads interact through their contacts: the force transmitted is purely normal and is the sum of an Hertzian elastic term
Fe

N = Ẽ
√

ah3/2/3 (h is the normal elastic deflection,̃E ≡ E/(1− ν2) whereE is the Young modulus of the material
the beads are made of, andν its Poisson ratio) and of a viscous termFv

N = ζ (mẼ)1/2(ah)1/4ḣ (ζ is the level of viscous
damping) entailing a velocity-independent restitution coefficienteN(ζ ) in binary collisions.

We use different molecular dynamics (MD) procedures in which some strain, or strain rate, and stress components
are externally imposed to an initial state, resulting from the isotropic compression of a granular gas (the initial state is
thus a random close packing), to simulate the bulk of the system and to determine the intrinsic constitutive laws [3].

Once suitably expressed in dimensionless form, all resultsdepend on four dimensionless parameters: the level of
viscous dampingζ (which becomes irrelevant in the quasistatic limit), the inertia numberI = γ̇(m/(aP))1/2 and the
stiffness numberκ = (Ẽ/P)2/3, and possibly the number of particlesN. We are primarily interested in the macroscopic
geometric limit (i.e. the triple limit ofN → +∞, I → 0 andκ → +∞). Note that this limit is very challenging since the
number of MD time steps required to reach a shear strainγ is proportional toγNκ1/2I−1.

MACROSCOPIC BEHAVIOR

First, we focus our attention onrate-controlled shear simulations. After a certain amount of shear, the system reaches
a steady state where no enduring shear localization is observed. Thus, constitutive laws can be found by averaging on
time and on the whole sample. This is done thanks to an accurate tool (the so-called blocking method) allowing to



extract from a steady time series an average and a significanterror on it. The inertia numberI has the most important
impact on the system behavior (see Fig. 1).κ and N have almost no effect on the dynamic macroscopic friction
coefficientµ∗ = |σ12|/|σ22|, andµ∗ hardly evolves withζ for I < 0.01.ζ has also hardly any effect on the average
volume fractionΦ for I < 0.01, butΦ is affected byκ (cf. Fig. 1) and is a slightly increasing function ofN. Φ ≃ 0.64
in the quasistatic limit. Results obtained are independentof the initial configuration.

FIGURE 1. Left: µ∗ as a function ofI , fitted byµ∗(I → 0)+cIα with µ∗(I → 0) = 0.101±0.004 in the geometric limit. Right:
Φ as a function ofI for κ = 3.9×104 (blue squares) andκ = 8.4×103 (red triangles). Error bars are smaller than symbols.

We checked that the kind of boundary conditions employed hasno importance. Fig. 2 shows that fixed-volume
simulations lead to the same results we obtained with normalstress-controlled calculations, but with much more
stronger fluctuations. Fluctuations of the measured quantities were observed to vanish forN → +∞ and both methods
should be equivalent in this limit. However, in the case of a finite-size sample, extracting an accurate information from
a stress driven numerical experiment is easier than analyzing the results provided by a fixed-volume computation.

FIGURE 2. Left: σ22 (blue squares) andΦ (red crosses) as functions of the deformationγ . Right: macroscopic frictionµ∗ as a
function ofγ . The simulation is stress-controlled forγ < 1 and volume-controlled forγ > 1.

Previous results coincide with those obtained withstatic shear simulations, where increasing values of shear stress
τ are stepwise applied to an initially isotropic configuration. For each value ofτ, one waits until a satisfactory
equilibrium state is reached. The calculation is stopped ifthe packing does not equilibrate after 5×107 MD time steps
and the largest valueτ for which an equilibrium state was obtained is kept as an estimate of the shear stress threshold for
onset of flow. Static shear simulations show that the static macroscopic friction coefficientµstat≡ |τmax|/P, computed
as an average on a few configurations, is size dependent. However, in the macroscopic geometric limit, it is equal
to 0.091± 0.009 and coincides withµ∗(I → 0) = 0.101± 0.004. These numerical experiments also confirm that
frictionless bead assemblies do not display any dilatancy in the macroscopic geometric limit. The volume fraction of
the system remains equal toΦRCP under a stress deviator.

In order to study the failure criterion of the material, triaxial compression and extension tests have also been
performed. Since there is no stress scale in the problem, theyield surface has necessarily a conical shape whose axis is
the trisectrix in the stress space. Fig. 3 shows that the Mohr-Coulomb model is not adequate whereas the Lade-Duncan



model, given byfLD(σ) = (trσ)3/detσ − k ≤ 0, describes well the experimental failure criterion. The parameterk
depends onN (see Fig. 3) in the geometric limit and is approximately equal to 27.15 in theN → +∞ limit.

FIGURE 3. Failure criterion plotted in a deviatoric plane. Calculated failure points (in black) come with error bars. Left:
comparison of a Lade-Duncan model (blue solid line) and a Mohr-Coulomb model (red dashed line) forN = 1372. Right: Lade-
Duncan model forN = 1372 (solid line) and forN = 4000 (dashed line).

MICROSCOPIC ASPECTS

The network connectivity, the fabric tensor, the distribution of the values of contact forces and the orientational
distribution of contact forces ([4]) have been investigated. On the one end, the network connectivity and the distribution
of the values of the contact forces remain the same as in the isotropic case. On the other hand, the fabric tensor and the
orientational contact forces distribution are anisotropic. At the lowest order, the orientational contact forces distribution
may be expanded on the spherical harmonics of order two and the coefficients of the expansion are linked to the
entries of the second-rank tensorC =

∫
dΩ f (θ ,φ)n⊗n, where f is the averaged force andn is the unit vector along

the direction(θ ,φ). F −1/31andC−1/31(1/31corresponds to the isotropic case) are dominated in the quasistatic
limit by a single entry:F12 andC12 in the case of shear simulations in the 1-2 plane,F33−1/3 andC33−1/3 for triaxial
test simulations along axis 3. Using the general expressionof the stress tensor of a static packing (σ = 1

V ∑i< j F i j ⊗ r i j ,
with V the sample volume,F i j the force between two grains in contact andr i j the vector joining the two centers of the
touching grains) and performing a few approximations, one can show that:

• σ12/σ22≃ 3(F12+C12) for a shear experiment;
• σ33/σ11≃ 2(F33+C33−1/3)/(4/3−F33−C33) for a triaxial test.

According to numerical simulations, these equations, which link a macroscopic quantity (a stress component ratio) to
microscopic data, work well: the discrepancy between the approximation and the actual ratio is always below 2%).

CONCLUSION

The macroscopic geometric limit of an assembly of sphericalequal-sized frictionless beads was studied thanks to a
detailed parametric study. Boundary conditions were shownto have no impact on the constitutive laws of the material.
Quite strikingly, the material is devoid of dilatancy in this limit. A size-dependent Lade-Duncan failure criterion was
evidenced by submitting the material to three different static loads (shear, triaxial compression and extension) and we
observed that the static macroscopic friction coefficient coincide with the dynamic one in the macroscopic geometric
limit. In the near future, we intend to simulate dense lubricated suspensions and to compare the results obtained with
those presented in this work.
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