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ABSTRACT Emerging technologies, such as self-driving cars and 5G communications, are raising new
mobility and transportation possibilities in smart and sustainable cities, bringing to a new echo-system
often referred to as Internet of Vehicles (IoV). In order to efficiently operate, an IoV system should take
into account more stringent requirements with respect to traditional IoT systems, e.g., ultra-broadband
connections, high-speed mobility, high-energy efficiency and requires efficient real-time algorithms. This
paper proposes an energy and communication driven model for IoV scenarios, where roadside units (RSUs)
need to be frequently assigned and re-assigned to the operating vehicles. The problem has been formulated
as an Uncapacitated Facility Location Problem (UFLP) for jointly solving the RSU-to-vehicle allocation
problem while managing the RSUs switch-on and -off processes. Differently from traditional UFLP
approaches, based on static solutions, we propose here a fast-heuristic approach, based on a dynamic
multi-period time scale mapping: the proposed algorithm is able to efficiently manage in real-time the RSUs,
selecting at each period those to be activated and those to be switched off. The resultingmethodology is tested
against a set of benchmark instances, which allows us to illustrate its potential. Results, in terms of overall
cost –mapping both energy consumption and transmission delays–, number of active RSUs, and convergence
speed, are compared with static approaches, showing the effectiveness of the proposed dynamic solution. It is
noticeable a gain of up to 11% in terms of overall cost with respect to the static approaches, with a moderate
additional delay for finding the solution, around 0.8 s, while the overall number of RSUs to be switched on
is sensibly reduced up to a fraction of 15% of the overall number of deployed RSUs, in the most convenient
scenario.

INDEX TERMS Internet of vehicles, smart cities, real-time optimization, energy minimization,
uncapacitated facility location problem.

I. INTRODUCTION
Each form of innovation aiming to achieve sustainability
and to optimize the use of resources in responsible ways is
defined as an eco-innovation form. The need for developing
green-growth technological strategies in urban environments
is raising day-by-day, and has the noble aim of improving
citizens’ quality of life, apart from ensuring that future
generations will be able to meet basic and first-necessity
needs –e.g., clean air, water, and biodiversity– thanks to
adjustments like the reduction in traffic and in emission of
greenhouse gases [1].
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Modern technologies, like 5G and Internet of Things
(IoT), can be employed to support the development of
green cities [2]–[4]: a huge distributed cloud infrastructure
made by thousands of smart devices (typically small and
embedded ones), able to communicate with each other in real-
time [5]. Among several application domains, the Internet
of Vehicles (IoV) [6], [7], a sub-domain of IoT, can be
described as a distributed and interconnected network that
supports the need for sharing data created by vehicles –
but could include also pedestrians, bikes, and other urban
objects– in a real-time fashion with roadside units (RSUs).
These are special facilities that act as edge computing nodes.
They run different services and are able to jointly convey
communications and process data, without requiring transfer
to central cloud facilities [8].
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FIGURE 1. RSU management in the Internet of Vehicles scenario.

As shown in Figure 1, one of the main challenges that arise
when solving an IoV-related problem is to efficiently manage
the RSUs, so that an optimal service coverage of vehicles is
provided with respect to some target Quality of Service (QoS)
parameters –e.g., service coverage, throughput, low latency,
or energy consumption [9]–[11]. In addition, roads are very
dynamic environments: citiesmay be congested in some areas
at specific times of a day, with vehicles moving at a different
speeds. This dynamism of the environment must be taken into
account as well.

The problem addressed in this paper aims at considering
the IoV scenario by including a dynamic behavior in the
problem definition. The system is modeled as a series of
consecutive periods, in which the RSUs configuration
has to react and quickly adapt to the ever-changing
traffic and connection requirements from the vehicles,
while keeping the energy consumption low. Thus, every
few minutes, an efficient configuration of RSUs might need
to be re-computed in a short amount of time, typically
within a few seconds. In Figure 2, the same city blocks
are depicted in three different successive periods, where
vehicles and pedestrians are in movement and share the
same space. Despite the facilities are fixed, the users’ and
vehicles’ connection are updated over time –according to
the dynamism of this environment– in order to minimize
connection costs.

In particular, we aim at optimizing the RSUs activation
through a proper switch-on and -off, enabling their
energy consumption minimization, under the data-rate
and mobility requirements of the vehicles. The system is
modeled through amulti-period time-scale and, in the follow-
ing, the problem to be solved is referred to as a Multi-Period
Internet of Vehicle Problem (MPIoVP). To this aim, the
MPIoVP is first introduced and modeled as a semi-dynamic
Uncapacitated Facility Location Problem (UFLP). The UFLP

is an NP-hard optimization problem in Operations Research,
which covers a wide range of logistics and transportation
applications. This classical problem was initially described
in [12]. The goal of the UFLP is to find an optimal placement
for a given set of facilities, dictated by an objective function
and some constraints. Despite its original formulation has
fixed inputs over time and does not have real-time constraints,
the UFLP can be adapted for modeling the MPIoVP,
by assuming that the inputs change over time. Hence, the
MPIoVP becomes an optimization problemwhere we assume
that the RSUs are first mapped on selected locations and
then managed; the solutions need to be found frequently
and quickly over time, giving the very dynamic nature of
these environments. In addition to this we developed and
proposed a suitable mobility model able to catch in a simple
way the collective movement of vehicles within an urban
area, by properly modeling vehicles with different mobility
patterns.

In order to solve the MPIoVP, an extremely fast biased-
randomized (BR) algorithm [13] is proposed. This solu-
tion method, which incorporates stochastic components,
is then embedded into a multi-start framework. In this
way, the resulting approach is able to periodically generate
high-quality alternative solutions in real-time, i.e., in a few
seconds. A series of computational experiments allow us to
validate the efficiency of the proposed methodology.

The rest of the paper is organized as follows: Section II
offers a review of some related works. In Section III, the
first formal introduction of the MPIoVP is given. The biased-
randomized algorithm, and the framework in which the
algorithm is embedded into, is described in Section IV.
Numerical results are presented and discussed in Section V,
where both experimental setup and results are considered.
Finally, Section VI presents some final considerations on our
results and elaborates on how this research may be continued
in the future.

II. RELATED WORKS AND MAIN CONTRIBUTIONS
This section reviews previous publications in the context
of Telecommunication Networks and IoV systems, with a
particular focus on their optimization in dynamic scenarios.
A brief background on BR algorithms is also given. It also
discusses the main contribution of our work with respect to
the literature.

A. TELECOMMUNICATION NETWORKS AND
INTERNET OF VEHICLES
Dynamic scenarios in telecommunication systems require
optimization algorithms capable of solving complex prob-
lems in short computing times. Telecommunication networks
are one of the most important representative scenarios, where
real-time resource allocation is of primary importance when
implementing new services, leading to very challenging
problems.

Among other models, used for modeling telecommuni-
cation problems, the Facility Location Problem (FLP) [14]
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FIGURE 2. The IoV scenario modeled as an UFLP, where users and vehicles are assigned to different RSUs.

has been extensively used in the past, showing its flexibility
when considering realistic scenarios. As an example, the
authors in [15] studied an FLP in the 5G cellular networks
communication. They shown how to maximize the Wi-Fi
coverage given a demand, and how to connect Wi-Fi
equipment in order to ensure that the wireless connection is
always available in an open city scenario. The authors in [16]
aim at optimizing the resource utilization in a fog computing
environment for respecting the tasks execution deadlines
via assigning them to an optimal fog server using Software
Defined Networking (SDN). Moreover, local and global
load balance techniques are proposed. The simulation results
revealed that the proposed system decreases the amount of
tasks to be moved to the cloud and, as a result, there is a
reduction in latency and in bandwidth consumption. In [17],
the authors have modeled a video streaming system with QoS
thresholds as a stochastic single-allocation p-hub median
problem, by considering a simheuristic algorithm. A hub-
and-spoke network is analyzed, in which numerous nodes
exchange real-time multimedia data, and where the quantity
of data sent from one node to another is a random variable.

Among several modern telecommunication systems, IoV
systems represent one of the most challenging, due to their
stringent time-scale and real-time service requirements. The
IoV scenario has been introduced in [6], where the authors
suggest IoV as a joint view of IoT and vehicular communi-
cations, a new system where the vehicles represent the things
of the road environment. In [18], a hierarchical architecture
for IoV scenarios is proposed, where the complexity of
the scenario is highlighted through the design of different
layers, each one managing a specific aspect. The interested
reader could refer to [7], where the most important network
architectures and applications for IoV are surveyed. It is
indeed clear that IoV embraces several aspects. Among others
we focus in this paper on the RSU operation [11], [19], which

is usually faced in the literature through twomain approaches.
On the one side, the optimal RSU placement, involving the
optimization of the RSUs position and their deployment
in a given scenario [9], [20]–[26]. On the other side the
optimal RSU selection, among a multitude, for the service
implementation [27]–[32]. In particular our work focus on
the second aspect aiming at investigating the possibility of
optimally selecting the RSUs to be used by each vehicle
while moving within the road scenario. In addition to this,
an efficient energy saving mechanism is introduced aiming at
switching off some of the RSUs while respecting the system
constraints.

The RSU selection has been considered in [28], where
the authors employ a simplified one-way road model to
study the connectivity probability with a predefined set of
RSUs placed along the way. In [32], the RSU selection
is performed in a heterogeneous network scenario, where
each vehicle has to select the best RSU for performing the
computation offloading. The problem is solved through a
multi-armed bandit algorithm, where the goal is to minimize
the cell handover for avoiding service disruption. Often, the
RSU selection is studied jointly with other key performance
indexes. As an example, in [27] the authors consider the
energy efficiency as a measure for optimizing the RSU
selection, while in [31] the authors exploit full-duplex
communications for optimally selecting the RSUs to be used
by each vehicle. In [29], the authors proposed a Vehicle-to-
Vehicle aided approach for optimizing the task offloading
selection in an urban scenario where multiple RSUs are
supposed to be scattered along the roads. Likewise, in [30]
the authors extended the previous approach to consider
mobile nodes acting as relay and/or processing nodes for
implementing on-demand vehicular services.

Focusing instead on the energy efficiency aspects some
works in the literature considered such a problem within

157844 VOLUME 9, 2021



L. Cesarano et al.: Real-Time Energy-Saving Mechanism in Internet of Vehicles Systems

an IoV scenario. Among other works, in [8], the authors
focus on the energy consumption control issues of MEC-
enabled RSUs by introducing an energy-efficient scheduling
framework for MEC-enabled IoVs to minimize the energy
consumption of RSUs under task latency constraints. In [27],
the authors addressed a low-complexity RSU and time
slot assignment in vehicular networks with multiple RSUs.
The goal is to minimize energy consumption across the
RSUs. Another approach was considered in [33], where
the authors provide an energy efficient offline downlink
scheduling algorithm for store-carry-forward vehicles to
satisfy the residual data requirement of the target vehicle
moving in the uncovered area. A cluster-based approach is
proposed to identify vehicles in energy favorable locations
and multi-hop distance to relay vehicles. In [23], the authors
propose a joint placement and sleep scheduling of RSUs in
a VANET environment. In the paper the author formulate
an optimization problem able to capture the behavior of a
realistic scenario and propose an energy efficient candidate
location selection algorithm to jointly perform placement
and sleep scheduling of grid-connected solar powered RSUs.
In [34], the authors considers the RSU ON/OFF scheduling
problem in a sparse VANET. The proposed multi-level greed
algorithm can significantly reduce the energy consumption of
RSUs deployed and can provide a reference basis for energy
efficient scheduling in VANETs.

One should notice that the optimal assignment of vehicles
to RSUs in IoV scenarios has been barely studied. In [35],
the authors studied an IoV scenario using UFLP modeling,
but they did not considered the vehicular mobility or the
impact of switching on and off the RSUs as the system
evolves. As introduced in [36], RSUs alongside roads
are used as wireless access points in an IoV network,
providing communication services to vehicles inside its
coverage area. Relating this problem to FLPs, the vehicles’
demands for communication represent the inputs of our
FLP. Since vehicles are in movement, these inputs are,
henceforth, dynamic, and the outputs need to be periodically
recomputed. Dealing with input uncertainties means dealing
with real-world scenarios, which leads to the search for
more robust or reliable solutions. In [37] the authors deal
with uncertainties using random variables in its model: cost,
demands, and distances. One of the few studies that addresses
an optimization model to solve the RSU deployment problem
is presented in [11]. A linear programming (LP) clustering
algorithm, composed of three steps, was proposed. Their
approach employs a utility function to measure and evaluate
the total benefit from the RSU deployment. The stages are
based on clustering, problem instance reduction –formulated
as a single-node capacitated facility location problem–, and
tasks assignment.

B. BIASED-RANDOMIZED ALGORITHMS
Biased-randomized algorithms constitute a relatively recent
approach for fast generation of alternative solutions to com-
plex optimization problems [38]. This methodology employs

skewed probability distributions, such as the geometric
and triangular ones, to extend the constructive behavior of
deterministic heuristics [39]. Many applications of biased-
randomized heuristics can be found in the literature [40]. The
first use of a non-uniform probability distribution to induce
a biased random effect into a constructive heuristic was
given in [41], where the authors solved a capacitated vehicle
routing problem. In their work, a savings-based heuristic was
biased by introducing a geometric probability distribution
during the constructive stage. From this study, BR heuristics
have been proposed to solve a vast number of optimization
problems in different applications, as well as to enhance
some metaheuristic frameworks such as the ILS [42], the
greedy randomized adaptive search procedure (GRASP) [43],
[44], or the multi-start one [45], [46]. They have also been
combined with learning mechanisms [47], and with parallel
computing [48].

C. MAIN CONTRIBUTIONS
After discussing the emerging interest in IoV systems, their
real-time requirements, and the need for developing fast
optimization algorithms for the UFLP, this paper proposes
an original framework for real-time energy-efficient
management of RSUs in a dynamic urban environment.
To this aim, the main achievements of our paper can be
summarized as follows:
• A dynamic urban scenario has been modeled by consid-
ering the presence of multiple RSUs and vehicles. Each
RSU is able to implement an energy saving mechanism,
modeled as a two-state system. Differently from other
papers in the literature, our model considers multiple
geographical subareas, each one associated with a
demand factor parameter that represents the amount of
vehicles located in that subarea at a given time, as well as
their service requests. This allows to create a model that
can be easily manged when we have to select the RSUs
to be switched off, and allowing to map the cells to each
active RSUs.

• To the best of our knowledge, this is the first paper
formulating the problem as an UFLP, where the
minimization of both energy consumption and data-
rate are considered in the cost function, through
a proper management of the RSUs. The traditional
UFLP approach has been extended towards a multi-
period framework, characterized by a variable demand,
by introducing a closing and an opening fee formodeling
the cost to be paid for switching on and off each RSU.

• Based on a graph model, a random shift rule has
been defined, allowing to properly map a realistic
scenario where vehicles move preferably towards the
downtown area at some time periods (e.g., in the
morning). A suitable heatmap representation located
in Rome (Italy) is also considered, helping to better
understand the demands evolution.

• An original fast constructive savings-based heuristic is
proposed. The heuristic has been also enriched with

VOLUME 9, 2021 157845



L. Cesarano et al.: Real-Time Energy-Saving Mechanism in Internet of Vehicles Systems

biased-randomization techniques, and embedded into a
multi-start framework.

• Finally, simulation results have been carried out, com-
paring five possible strategies, including both static and
dynamic approaches.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section provides details on the model we have used to
represent the IoV system.

A. SYSTEM MODEL
We focus on an urban scenario composed of several RSUs.
These are distributed across the city, and identified through
the set R = {RSU1, . . . ,RSUi, . . . ,RSUI }, whose positions
(xRi , y

R
i ) are fixed. We also consider a multitude of vehicles,

identified through the set V = {v1, . . . , vm, . . . , vM }, whose
positions (xm(t), ym(t)) are changing over time. While the
RSUs can provide IoV services to the users (e.g., Internet
access, edge processing, etc.), vehicles are likely to choose
one of the RSUs within their coverage range to access to the
requested service. The set of vehicles that can be connected
to the ith RSU at time t is defined as:

VRi (t) = {vm|d(vm,RSUi) ≤ d
R
} ∀vm ∈ V

where d(vm,RSUi) is the distance between the ith RSU and
any of the M vehicles, while dR is the coverage range of the
RSUs, which are assumed to be the same for all the RSUs and
which depend on the communication technology (e.g., IEEE
802.11p, C-V2X [49]).

The distance between RSUs and vehicles drives the con-
nection availability and the link quality by setting the
expected data-rate. Given the Shannon capacity formula, the
data-rate is a function, among other factors, of the distance,
i.e.:

ρim = Bim log2

(
1+

Pitx
L(dim)PNm

)
where Bim represents the bandwidth of the link between the
ith RSU and the mth vehicle, Pitx is the transmission power of
the ith RSU, L(dim) is the path loss at a distance dim between
the ith RSU and the mth vehicle, and PNm is the noise power
at the receiver side. Noise power can be defined as PNm =
NTBim, where NT is the thermal noise. A similar formula can
be considered for the reciprocal link.

To reduce the impact of the energy consumption,
we assume that each RSU can be switched on (active) or
in stand-by state. When active, a RSU is able to service a
certain number of vehicles. On the contrary, no vehicle can
be serviced for a RSU in stand-by mode. Based on some
previous works [50], [51], the power consumption of the
i-th RSU can be modeled as follows:

Pi =

{
Psleepi if RSUi is in stand-by mode
P0i + µiP

active
i if RSUi is switched on

(1)

where P0i is the basic circuit power consumption, µi is
a proportionality coefficient dependent on the number of

vehicles connected to the ith RSU and Pactivei is the power
consumed by the ith RSU for managing the vehicles.1 In the
following, let us assume that:

PONi = P0i + µiP
active
i − Psleepi (2)

is the additional power consumed when the RSU is operative
with respect to the stand-by mode. Additionally, a switching
cost, corresponding to the power spent when switching from
the stand-by to active mode, can be defined as [50]:

Pswi = Eswi
N sw

τ
(3)

where Eswi is the energy spent during the switching process,
and N sw stands for the number of switches during a time
period τ .

In order to reduce the transmission latency, each vehicle
will always be assigned to the closest active RSU. Also,
in order to minimize energy consumption, the algorithm
decides which RSUs have to be activated or set in stand-
by mode at each period. From the vehicle perspective, the
selection of the RSU can be modeled through a proper cost
function, aiming at considering the behavior of each link
by focusing on distance. From the RSUs perspective, the
operation of a RSU is driven by its energy consumption,
while aiming at servicing all the vehicles in the area
and switching on only the needed RSUs. Hence, while
the distance parameter drives the link capacity, where
a higher distance corresponds to a lower link capacity,
the energy parameter refers to the amount of energy
consumed in order to keep both the link and the RSU
operative.

However, the RSU management problem cannot be
modeled with a static assignment of RSUs and vehicles, due
to the mobility of the latter. Thus, in order to take into account
the dynamism of the system we divide the entire area A into
J geographical subareas, named cells, where the jth cell is
identified as Cj, and A = ∪jCj. Within each cell, multiple
vehicles are located at a given time t , where:

VCj (t) = {vm|vm ∈ Cj} ∀vm ∈ V

is the set of vehicles within the jth cell at time t . In order
to map the overall requests of the vehicles within a cell,
we introduce a demand factor, d tj , which corresponds to
the demand of the vehicles within the jth cell at time t .
The demand can be considered as an overall factor mapping
together the requested data-rate, the amount of services, and
the connection quality. The higher the demand, the more
resources should be reserved to the vehicle by a certain
RSU. We consider to have a random demand in each cell,
whose value is changing in time. Henceforth, the system
must be re-optimized taking in consideration the vehicle
mobility.

1Pactivei is a value that is supposed to include all the transmission,
reception and processing power cost of a given RSU.

157846 VOLUME 9, 2021



L. Cesarano et al.: Real-Time Energy-Saving Mechanism in Internet of Vehicles Systems

With this in mind, an assignment cost, based on the
distance between a cell and a RSU, is taken into consid-
eration, together with the demand of the cell itself. The
total demand in a cell is the sum of all the individual
demands of the vehicles currently located in that cell. Since
the vehicles are continuously in motion, the demand in
each cell varies over time. Considering an initial setting of
demands, the goal is to determine which is the lowest-cost
configuration of RSUs, i.e., which RSUs need to remain
operative in order to minimize the sum of energy and delay
costs.

B. PROBLEM FORMULATION
In the problem under study, we consider a dynamic evolution
of the vehicular traffic over time. In particular, we are inter-
ested in taking into account changes in the vehicles’ location,
which might affect the aggregated demand associated with
each cell.

We consider in the following that the time is organized
in slots. Hence, t ∈ N represents the index of the time
slot starting at t · τ , and having duration τ , while T =

{0, . . . , t, . . . ,T − 1} is the whole time-span of the scenario
under consideration. The problem is formulated so that the
solving methodology is applied to multiple periods, i.e.,
to multiple slots having length τ .
Let us define the maximum amount of energy that can be

consumed by the ith RSU as

ri = PONi · τ + E
sw
i

corresponding to the energy in the operational mode (with
respect to the stand-by mode) in (2), plus the energy for
switching on the RSU in (3). We can introduce a parameter,
λti , defining a weight factor mapping the RSUi state at time
slot t , and depending on its mode (i.e., switched-on or in
stand-by) in the previous time slot, i.e., t − 1. If the ith RSU
was in stand-by state at t−1, the cost at t is considered equal
to λtiri, with λ

t
i = 1. Otherwise, only a partial cost λtiri (i.e.,

a maintenance cost) is paid, where 0 < λi < 1. By this
definition of λti , we are able to map a higher cost for switching
on the RSU rather than maintaining it operative. We can set a
decision vector Yt , whose ith element is the variable yti . This
element is associated with the selection of a certain RSUi at
time slot t , defined as:

yti =

{
1 RSUi is switched on at time slot t,
0 otherwise.

∀RSUi ∈ R,∀t ∈ T (4)

Then, it is possible to define the overall cost related to the
activation of the RSUs in any time period:∑

RSUi∈R
λtiriy

t
i ∀t ∈ T (5)

The cost in (5) is related to a fixed cost to be paid for either
keeping operative or activating the RSUs. It has to be noticed
that the number of switches is indirectly considered through

the sum performed over all the RSUs. If not active, a RSU
can be switched ON; hence, the overall number of switches
corresponds to the sum of all the RSUs that are switched ON.
We assume that the time slot is the minimum amount of time
between two consecutive switches. Also, in order to take into
account the load to be managed by each RSU –in terms of
vehicles– an additional cost term should be introduced. It will
consider the distance between the RSUs and the cells, thus
modeling the link availability and quality between RSUs and
vehicles. Notice that this value is fixed over time, while the
vehicles and their related demand will be changing within
each cell.

Let us consider a cost matrix C, where a generic element
cij stands for the cost between RSUi and a cell j in terms of
distance, so that cij ∝ dij, where dij is the distance between
the ith RSU and the jth cell (i.e., the higher the distance, the
higher the cost).

Since each cell represents the geographical subarea in
which the vehicles are positioned, we have to map the vehicle
density and their communication needs for each cell. In order
to do this, we introduce a demand vector, identified as D,
which indicates the aggregated demand per cell.2 To be more
specific, in order to consider the dynamic behavior of the
system we identify with D(t) the demand vector at time slot t .
The elements of this vector, d tj , represent the demand of a cell
j at time slot t . The higher the number of vehicles in that cell,
the higher the associated demand. The total demand of a cell
j within the time slot t is the sum of the individual demands
of the vehicles in that cell, i.e.:

d tj =
∑
vm∈Cj

d̃ tm ∀Cj ∈ A, ∀t ∈ T

where d̃ tm is the individual demand of the mth vehicle at time
slot t .

Let us introduce now a decision matrixXt , where the (i, j)-
th element is the variable x tij standing for the connection
between the ith RSU and the jth cell in the time slot t:

x tij =

{
1 if RSUi is connected to cell j in time slot t,
0 otherwise.

∀RSUi ∈ R, ∀Cj ∈ A, ∀t ∈ T (6)

This corresponds to the possibility of connecting all
vehicles in the set VCj (t) (i.e., belonging to the jth cell at time
slot t) with the ith RSU. Therefore, for a given time slot t ∈ T ,
we can define our problem as:[
Xt∗,Yt∗]
= argmin

Xt ,Yt

 ∑
RSUi∈R

λtiriy
t
i +

∑
RSUi∈R

∑
Cj∈A

cijd tj x
t
ij

 (7)

2In the context of our paper, the demand corresponds to the generic
resources requested by the vehicles in that cell. Such resources could
represent bandwidth, computing, or any other resource required for setting
up the service.
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subject to the following constraints:

C1 :
∑
Cj∈A

x tij = 1 ∀RSUi ∈ R (8)

C2 :x tij ≤ yti ∀RSUi ∈ R (9)

C3 :x tij, y
t
i ∈ {0, 1} ∀RSUi ∈ R, ∀Cj ∈ A (10)

C4 :ri, cij, d tj ∈ N ∀RSUi ∈ R, ∀Cj ∈ A (11)

where:
•

[
Xt∗,Yt∗

]
correspond to the values minimizing the

cost function in (7) for having minimized both RSU
activation and cell to RSU allocation. As previously
introduced, the cost term cij is used for modeling the
cost between a group of vehicles in a given Cj and
the RSUi. The cost can be considered as proportional
to the distance (i.e., considering the Shannon law as a
reference, higher is the distance, lower is the data-rate,
hence, higher is the cost for that link). Since the cost is
associated with the connection between one cell and one
RSU we have to multiply it with the number of vehicles,
i.e., the demand, in that cell for taking into account the
potential numerosity of vehicles in that cell.

• C1 in (8) ensures that, inside each period, a cell j can be
associated with only one RSU i;

• C2 in (9) guarantees that, if there is a link between a cell
j and an RSU i, then the RSU is operative;

• C3 in (10) indicates that the two decision variables are
binary

• C4 in (11) stands that ri, cij, d tj are integer variables.
The minimization in (7) is performed at each time slot. The

aggregated effect contributes to theminimization of thewhole
time scale on which it is evaluated.

C. DEMANDS FORMULATION
The higher the number of vehicles in a cell, the higher the
weight of a connection between that cell and the closest
RSU will be. We model such condition through the demand
D, representing the amount of connections required by all
vehicles in that cell. However, the urban environment is
dynamic. Hence, the demand varies over time, introducing the
necessity of a fast heuristic algorithm that can easily adapt
the RSUs configuration over time. The second member of
the objective function in (7) takes into account the demands
vector D associated with the cells of the system. At the
beginning of every time interval, the demand is supposed
to change with a probabilistic pattern, modeling the overall
vehicles behavior within an urban area. More details on how
this occurs are provided next.

1) THE MOBILITY MODEL
With the purpose of modeling the movement of vehicles
inside a city, we considered a graph representation of the area,
G = {E,V }, where the vertexes represent the cells, and the
edges represents the demand shift among adjacent cells (i.e.,
the mobility model of the vehicles).We also took into account
the following hypotheses:

• the demand vector has the same cardinality as the
number of cells in the topology;

• demands can shift only among adjacent cells, including
the perimeter of the region being considered;

• the total demand is constant over time, meaning that
when part of the demand leaves the system (i.e., crosses
the perimeter), an identical quantity of demand enters
from the opposite border, i.e.:∑

Cj∈A
d tj = ‖D‖1 ∀t ∈ T

where ‖D‖1 corresponds to the sum of all the demands
in all the cells, assumed to be constant during the whole
time scale.3

In particular we assume that starting from a certain number
of vehicles at time slot t only a portion of them can move
to one of the adjacent cells. Therefore, the model assumes
that some of the road users can be fixed or slowly moving,
i.e., parked cars, vulnerable road users. The vehicle selected
at the previous step can potentially move to another cell;
among them only a portion really moves, modeling the fact
that for some reasons a vehicle can decide to stop. Finally,
among those vehicles selected to move a portion is supposed
to go towards the usual destination (e.g., downtown) while
the remaining go back for other reasons. We think this
model, based on three probabilistic parameters, allows us to
efficiently map the behavior in an urban scenario.

Although our methodology can be applied in any other
scenario, in the computational experiments we will assume
the existence of a high-density area, namely downtown area,
which attracts vehicles (i.e., demands) in certain periods
of the day (e.g., business hours) and from which vehicles
departure in other periods, e.g., once most business close.
Let us define the cell identifying the downtown area as CDT ,
having coordinates (xDT , yDT ).
Algorithm 1 presents the mobility model. Given a certain

number of demands, i.e., vehicles, at time slot t , (line 1),
by focusing on the jth cell (line 3) we assume that only
a portion of them, ξ tj ∈ [0, 1], can move to one of the
adjacent cell (line 4). Hence, the vehicles that can potentially
move towards adjacent cells from the jth cell at time t
correspond to dξ tj · d

t
j e, where the ceiling is considered in

order to have always an integer number of potential moving
vehicles different from 0. Therefore, the model assumes that
some of the road users can be fixed or slowly moving,
i.e., parked cars, vulnerable road users, while others can
move to a different cell. The selected dξ tj · d

t
j e demands are

assumed to move with a given probability, that we set to be
equal to χ tj ∈ (0, 1] (line 5). In other words, we assume
that dξ tj · d

t
j e vehicles move with probability χ tj , while

they remain in the same cell with probability (1 − χ tj ).
As explained before, in our computational experiments we

3This corresponds to say that in thewhole areawe have a certain number of
vehicles that move within it. While the overall number of vehicles is constant
in the whole area, they can move from one cell to another.
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assume the existence of an attracting cell, named downtown
area (line 2). At certain hours of the day, vehicles will
move towards that area. In order to properly model this
feature, we assume that αtj is the probability that the selected
vehicles move towards the downtown cell when in jth cell
at time t , while (1 − αtj ) is the probability that they move
in the opposite direction (line 6).4 Based on two random
values (lines 7-8), the demands for each cell are shifted
following the shifting probability and the probability to move
towards the destination area. In particular, based on the
comparison between a random variable and the probability
to move towards the downtown area, one of the two functions
SHIFTTOWARD() and SHIFTFARTHER() are executed (lines 9-17).

Algorithm 1 Pseudo-Algorithm of the Mobility Model
1: D(t) is a list of demands at time t
2: CDT is the destination cell
3: Cj is the j-th cell
4: ξ tj ∈ [0, 1] is the quantity of demand that shifts across adjacent cells
5: χ tj ∈ (0, 1] is the probability that the quantity of demand shifts
6: αtj ∈ (0, 1] is the probability that vehicles move toward the destination area
7: randShift is a random number between (0, 1]
8: randAlpha is a random number between (0, 1]
9: for all d tj ∈ D(t) do
10: if randShift ≤ χ tj then
11: if randAlpha ≤ αtj then
12: SHIFTTOWARD(d tj ,Cj,CDT , ξ

t
j )

13: else
14: SHIFTFARTHER(d tj ,Cj,CDT , ξ

t
j )

15: end if
16: end if
17: end for

In Algorithms 2 and 3 the SHIFTTOWARD() and
SHIFTFARTHER() functions are detailed. We assume that Cψ
is a cell located closer to the destination area than Cj, while
Cω is a more distant cell. Hence, in SHIFTTOWARD() the
demands at t + 1 are properly updated by increasing the
quantity of demands of the closer-to-the-destination cell, and
accordingly decreasing for the originating cell Cj. Similarly,
when SHIFTFARTHER() is executed the demands are increased
at t + 1 for the more distant cell(s), and decreased for the
originating cell.

Algorithm 2 Pseudocode of the SHIFTTOWARD Function
1: function SHIFTTOWARD(d tj ,Cj,CDT , ξ

t
j )

2: d t+1ψ + = dξ tj · d
t
j e

3: d t+1j − = dξ tj · d
t
j e

4: end function

Algorithm 3 Pseudocode of the SHIFTFARTHER Function
1: function SHIFTFARTHER(d tj ,Cj,CDT , ξ

t
j )

2: d t+1ω + = dξ tj · d
t
j e

3: d t+1j − = dξ tj · d
t
j e

4: end function

4As a remark, we assume that each cell has only one possible cell allowing
to reduce the distance towards the downtown area. Instead multiple cells
allowing to increase the distance from the downtown area can exist; in this
case the demands are equally shared among those cells.

TABLE 1. Parameters setting for the numerical example of demands
shifting.

2) A NUMERICAL EXAMPLE
In order to verify the effectiveness of the mobility model,
we have carried out a numerical experiment using the
parameters in Table 1, where the cells are organized as a
4 × 4 square. For simplicity, we assume that the parameters
remain fixed throughout the whole numerical example for all
the cells, while the demand changes following the mobility
model previously discussed.

Let us assume that the initial demands in period t = 0 are
given by the matrix:

1(0)
=


5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5


that is a more effective representation of the demands in
the geographical area, organized in a matrix corresponding
to their geographical mapping, in which the bold element
represents the downtown area.5 Based on this initial configu-
ration and the aforementioned parameters setting in Table 1,
a potential shifting during the next period is:

1(1)
=


3 3 5 4
3 3 5 8
10 7 5 5
5 4 5 5


Similarly, after successive shifting processes, a potential

configuration at t = 19 is:

1(19)
=


0 2 2 0
0 0 4 1
1 31 33 0
0 2 4 0


Notice that the sum of all demands remains constant

throughout the whole time span, while the downtown area,
placed at (xDT , yDT ), ends up being the most populated.

To better understand the concept shown in a matrix form,
Figure 3 displays a geographical heatmap of a neighborhood
belonging to the city of Rome (Italy). The heatmap in
Figure 3a represents the initial scenario, where all the
demands are well distributed all over the considered area.
As time evolves, the demands shift towards the downtown
area.

5We can hypothesize that demands in D and 1 are mapped so
that 1i,j = Di+4·j
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FIGURE 3. Heatmaps of traffic density at different time periods.

IV. SOLVING METHODOLOGY
The problem addressed in this paper considers a time
variability of the input demands, thus leading to a dynamic
and challenging problem. Since the UFLP is NP-hard, the
use of exact methods is not an efficient strategy to solve
large-scale instances in short computing times. Moreover,
our scenario requires a real-time approach for a practical
implementation. Therefore, we propose a fast constructive
heuristic to solve the UFLP applied to the dynamic scenario
previously identified. This heuristic is latter enriched with
biased-randomization techniques, and embedded into amulti-
start framework [52].

A. CONSTRUCTIVE HEURISTIC
The heuristic we propose is based on the concept of switching
off facilities according to a balance factor, called savings,
which is used to guide the search for feasible solutions. The
procedure is shown in Algorithm 4. The procedure considers
the configuration of RSUs in the previous time slot, as well
the demand for the new time slot, where solt = [Xt ,Yt ]
is the solution of the cost minimization problem in (7), i.e.,
the switched-on RSUs and the assignments of cells to RSUs.
At the beginning of a time slot, the heuristic starts from
a virtual scenario in which all the facilities are switched-
on, which is hypothetical and highly expensive (line 2). The
idea behind starting from this all-active configuration relies
on the fact that switching off RSUs is computationally less
expensive than activating them –this is because when a RSU
is switched off, only the cells previously assigned to it have
to be re-allocated to another RSU. The cost of this scenario
is then calculated and used later as a reference (line 3). First,
the cost of each facility is updated based on their state in the
previous time slot (i.e., if it was switched on, in stand-by,
or remains in the on state, lines 4-11). The savings are
then updated based on the COMPUTESAVINGSLIST() function
(line 12), which is detailed in Algorithm 5. Based on the new
savings value, the solution is updated. The process is repeated

until all RSUs in the list have been checked (lines 13-19). The
list of savings is sorted in descending order, and the RSUwith
the highest positive savings is selected to be switched off.
Once a RSU is switched off, the affected cells are re-assigned
to alternative RSUs, which implies a re-computation of the
individual savings given the new allocation scenario. Once
re-calculated, the savings list is re-sorted, and this process
is repeated until the end of the sorted list. Considering that
the sort function adopted in our algorithm is O(n log(n)),
being n the number of elements in the savings list, we can
assume that the worst-case bound for the running time is
O(n)+ O(n log(n)) = O(n log(n)).

Algorithm 4 Proposed Constructive Saving-Based Heuristic
1: function GENERATENEWSOL(solt−1,Dt )
2: newSol ← allOpenSol F sol with all facilities open
3: cost(newSol)← COMPUTECOST(newSol,Dt )
4: for all yti 6= 0 do
5: if yt−1i == 1 then
6: λti ← (0, 1)

F Any value lower than 1. In the following, λti = 0.5 ∀R
7: else
8: λti ← 1
9: end if
10: Set λti · ri
11: end for
12: savingsList ←COMPUTESAVINGSLIST(solt−1,Dt , newSol, {λti ·ri}∀R)
13: while savingsList 6= ∅ ∧

∑
i y
t
i > 1 do

14: savingsList ← SORT(savingsList)
F Sort from highest to lowest saving

15: nextFacility← savingsList[0]
16: newSol ← close nextFacility ∈ newSol ∧ reallocate VR

nextFacility(t)
17: cost(newSol)← COMPUTECOST(newSol,Dt )

F The cost of newSol is updated by considering the savings when closing
nextFacility

18: savingsList ← COMPUTESAVINGSLIST(solt−1,Dt , newSol, {λti ·
ri}∀R)

19: end while
20: return newSol
21: end function

In Algorithm 5 the selection of the operative RSU is
described by creating a savingsList . In case a RSU is
switched-on (line 3), its savings is computed (line 4). If this
savings is positive (line 5) the RSU is added to the savingsList
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(line 6). Since negative savings values imply a higher cost in
allocation settings, they are discarded.

Algorithm 5 Implementation of COMPUTESAVINGSLIST Func-
tion.
1: function COMPUTESAVINGSLIST(solt−1,Dt , newSol, {λti · ri}∀R)
2: savingsList ← ∅
3: for all yti 6= 0 do
4: savingsi ← COMPUTESAVINGS(solt−1, d tj , λ

t
i · ri)

5: if savingsi > 0 then
6: savingsList ← ADD(RSUi)

F list of facilities with positive savings
7: end if
8: end for
9: return savingsList
10: end function

The savings computation is performed for every operative
RSU, as detailed in Algorithm 6: the cost of switching
on / maintaining a RSU, plus the cost of assigning
vehicles multiplied by their demand, minus their real-
location cost to alternative facilities multiplied by their
demand.

Algorithm 6 Implementation of COMPUTESAVINGS Function
1: function computeSavings(solt−1, d

t
j , λ

t
i · ri)

2: allocationCosti ← Sum of the demand weighted allocation cost for all the
nodes assigned to RSUi

3: reallocationCosti ← Sum of the demand weighted allocation cost of when
nodes assigned to RSUi are assigned to their best-alternative RSU

4: savingsi ← λti · ri + allocationCosti − reallocationCosti
5: return savingsi
6: end function

The described heuristic is sequentially applied in each
single period. Notice that the final status at each period
(demands and RSU configuration) constitutes the inputs of
the new optimization problem in the subsequent period. The
heuristic algorithm considers as the most expensive scenario
the one in which demands are scattered homogeneously
across the whole topology: in this situation, the algorithm
activates a large number of RSUs, which increases the total
operation cost. On the contrary, a situation in which vehicles’
demands are concentrated around a specific area allows the
algorithm to put in stand-by status many RSUs in remote
areas with a low demand. This way, the algorithm is able
to automatically adjust the RSU configuration to the actual
requirements in each period.

B. BIASED-RANDOMIZATION
The proposed heuristic is a deterministic procedure which
will always switch off the RSU with the largest savings
value. In order to incorporate a random behavior to guide
the search and, hence, provide a balanced exploration
of the solution space, a biased-randomized heuristic has
been implemented [13]. By extending the deterministic
heuristic into a probabilistic algorithm through biased-
randomization techniques, the logic behind the original
heuristic is respected [45]. In our case, a geometric prob-
ability distribution is employed to smooth the selection of
elements from the savings list. Consequently, the RSUs to be

FIGURE 4. General architecture of our approach.

switched off are selected from the savings list according to a
specific probability.

In the case of the geometric distribution, a single parameter
β ∈ (0, 1) is considered. When β approaches to 1, the
behavior is similar to the greedy one of the deterministic
heuristic. On the contrary, when β takes values close to 0,
the behavior is similar to that of a uniform randomization
process. The notable results can be obtained for intermediate
values of this parameter. Given this particularity, different
solutions are generated as more iterations of the biased-
randomized algorithms are executed.

To exploit this particularity, this heuristic is embedded
into a multi-start framework. Such a strategy relies on the
generation of multiple solutions until a stop criterion is met.
As a result, the best-found solution is returned at the end of
this iterative process.

Figure 4 depicts the high-level flow of our approach.
The main steps are: (i) initialize the system (only in the
first period); (ii) consider the current value of the vehicles’
demands; and (iii) apply the proposed algorithm to generate
a new solution for the current period. Steps (ii) and (iii)
are repeated in each time period. Accordingly, Algorithm 7
presents the proposed algorithm, where the demands are
previously computed for each period using T (line 2).
Then, the solutions are generated according to the current
demands (lines 6-8). In Algorithm 8, the implementation of
the objective cost function is reported, to be used multiple
times within the Algorithm 7.

One should notice that, in a real-life scenario, demands
may be refreshed at each time interval. This can be achieved
in different ways, e.g., (i) by exploiting an external database
that is periodically queried; (ii) by using RSU sensing
capabilities to estimate the demands in real-time; and (iii) by
employing a predictive model that forecasts the new values.
Herein, we assume that demands change following the
mobility model introduced in Section III-C1.

C. BENCHMARKING APPROACHES
Apart from the proposed solution methodology, other static
approaches have been also considered as benchmarks to test
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Algorithm 7 Fast Heuristic for Multi-Period Implementation
of the RSU Activation Problem
Input: ri, d tj , cij, sol0(∀RSUi ∈R,∀Cj ∈ A)
Output: total_cost
1: total_cost ← 0
2: for t ← {0, 1, 2, . . . ,T − 1} do
3: for all Cj ∈ A do
4: d t+1j ← REFRESHDEMANDS(d tj )
5: end for
6: cost(solt )← COMPUTECOST(solt , d t+1)
7: solt+1 ← GENERATENEWSOL(solt , d t+1j )

8: cost(solt+1)← COMPUTECOST(solt+1, d
t+1
j )

9: if cost(solt+1) ≥ cost(solt ) then
10: solt+1 ← solt
11: end if
12: total_cost ← total_cost + cost(solt+1)
13: end for

Algorithm 8 Pseudocode of the COMPUTECOST function
1: function COMPUTECOST(solt , d tj )
2: cost ←

∑
RSUi∈R λiriy

t
i +

∑
RSUi∈R

∑
Cj∈A cijd

t
j x
t
ij

3: return cost
4: end function

the effectiveness of our algorithm. To this aim, the following
five approaches have been defined:

1) The single-open static approach: in this approach,
a single RSU, usually one located at the downtown
area, is always operative.

2) The all-open static approach: in this approach, every
RSU is switched-on at any time period. Hence, cells
will always be assigned to their closest RSU (which
will be always on). Of course, this approach offers a
high cost, since all the RSUs are operative in every
period.

3) The keep-the-first static approach: in this approach,
the system will be optimized only once, in the first
period. Thereafter, the first configuration of RSUs is
kept for the rest of the periods, while the cost of this
fixed configuration in each period is updated according
to the new demands and the cost of keeping operative
the selected RSUs. In principle, this approach will be
less costly than the previous one. However, it does not
adapt to variations in the vehicles’ demands.

4) The partially-dynamic approach: as an enhancement
of the previous approach, in this one, we re-optimize
the system configuration after a series of k consecutive
periods, with k > 1. In order to apply this approach
in practice, it becomes necessary to provide a good
balance between computational time and the quality of
the recommended configuration.

5) The fully-dynamic approach: this approach is similar
to the previous one, while k = 1. For achieving
this, a multi-start strategy is needed in order to find a
near-optimal configuration in each period and in real
time. We can expect this approach to provide better
results than the previous ones, although it requires a
considerable effort in terms of quickly re-optimizing

the system after periods that might span just a few
minutes apart from each other.

V. NUMERICAL RESULTS
This section describes a series of computational experiments
that, together with the analysis of the associated results, show
the efficiency of the proposed approach.

A. EXPERIMENTAL SETUP
With the goal of testing the proposed approach, we have
used the MED benchmark instances, which were originally
introduced for the p-median problem [53]. The MED
benchmark instances have been also employed in the UFLP
context [54], being them largely studied thenceforth. Each
instance is labeled with two numerical values, where the first
identifies the amount of possible node locations, while the
second is related to the cost for switching on each RSU.
Despite not directly related with the IoV scenario, their
usage has several advantages. First of all, MED instances are
widely used in the UFLP evaluation, allowing us to compare
our approach with the best-known / optimal values for the
UFLP. Moreover, due to their generic definition, they can be
used for testing different application scenarios including the
previously described ones.

In the following, each instance will be identified as n-sw,
where n is the number of location in that instance and sw
is the switching-on cost scheme. Mapped to our problem,
each location represents a potential RSU to be switched on.
According to [53], we assume that the number of possible
RSUs are 500, 1000, 1500, 2000, 2500, or 3000. We also
assume that the switching cost scheme sw is equal to 10, 100,
or 1000. Notice that the higher the switching-on cost scheme,
the cheaper the switching-on of a RSU. Indeed, the switching
cost of a generic ith RSU, can be related to the instances
values n and sw through the rule [53]:

ri =
√
n

sw
× 10000,

where sw represents the switching-on cost scheme, and n is
the number of RSUs in the system. For example, the instance
500-10 considers that each RSU has a switching cost

ri =

√
500
10
× 10000 ≈ 22361.

Since ri depends on both the opening cost and the switching
cost, we assume that ri, as derived from the values n and
sw, represents the cost expressed in milliJoule. In the case
of the previous example, and considering that τ is equal
to 10 seconds, we have that both energy terms are of the
order of 10 J. In the following, we have considered that the
scenario is composed by n RSUs, that the demand for each
potential RSU location d tj is equal to 50 at t = 0, and that
this demand is supposed to change following the mobility
model introduced in Section III-C1. For the computational
experiments, we have set ξ tj = 0.4, χ tj = 0.5, and αtj = 0.75,
as indicated in Table 1. In addition to this, the λti value used
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TABLE 2. Parameters setting for the experimental results.

for evaluating the maintenance cost in (5) has been set to 0.5
∀t ∈ T . For the sake of clarity, the parameters used in the
following experimental results, and previously introduced,
are summarized in Table 2.

B. EXPERIMENTAL RESULTS
The computational environment employed for evaluating our
approaches is an Intel Core i7-8550U processor with 16 GB
of RAM. The goal of our experiment is twofold. On the one
hand we want to verify the effectiveness of the proposed
saving-based heuristic in terms of computational speed. This
is of primary importance since the solution method has
to work in a highly dynamic scenario, hence a real-time
algorithm is necessary. On the other hand we want to verify
the performance of the proposed solution in terms of cost
reduction. Moreover, since the cost is composed of two
terms, one modeling the data-rate and the other the energy
consumption, both are verified separately for understanding
their impact on the considered solution.

The first set of computational experiments relies on mea-
suring the performance of our deterministic approaches when
incorporating the demands shifting model into the problem.
As introduced in Section IV, the savings-based procedure has
been tested in different benchmarking approaches. Since the
single-operative and all-operative static approaches consider
a single operative RSU and all the RSUs operative over time,
respectively, they do not include the savings-based heuristic
as a guide.

Table 3 shows the computational results for the five
different approaches. At this stage, the planning horizon is
set to 20 periods, i.e., T = 20. For each test instance
and approach, we can see: the average objective function
value (OF) of all periods, the average number of operative
RSUs (|R|) across all periods, and the average computational
time required to generate the results, in seconds. The average
OF cost were divided by 1e6 in order to provide easier-
to-read results. The gap columns present the comparative
performance of the different scenarios according to their
respective average OF values.

In Table 3, we consider the keep-the-first approach as the
naive approach against which other scenarios are compared.
In this approach, the system is optimized at the beginning
of the planning horizon, and the resulting configuration
of operative RSUs and assigned vehicles is kept for the

remaining periods. Due to the high variability of the
switching-on cost, given by each scheme, it is convenient to
analyze the results accordingly.

When activating RSUs is an expensive operation (i.e.,
instances with the suffix -10), the all-on approach has a higher
cost than the keep-the-first approach –see column gap (3)-(2),
where it is noticeable that the cost is increased up to 142.3%
for the all-on approach. By activating all the RSUs in the
system, the assignment cost becomes null, since each node
is assigned to itself. However, there are still demands to be
supplied, which generates additional variable costs into the
system. Since the activation cost is too large in this scenario,
the higher the difference between the number of operative
RSUs, the higher the gap among the respective instances will
be (e.g., in instance 3000−10 the activated RSUs are 329 out
of 3000, i.e., around 11% of the total). By analyzing the
performance of both dynamic approaches against the keep-
the-first approach, it is clear that both of them outperform
this naive approach, being the fully-dynamic approach the
one offering a better overall performance. This behavior is
expected, since the system is re-optimized in each period.
It is worth to be noticed that the fully-dynamic approach with
respect to the static keep-the-first approach allows a gain up
to 11% in terms of overall cost, while the active RSUs remain
of a similar amount. It has to be noticed that despite the
number of activated RSUs is the same in average, in case of
dynamic approaches they are selected on a period-by-period
basis.

Another extreme scenario is the one in which the activation
cost of RSUs is cheap (i.e., instances with the suffix−1000).
In this case, there are no significant differences among the
approaches, since the number of open RSUs exceeds 95% of
all facilities in all cases. Hence, the main differences among
the cost of these approaches rely on how the assignment of
nodes is set –specially those which are not activated as RSUs.
Particularly, the keep-the-first performs slightly better than
the all-on approach, since a fraction of the fixed cost can be
saved for not opening a few RSUs –and, then, the assignment
of those RSUs that are not activated does not imply expensive
variable costs; in this case a moderate gain around 3%
can be achieved. Regarding the dynamic approaches, they
present similar performance, since the majority of their RSUs
are operative, which generates minimal differences in their
variable costs.

The last scenario refers to the case in which the activation
cost is moderate (i.e., the instances with the suffix −100).
Unlike previous scenarios, the all-on approach presents better
performance, on average, than the keep-the-first approach.
Since the cost of activating a RSU is not too expensive,
a large number of RSUs is frequently deployed. However,
there are some cases in which the difference between the
number of potential RSUs to be activated and the number of
already operative RSUs is reasonably large (e.g., instances
2000−, 2500−, and 3000 − 100). In these cases, the cost is
mainly generated by the many assignments, implying higher
variable costs. Therefore, for this cost scheme, the magnitude
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TABLE 3. Computational results in terms of cost, facilities and completion time for the different approaches.

of both the activation and assignment costs results in better
performance for the all-on approach against the keep-the-
first. Nevertheless, when analyzing the performance of the
dynamic approaches, both of them present a better average
performance than the remaining approaches, showing a gain
of 8.1% in the 2500-100 scenario.

Now, considering the complete benchmark instances –from
the different activation schemes– we can assert, from column
gap (3)-(1) to gap (3)-(5), that the fully-dynamic approach
shows overall the best performance. Since this approach
re-optimizes the solution in every period, it is expected
to be more efficient. However, it is noticeable how its
efficiency worsens as the activation cost of RSUs decreases.
Regarding computational times, the time required by the
fully-dynamic approach is still low, being only 0.8 seconds
slower than the keep-the-first approach. When comparing
our two dynamic approaches, in column gap (4)-(5), the
fully-dynamic approach outperforms the partially-dynamic
in 0.5%, on average. However, it requires 0.4 additional
seconds to obtain these results. It is also to be noticed
that the results are achieved by reducing the number of
switched-on RSUs, that in some cases are just a fraction of
around 15% of the overall number of RSUs deployed in the
system.

Figure 5 presents, for all solving approaches, a box-plot
of the corresponding results. The single-on approach is not
included due to its numerical scale being too high. As we can
notice, the all-on approach is clearly inefficient, mainly when
the activation cost of RSUs is expensive. Moreover, we can
notice that both the fully and partially-dynamic approaches
are able to generate better results than the keep-the-first.
Therefore, for this set of benchmark instances, the fully-
dynamic is considered the best approach to cope with the
MPIoVP, since it is able to generate better results on the
average.

FIGURE 5. The variability of the average results for each scenario,
in terms of gap.

For the problem instance composed of 500 RSUs, Figure 6
presents the convergence of the OF value over the periods.
Similarly to what we did in Table 3, the comparisons are
performed by considering the keep-the-first as the reference
approach.

As we can see in Figure 6a –which represents the
results obtained for the expensive activation scenario–,
the fully-dynamic approach does not only provide better
overall performance, but it is also able to generate better
configurations for all the periods over time, achieving up
to 17% of improvement in periods 18 and 20. Similarly,
when comparing the partially-dynamicwith the keep-the-first
approaches, the same behavior is noticed, with up to 16% of
improvement in periods 18 and 20. These conclusions support
the efficiency of the dynamic strategies when demands
vary over time. In addition, by analyzing Figure 6c one
can conclude that, for the cheapest activation scenario,
the performance of some approaches does not present any
significant difference, since almost all the RSUs are deployed
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FIGURE 6. The convergence of the OF value over the periods, in terms of
gap, for problem instance 500.

in any case. Notice, however, that the fully-dynamic approach
presents a better performance again, mainly in the last period
of the planning horizon. Finally, when analyzing the results
under moderate activation cost (Figure 6b), one can observe
that the dynamic strategies are able to properly react to the
system changes, according to the demands shift.

In Figures 7 and 8, the solution costs over the periods are
depicted in terms of energy consumption and transmission
costs, respectively. As for the previous figures, the single-
on approach is not included due to its high numerical scale.
In our case, the energy consumption relates to the fixed costs,
since it refers to the activation and deactivation of RSUs.

FIGURE 7. The energy consumption (fixed costs) over time, for problem
instance 500.

Similarly, the transmission costs refer to the variable costs,
representing the connection of vehicles to active RSUs.

The following analysis aims at measuring the efficiency
of the proposed approaches in terms of energy consumption
costs. For the first scenario (Figure 7a), when the activation of
RSUs has a higher cost, the all-open approach is certainly the
less efficient approach –since all the RSUs are kept activated
over time. Besides, it is noticed that its fixed cost is reduced
from the first period on, since only the cost for keeping
them active is incurred –rather than the activation cost– when
they are previously activated. The same reduction cost is
noticed for the remaining strategies. Regarding the dynamic
approaches, both of them present a similar pattern. In terms
of fixed cost, the keep-the-first presents the best performance
in this scenario. However, the transmission costs incurred
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FIGURE 8. The transmission (variable) costs over time, for problem
instance 500.

by this configuration result in a less efficient approach,
considering the complete panorama. For the remaining
opening cost schemes (Figures 7b and 7b), the methodologies
result into very similar fixed costs solutions. However, the
dynamic approaches offer a better performance, in general.
This is particularly the case for the moderate opening schema
(Figure 7b).

Regarding the transmission costs, in the case of the
expensive activation cost of RSUs (Figure 8a), one can
notice how the dynamic approaches are capable to adapt to
changes in demands. Despite being the cheaper approach
in transmission costs –since all the RSUs are constantly
activated–, the all-open approach is the more expensive
approach in fixed costs. The keep-the-first approach presents,
in the first periods, a performance which is similar to the

one associated with the dynamic strategies. However, its
transmission costs are continuously degraded, since this static
approach does not adapt to the system changes by adjusting
the decisions on the placement of RSUs made during the first
period –when the demands are well distributed over the city.
On the other hand, the transmission costs for both partially-
and fully-dynamic approaches present similar convergence
behavior, showing the fully-dynamic a better performance
than the partially-dynamic over time, in general.

In the case of the moderate activation cost of RSUs
(Figure 8b), the all-open and keep-the-first approaches
present the best performance. However, the costs for all
strategies are of similar magnitude. Also, when considering
energy consumption costs under the same scenario, the
dynamic strategies overcome the other strategies. In this
way, the fixed counterpart of the solution costs pays-off
the variable ones. Finally, when the opening cost is cheap
(Figure 8c), transmission costs are approximately the same
for all approaches. This is due to the fact that, for each
approach, the majority of available RSUs are activated.

By analyzing both the fixed and variable costs separately,
it is noticeable how conflicting they are, especially for
the cheapest activation cost scenario, where the proposed
approaches present the opposite behavior. In this case, for
instance, while the all-open is the best approach regarding the
variable costs –since all the RSUs are activated and, therefore,
transmission costs are low–, the same approach requires the
largest amount of fixed costs. Hence, the selection of the best
approach is based on the analysis provided for Figure 6.

VI. CONCLUSION AND FUTURE RESEARCH
In the context of smart cities, this paper has analyzed the RSU
activation problem in IoV scenarios when a dynamic behavior
is considered. The goal was to optimize the configuration
of the RSUs in each period, as a response to the time-
evolving vehicles’ communication needs. The underlying
optimization problem has been modeled as a rich version
of the UFLP, in which both RSUs activation (i.e., energy
consumption) costs and transmission costs (between the
RSUs and the vehicles) are considered. Since this is an
NP-hard and large-scale problem for which new solutions
need to be re-computed in real-time, the paper proposes
the use of a fast optimization algorithm. This algorithm
makes use of an efficient heuristic, which is then extended
to a biased-randomized algorithm and, finally, embedded
into a multi-start framework. This allows us to generate
multiple high-quality solutions in just a few seconds. A series
of numerical experiments are carried out to illustrate the
benefits of the proposed algorithm. Our approach, which
is dynamic, outperforms other more static approaches. The
obtained results show how noticeable reductions in cost
can be obtained by adopting a biased-randomized multi-
start methodology as the one presented here. The proposed
algorithm is fast and easily parallelizable. In addition, it only
requires the fine-tuning of one single parameter.
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Future works include extending the proposed solution
method into an agile optimization strategy. The idea behind
agile optimization techniques refers to the parallelization
of biased-randomized algorithms. When embedded into
a parallel framework, several solutions –with different
characteristics– can be generated in the same wall-clock time
as the one required by the original algorithm. Therefore, the
best-found solution is returned.
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