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Abstract: A reduced minimax state estimation approach is proposed for high-
dimensional models. It is based on the reduction of the ordinary differential
equation with high state space dimension to the low-dimensional Differential-
Algebraic Equation (DAE) and on the subsequent application of the minimax
state estimation to the resulting DAE. The DAE is composed of a reduced state
equation and of a linear algebraic constraint. The later allows to bound linear
combinations of the reduced state’s components in order to prevent possible
instabilities, originating from the model reduction. The method is robust as
it can handle model and observational errors in any shape, provided they are
bounded. We derive a minimax algorithm adapted to computations in high-
dimension. It allows to compute both the state estimate and the reachability
set in the reduced space.
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Filtrage minimax réduit

Résumé : Nous introduisons une méthode de filtrage dédiée aux modèles de
grande dimension et fondée sur une approche minimax réduite. La méthode
repose sur une reformulation du problème de grande dimension en une équation
différentielle algébrique de petite dimension sur laquelle un filtre minimax est
appliqué. L’équation différentielle algébrique se décompose en une équation
sur un état réduit et une contrainte algébrique linéaire. Cette dernier permet
de borner des combinaisons linéaires des composantes du vecteur d’état réduit,
ce qui élimine des instabilités potentiellement induites par la réduction. La
méthode est robuste dans le sens où elle permet de traiter n’importe quelle
erreur modèle et n’importe quelle erreur d’observation, pourvu que ces dernières
soient bornées. Nous proposons une forme algorithmique qui permet d’appliquer
le filtre à des modèles de grande dimension. L’algorithme calcule l’estimateur
minimax ainsi que l’ensemble des états admissibles.

Mots-clés : minimax, réduction, équations différentielles algébriques, estima-
tion, filtrage
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1 Introduction

Numerical modeling of complex systems such as the Earth’s atmosphere involves
complex numerical models relying on systems of coupled Partial Differential
Equations (PDEs). As an example, consider chemistry-transport models that
describe the fate of the pollutants in the atmosphere (e.g., the models described
in [Mallet et al., 2007]). For these models, the dimension of the state vector1

can reach 107 or even more, and the time integration has such a large compu-
tational cost that only the equivalent of a few dozens of model calls may be
affordable. The computational costs of these models and their dimensions raise
specific issues when one wants to reduce simulation errors (caused by imperfect
model formulation or uncertain inputs) through assimilation of the observed
data (sparse observations of the model’s state) into the model. Classical as-
similation algorithms such as the Kalman filters [Balakrishnan, 1984] can be
so demanding in terms of computations that they cannot be applied to these
models without a reduction.

Reduced Kalman filters have been developed to address this issue by intro-
ducing a reduction of in the filtering algorithm—see [Wu et al., 2008] for an ap-
plication to the aforementioned chemistry-transport models. In these filters, the
key reduction lies in the propagation of the state error covariance matrix which is
intractable2 in Kalman filter. A popular reduced Kalman filter is the so-called
ensemble Kalman filter in which the state error covariance matrix is approx-
imated by the empirical variance of the ensemble [Heemink et al., 2001]. The
particles can be deterministically sampled like in the SEIK versions[Pham, 2001],
in the unscented Kalman filter [Julier and Uhlmann, 1997] or in its reduced
version [Moireau and Chapelle, 2010]. Another example is the reduced-rank
square-root Kalman filter based on propagation of the most important modes
[Verlaan and Heemink, 1995] of the error covariance matrix.

Another direction is the reduction of the model itself and subsequent ap-
plication of an appropriate filtering technique to the resulting low-dimensional
model. The Galerkin projection represents one of the most used techniques
for model reduction [Brenner and Scott, 2005]. The idea is to find a low di-
mensional subspace in the model state space and to restrict the model onto
that subspace. Of course, there is a loss of information due to restricting the
dynamics of the model onto the subspace. One way to minimize the loss is
to generate the subspace by means of the Proper Orthogonal Decomposition
(POD) [Homescu et al., 2005].

In this report, we introduce a reduced minimax filter, designed to be applied
to high-dimensional models. Minimax approach allows 1) to filter out any model
error with bounded energy and observational error either deterministic with
bounded energy or stochastic with bounded variance., 2) to estimate the worst-
case error and 3) to assess how accurate the link between the model and observed
phenomena is. Our approach is to make a reduction of the model itself and to
apply the minimax filtering to the reduced model, provided uncertain model
error and observation noise are elements of a given bounding set. We introduce
a reduced state equation projecting the full state vector onto a subspace which
can be generated, e.g., by means of POD. The projection introduces errors

1State vector of the PDE after discretization in space.
2Since the propagation involves twice as much calls to the tangent linear model as compo-

nents in the state

RR n➦ 7500
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that can lead to a reduced state equation with unstable dynamics. In order to
address this issue, we introduce an additional energy constraint on the reduced
state in the form of a linear algebraic equation. Finally, our reduced model is
represented by a Differential-Algebraic Equation (DAE), composed of a reduced
state equation and of a linear constraint. We apply an extended version of
the minimax filter for DAE [Zhuk, 2010] to the reduced model without further
reduction on the filter.

The report is organized as follows. After the notation is introduced in sec-
tion 2, the extended minimax filter, without reduction, is presented in section 3.
This section quickly explains the minimax framework, introduces the filter and
comments on the intractability of the computations. The reduction procedure is
then derived in section 4. The classical Galerkin projection is first commented.
The DAE approach is then introduced, in the linear case and in an extended
version for the non-linear case. This section also comments the generation of
the projection operator. In section 5, we derive a computational form for the
DAE minimax filter presented in section 3. The purpose of the derivations is
to provide a form compatible with computations in high dimension. A parallel
with Kalman filter can be found in section 6 where it is shown that the minimax
filter coincides with the Kalman filter under given assumptions (in particular,
without reduction).

2 Notation

Let Mt : R
N Ñ R

N define the model at some time step t P t0, . . . , T ✁ 1✉:

xt�1 ✏Mt♣xtq � et , x0 ✏ x
g
0
� e , (1)

where xg
0
is an approximation of the initial condition with error e P R

N , xt P R
N

denotes the state vector, et P R
N is the model error.

Let yt P R
m denote the observation of the true state xt at time t. We assume

that yt satisfies
yt ✏ Ht♣xtq � ηt , (2)

where Ht : R
N Ñ R

m is the observation operator mapping the state space into
observation space, and ηt P R

m is the observation error.
We assume that the error ♣e, et, ηtq is uncertain but bounded so that

①Q✁1♣e✁eq, e✁e②�
T✁1➳
t✏0

①Q✁1

t ♣et✁etq, et✁et②�
T➳

t✏0

①R✁1

t ♣ηt✁ηtq, ηt✁ηt② ↕ 1 , (3)

where Q,Qt P R
N✂N and R P R

m✂m are symmetric positive-definite matrices,
and e, et P R

N and ηt P R
m may be viewed as systematic errors.

The tangent linear model is Mt ✏ DMt♣xtq P R
N✂N . Consistently we

introduce the associated tangent linear operator Ht ✏ DHt♣xtq P R
m✂N .

The reduction applies to the model state, and the reduced model state is
denoted zt ✏ FT

t xt P R
n, with n ✦ N . Ft P R

N✂n is a reduction matrix. The
minimax estimator of xt is denoted ♣xt P R

N . The minimax estimator is derived
from the reduced minimax estimator with ♣xt ✏ Ft♣zt.

The tangent linear operators along the trajectory ♣xt are denoted ①Mt ✏
DMt♣♣xtqFt P R

N✂n (for t ➙ 0) and ♣Ht ✏ DHt♣Mt✁1♣♣xt✁1q � et✁1qFt P R
m✂n

RR n➦ 7500
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(for t → 0), for the model and the observation operator respectively. We also

define ♣H0 ✏ DH0♣x
g
0
� eqF0 P R

m✂n.

We denote by A� the Moore-Penrose pseudoinverse of a matrix A. A
1

2 is
the square root of A and satisfies A ✏ A

1

2A
T

2 , where A
T

2 is the transpose of
A

1

2 . Ik✂k denotes the identity matrix in R
k✂k. ①☎, ☎② denotes the canonical inner

product of the Euclidean space.

3 Extended minimax state estimation

3.1 Minimax filter for Ordinary Differential Equations with

discrete time

In what follows we present a minimax state estimation algorithm that solves
the following filtering problem: given a sequence of observed data y0, . . . , yT in
the form (2) and given the uncertainty description (3), one should estimate the
state xT of (1).

Our approach is based on the following idea: to describe how the model
propagates uncertain parameters verifying (3). The key point is to construct
the so-called reachability set Rt at time t, that is, the set of all states xt satisfy-
ing (1) and compatible with the description of uncertain parameters (3) and the
observed data yt in the form (2). In other words, the state x✝t belongs to Rt if
and only if there is a sequence E✝ :✏ ♣e✝, te✝

0
, . . . , e✝t✁1

✉, tη✝
0
, . . . , η✝t ✉q verifying

(3) such that the sequence x✝
0
, . . . , x✝t computed from (1) for e ✏ e✝ and es ✏ e✝s ,

0 ↕ s ➔ t, is compatible with observed data y0, . . . , yt through (2) with ηs ✏ η✝s ,
0 ↕ s ↕ t. This suggests a way to estimate how the model propagates uncertain
parameters (initial-condition error e and model error et): it is sufficient to have
a description of the dynamics of Rt in time. The true state can only lie in Rt.
Note that the dynamics of Rt takes into account only those realizations of e, et
which are compatible with the actual realization of observed data y0, . . . , yt.
Consequently, if Rt is empty, one can conclude that the errors were wrongly
described by (3).

Any point of Rt can be the true state. In order to obtain a minimax estimate
of this true state, we assign to a point x P Rt a worst-case error, that is the
maximal distance between x and other points of Rt. The point with minimal
worst-case error3 is the minimax estimate ♣xt. Roughly speaking, the worst-case
error can be thought of as a “the longest axis” of the minimal ellipsoid containing
Rt, and the minimax estimate ♣xt is the central point of that ellipsoid.

The basics of the minimax state estimation were developed by [Bertsekas and Rhodes, 1971],
[Milanese and Tempo, 1985], [Chernousko, 1994], [Kurzhanski and Vályi, 1997],
[Nakonechny, 2004]. The main advantages of minimax estimates are as follows:
(1) the possibility to filter out any model error and observation noise with
bounded energy, (2) the estimation of the worst-case error, (3) fast estimation
algorithms in the form of filters, (4) the possibility to evaluate the model, that
is to assess how good the model describes observed phenomena.

In this subsection, we assume that Ft ✏ IN✂N . In this case, there is no
reduction and the state estimation algorithm operates on the full model. Fol-
lowing [Zhuk, 2010], we introduce an extended version of the linear minimax

3This point will coincide with the Tchebysheff center of the smallest ellipsoid containing

the reachability set.
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state estimate ♣xt, a minimax gain Gt and the reachability set Rt for (1):

G0 ✏ Q✁1

0
� ♣HT

0
R✁1

0
♣H0,♣x0 ✏ G✁1

0

✁
Q✁1

0
e� ♣HT

0
R✁1

0
♣y0 ✁ η

0
q
✠
,

β0 ✏ ①R✁1

0
♣y0 ✁ η

0
q, y0 ✁ η

0
② ,

Gt�1 ✏ Q✁1

t ✁Q✁1

t
①MtBt

①MT
t Q✁1

t � ♣HT
t�1

R✁1

t�1
♣Ht�1,

Bt ✏ ♣Gt � ①MT
t Q✁1

t
①Mtq

✁1,♣xf
t�1

✏ Mt♣♣xtq,♣xt�1 ✏ ♣xf
t�1

�G✁1

t�1
♣HT
t�1

R✁1

t�1
ryt�1 ✁ ηt�1

✁ ♣Ht�1♣xf
t�1

s �G✁1

t�1
♣Qt � ①MtG

✁1

t
①MT

t q
✁1et,

Xt�1 ✏ tw : ①Gt�1w,w② ↕ 1✉,

βt�1 ✏ βt � ①R✁1

t�1
♣yt�1 ✁ ηt�1

q, yt�1 ✁ ηt�1
② ✁ ①B�t G✁1

t ♣xt, G
✁1

t ♣xt② � ①①MT
t Qt

①Mtet, et② ,

Rt ✏ ♣xt �
❛
1✁ βt � ①Gt♣xt, ♣xt②Xt .

(4)

Here Rt denotes an ellipsoidal approximation of the reachability set for the
model (1) and βt is a scaling factor. The dynamics of Xt describes how the model
Mt propagates uncertain parameters from the bounding set (3) compatible with
observed data yt. The observation-dependent scaling factor βt defines whether
Xt shrinks or expands. If 1 ✁ βt � ①Gt♣xt, ♣xt② ➔ 0, then the observed data
is incompatible with our assumption on uncertainty description (3). In the
form (4), the minimax state estimation algorithm can be applied to non-linear
models, hence we refer to it as an extended minimax filter. Nevertheless, the
theory only supports the algorithm in the linear case—that is, the reachability
set is known to contain all possible true states only in the linear case.

The algorithm is far too expensive for high-dimensional systems: it requires
to propagate a minimax gain Gt P R

N✂N , where N is the dimension of the
state space of the model (1). For instance, with N ✏ 107 like in air quality
applications, the dimension of Gt is 10

7✂ 107, which cannot be manipulated by
modern computers because of huge computational loads and out-of-reach mem-
ory requirements. Hence a reduction is necessary to carry out the computations
for high dimensional systems.

3.2 Minimax filter for Differential-Algebraic Equations with

discrete time

A more general form of the filter was derived in [Zhuk, 2010] for DAE problems.
The filter addresses the problem

Ft�1zt�1 ✏ Mt♣Ftztq � rt , F0z0 ✏ F0F
T
0
♣xg

0
� eq , yt ✏ Ht♣Ftztq � ηt , (5)

with

①Q✁1♣e✁ eq, e✁ e② �
T✁1➳
t✏0

①Q✁1

t ♣rt ✁ rtq, rt ✁ rt②

�
T➳

t✏0

①R✁1

t ♣ηt ✁ ηtq, ηt ✁ ηt② ↕ 1 .

(6)

RR n➦ 7500
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Here Ft P R
N✂n can be any rectangular matrix and zt P R

n denotes the state
of the DAE. If Ft ✏ IN✂N , the problem statement is the same as in section 3.1.

Following [Zhuk, 2010], we consider the equation for the minimax gain Gt,
for any time t P t0, . . . , T ✁ 1✉:

Bt ✏
✁
Gt � ①MT

t Q✁1

t
①Mt

✠�
,

Gt�1 ✏ FT
t�1

✑
Q✁1

t ✁Q✁1

t
①MtBt

①MT
t Q✁1

t

✙
Ft�1 � ♣HT

t�1
R✁1

t�1
♣Ht�1 ,

(7)

with the following initialization:

G0 ✏ FT
0
Q✁1F0 � ♣HT

0
R✁1

0
♣H0 . (8)

For any time t P t0, . . . , T ✉, the minimax estimator is defined as

♣zt ✏ G�t vt , (9)

with
v0 ✏ FT

0
Q✁1e� ♣HT

0
R✁1

0
♣y0 ✁ η

0
q , (10)

and, for t P t1, . . . , T ✉,

vt ✏ FT
t Q✁1

t✁1
Mt✁1♣Ft✁1Bt✁1vt✁1q

� FT
t

✑
Q✁1

t✁1
✁Q✁1

t✁1
①Mt✁1Bt✁1

①MT
t✁1

Q✁1

t✁1

✙
rt✁1

� ♣HT
t R

✁1

t ♣yt ✁ ηtq.

(11)

For any time t P t0, . . . , T ✉, the reachability set Rt is defined as

Rt ✏ ♣zt �❛
1✁ βt � ①Gt♣zt, ♣zt②Xt, Xt ✏ tx : ①Gtx, x② ↕ 1✉ (12)

with βt being a scaling factor depending on observations:

βt�1 ✏ βt�①R
✁1

t�1
♣yt�1✁ηt�1

q, yt�1✁ηt�1
②✁①B�t G✁1

t ♣zt, G✁1

t ♣zt②�①①MT
t Qt

①Mtrt, rt②

We have that the reachability set is a translation of the set Xt induced by the
minimax gain Gt. The shape of Xt depends only on the model, observation
operator and bounding set. Xt describes how the model propagates uncertain
initial condition and model error from the bounding set (6). In contrast to the
case of ODE, Gt could be singular so that Xt contains the kernel of Gt. In fact,
the part of the system state lying in that kernel is not observable.

3.3 The case of the non-singular gain

Assume for simplicity that rt ✏ 0 and e ✏ 0. Let us further assume that Gt is
positive definite for all time istants t. This is the case when, for instance, Ft,
for t P t0, T ✉, is of full column rank, or FT

t Ft � ♣HT
t
♣Ht is positive definite. If Gt

is positive definite, then Qt � ①MtG
✁1

t
①MT

t is positive definite, and according to
Sherman-Morrison-Woodbury formula (see section A), its inverse can be written
in the form✁

Qt � ①MtG
✁1

t
①MT

t

✠✁1

✏ Q✁1

t ✁Q✁1

t
①Mt♣Gt � ①MT

t Q✁1

t
①Mtq

✁1①MT
t Q✁1

t . (13)

RR n➦ 7500
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Using this identity and the gain equation (7), it is possible to write Gt�1 as

Gt�1 ✏ FT
t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1

Ft�1 � ♣HT
t�1

R✁1

t�1
♣Ht�1 , (14)

which gives an alternative form to the filter. It also proves that Gt is positive
definite for all t P t0, . . . , T ✉.

The state estimator can be rewritten so that the model is applied directly
to Ft♣zt instead of FtBtvt. Although it is an equivalent formulation in the linear
case, it can make a huge difference when the model is non-linear. In addition,
this alternative form makes it easier to interpret the action of the filter. Starting
from ♣zt�1 ✏ G✁1

t�1
vt�1 (equation (9)) and the expression (11) for vt�1:

♣zt�1 ✏ G✁1

t�1
FT
t�1

Q✁1

t Mt♣FtBtGt♣ztq �G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

q . (15)

In case of a linear model and considering the equation for Bt (7), one gets

♣zt�1 ✏G✁1

t�1
FT
t�1

Q✁1

t
①Mt

✁
Gt � ①MT

t Q✁1

t
①Mt

✠✁1

Gt♣zt
�G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

q ,

(16)

which, according to the Sherman-Morrison-Woodbury formula, is equivalent to

♣zt�1 ✏G✁1

t�1
FT
t�1

Q✁1

t
①Mt

✑
G✁1

t ✁G✁1

t
①MT

t ♣Qt � ①MtG
✁1

t
①MT

t q
✁1①MtG

✁1

t

✙
Gt♣zt

�G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

q ,

(17)

which gives

♣zt�1 ✏G✁1

t�1
FT
t�1

Q✁1

t

✑
IN✂N ✁ ①MtG

✁1

t
①MT

t ♣Qt � ①MtG
✁1

t
①MT

t q
✁1

✙ ①Mt♣zt
�G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

q ,
(18)

and, using IN✂N ✏ ♣Qt � ①MtG
✁1

t
①MT

t q♣Qt � ①MtG
✁1

t
①MT

t q
✁1,

♣zt�1 ✏ G✁1

t�1
FT
t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1 ①Mt♣zt �G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

q .

Noting that x ✏ FtF
T
t x� ♣I ✁ FtF

T
t qx and using (14) we write

♣zt�1 ✏ G✁1

t�1
♣Gt�1 ✁ ♣HT

t�1
R✁1

t�1
♣Ht�1qF

T
t�1

Mt♣Ft♣ztq
�G✁1

t�1
FT
t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1

♣I ✁ Ft�1F
T
t�1

qMt♣Ft♣ztq
�G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

q

✏ FT
t�1

Mt♣Ft♣ztq �G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

✁ ♣Ht�1F
T
t�1

Mt♣Ft♣ztqq
�G✁1

t�1
FT
t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1

♣I ✁ Ft�1F
T
t�1

qMt♣Ft♣ztq
Finally

♣zt�1 ✏ FT
t�1

Mt♣Ft♣ztq �G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

✁ ♣Ht�1F
T
t�1

Mt♣Ft♣ztqq
�G✁1

t�1
FT
t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1

♣I ✁ Ft�1F
T
t�1

qMt♣Ft♣ztq
(19)
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4 Model reduction

We introduce a reduction method which generalizes the classical Galerkin ap-
proach. In the later approach, the model state is projected onto a lower-
dimensional subspace so that the dynamics of the full state is represented with a
small number of scalars. However this reduction can loose some properties of the
full model. For instance, the reduced state equation can introduce instabilities
that are not in the full model.

Assume that for each time step t, we have a matrix Ft P R
n✂n whose columns

are linearly-independent orthonormal vectors—we therefore have FT
t Ft ✏ In✂n.

We denote by Ft the linear span of the columns of Ft. The reduction consists
in projecting the true state xt onto this subspace Ft. We introduce zt ✏ FT

t xt,
which is the vector of the coefficients of the projection of xt. Consequently we
approximate xt with Ftzt.

4.1 Classical reduction

The main idea of the classical reduction based on the Galerkin projection is to
derive the equation for zt multiplying (1) by FT

t�1
:

zt�1 ✏ FT
t�1

xt�1 ✏ FT
t�1

Mt♣xtq � FT
t�1

et . (20)

Recalling the definition of zt we obtain

zt�1 ✏ FT
t�1

Mt♣Ftztq � FT
t�1

et � FT
t�1

Mt♣xtq ✁ FT
t�1

Mt♣Ftztq . (21)

Let us define
pt ✏ et �Mt♣xtq ✁Mt♣FtF

T
t xtq , (22)

so that
zt�1 ✏ FT

t�1
Mt♣Ftztq � FT

t�1
pt , z0 ✏ FT

0
♣xg

0
� eq . (23)

pt is the sum of the model error and a reduction error. If we were to apply the
extended minimax filter on the reduced state equation (23), we would need to
evaluate the range of values that pt can take. Since pt is state dependent and
since the true state is unknown, it is hard to determine the range of pt. The
natural approach to suppress the state dependence is to bound the reduction
error for all plausible states. Hence we may assume that

⑥pt⑥ ↕ ⑥et⑥ � δt ,

where, for instance, δt is guaranteed to exist for Lipschitz continuous models
provided FtF

T
t xt approximates xt with finite error4. With possibly modified

Q,Qt and Rt, we write

①Q✁1♣e✁ eq, e✁ e②�
T✁1➳
t✏0

①Q✁1

t ♣pt✁ptq, ♣pt✁ptq②�
T➳

t✏0

①R✁1

t ♣ηt✁ηtq, ηt✁ηt② ↕ 1

for pt defined by (22) and some pt defined as a systematic error of the new
model error. Note that only FT

t�1
pt has an impact onto dynamics of zt. Noting

that
FT
t�1

pt ✏ FT
t�1

Ft�1F
T
t�1

pt ,

4If ⑥xt ✁ rxt⑥ ↕ ε and κ is the model Lipschitz constant, we can take δt ✏ κε.
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Reduced minimax state estimation 11

we see that it is enough to have a bound on Ft�1F
T
t�1

pt only. Thus we can
consider an ellipsoid in the form

①Q✁1♣e✁ eq, e✁ e② �
T✁1➳
t✏0

①♣FT
t Q✁1

t FtqF
T
t ♣pt ✁ ptq, F

T
t ♣pt ✁ ptq②

�
T➳

t✏0

①R✁1

t ♣ηt ✁ ηtq, ηt ✁ ηt② ↕ 1 .

(24)

Now we stress that the above procedure could lead to the overestimation of
the reachability set of the reduced model (23). This is a consequence of the
model reduction (we replaceMt with FT

t�1
Mt♣Ftq) and the suppression of state-

dependence in the reduction error.
Now let us consider an example illustrating the instabilities that can occur

because of the reduction.

4.1.1 Instability of the reachability set

Take a linear model M ✏
✑

1 1

✁ 1

2
0

✙
and x

g
0
✏ 0. Then the state equation (1) for

xt ✏ ♣x
♣1q
t , x

♣2q
t qT reads

x
♣1q
t�1

✏ x
♣1q
t � x

♣2q
t � e

♣1q
t , x

♣1q
0

✏ e♣1q,

x
♣2q
t�1

✏ ✁
1

2
x
♣1q
t � e

♣2q
t , x

♣2q
0

✏ e♣2q,
(25)

Assume Q ✏ Qt ✏
�
1 0
0 1

✟
and e ✏ et ✏ 0. For simplicity assume that we have

no observations, that is, Ht♣xq ✏ 0 and yt ✏ 0. Since all admissible noises ηt
must verify 0 ✏ yt ✁ Ht♣xtq ✏ ηt we can deduce that the reachability set is
defined in this case by the ellipsoid

♣e♣1qq2 � ♣e♣2qq2 �
T✁1➳
t✏0

♣e
♣1q
t q2 �

T✁1➳
t✏0

♣e
♣2q
t q2 ↕ 1 (26)

Let us compute the reachability set for (25) at time step T ✏ 2. To do so we
note that

x
♣1q
2

✏
e♣1q

2
� e♣2q � e

♣1q
0

� e
♣2q
0

� e
♣1q
1

,

x
♣2q
2

✏ ✁
e
♣1q
0

� e♣1q � e♣2q

2
� e

♣2q
1

Define qeT✁1 ✏ ♣e, e0, . . . , eT✁1q
T , so that qe1 ✏ ♣e♣1q, e♣2q, e

♣1q
0

, e
♣2q
0

, e
♣1q
1

, e
♣2q
1
qT

and set ℓ1 ✏ ♣ 1
2
, 1, 1, 1, 1, 0qT , ℓ2 ✏ ♣✁1

2
,✁ 1

2
,✁ 1

2
, 0, 0, 1qT . Then

x
♣1q
2

✏ ①ℓ1, qe1②, x
♣2q
2

✏ ①ℓ2, qe1② .
We note that ⑥qe1⑥22 ↕ 1 if the components of qe1 verify the inequality (26). Now
we can write

max
qe1

⑤x
♣iq
2
⑤ ✏ max

⑥qe1⑥2↕1

①ℓi, qe1② ✏ ⑥ℓi⑥2, i ✏ 1, 2 ,

RR n➦ 7500
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so that

max
qe1

⑤x
♣1q
2
⑤ ✏

❝
17

4
, max

qe1
⑤x
♣2q
2
⑤ ✏

❝
7

4
. (27)

By analogy we find

max
qe0

⑤x
♣2q
1
⑤ ✏

❝
5

4
, (28)

Take Ft ✏
✏
1
0

✘
. The reduced model (23) reads

zt�1 ✏ zt � FT pt, z0 ✏ e♣1q , (29)

with pt ✏ ♣x
♣2q
t � e

♣1q
t , e

♣2q
t qT . Hence

zt�1 ✏ zt � p
♣1q
t , (30)

with p
♣1q
t ✏ x

♣2q
t � e

♣1q
t . Note that the differential connection between x

♣2q
t and

e
♣1q
t (represented by the second equation of (25)) is lost in the reduced model.

In other words, we consider x
♣2q
t from now as a part of the model error. As it

was already mentioned above, ♣0, e
♣2q
t qT ✏ ♣I ✁ FtF

T
t qpt has no impact on the

dynamics of zt. Let us find a bound on p
♣1q
t . By Minkowski inequality,

T✁1➳
t✏0

♣x
♣2q
t � e

♣1q
t q2 ↕ q2♣T ✁ 1q :✏

☎✆1�

❣❢❢❡max
qeT✁2

T✁1➳
t✏0

♣x
♣2q
t q2

☞✌2

,

where the maximum over qeT✁1 is taken so as to define a state-independent
ellipsoid. The bounding set for the reduced model (29) may be written as:

♣e♣1qq2 �
T✁1➳
t✏0

♣p
♣1q
t q2 ↕ 1� q2♣T ✁ 1q (31)

Let us take T → 0 and define p
♣1q
t ✏

❜
1�q2♣T✁1q

T
. Then ♣e♣1q, p

♣1q
0

, . . . p
♣1q
T✁1

qT is

admissible, provided e♣1q ✏ 0. We find from (29) that zT ✏
❛
T ♣1� q2♣T ✁ 1qq.

It is clear that, for T ✏ 2,

q2♣T ✁ 1q ✏

☎✆1�

❣❢❢❡max
qe0

1➳
t✏0

♣x
♣2q
t q2

☞✌2

➙

✂
1�

❝
max
qe0

⑤x
♣2q
1
⑤

✡2

.

Using (27)–(28) we find

z2 ✏
❛
T ♣1� q2♣T ✁ 1qq ➙

❣❢❢❡2♣1�

✄
1�

❝
5

4

☛2

q ✓ 3.312 → max ⑤x
♣1q
2
⑤ ✏

❝
17

4
✓ 2.062

After two time steps, we overestimated the projection of the true reachability set
by more than 60%. Even in this simple case, the reduction error, whose norm
must be bound by a state-independent value, can lead to a large reachability
set. Also, while the full model is stable, the reduced model is not and the errors
will accumulate in time (see (30)).
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4.2 Generalized reduction by means of DAE

Above we have seen that the state estimation problem for (23) could be affected
by instability of the reduced model so that the reachability set could rapidly
expand in time although the reachability set of the full model behaves differently.
In what follows we propose a way to further constraint the size of the reachability
set for the reduced state, while relying on the same reduction-error estimations
as previously.

Consider the reduced model

zt�1 ✏ FT
t�1

Mt♣Ftztq � FT
t�1

pt, z0 ✏ FT
0
♣xg

0
� eq , (32)

and the associated error description

①Q✁1♣e✁ eq, e✁ e② �
T✁1➳
t✏0

①♣FT
t Q✁1

t FtqF
T
t ♣pt ✁ ptq, F

T
t ♣pt ✁ ptq②

�
T➳

t✏0

①R✁1

t ♣ηt ✁ ηtq, ηt ✁ ηt② ↕ 1 .

(33)

We introduce an additional constraint onto the reduced state:

T✁1➳
t✏0

①S✁1

t Ltzt, Ltzt② ↕ 1 (34)

where S✁1

t is a s✂s-symmetric positive-definite matrix defining the shape of the
bounding set for the reduced state, and Lt P R

s✂n is a design parameter allowing
to constraint a desired part of the reduced state or just a linear combination of
the reduced state’s components. We do not impose any conditions on Lt. Now
we note that the energy constraint can be incorporated into (32)–(33) using the
following construction:

zt�1 ✏ FT
t�1

Mt♣Ftztq � FT
t�1

pt, z0 ✏ FT
0
♣xg

0
� eq, Ltzt � wt ✏ 0 , (35)

with

①Q✁1♣e✁ eq, e✁ e② �
T✁1➳
t✏0

①♣FT
t Q✁1

t FtqF
T
t ♣pt ✁ ptq, F

T
t ♣pt ✁ ptq②

�
T➳

t✏0

①R✁1

t ♣ηt ✁ ηtq, ηt ✁ ηt②

�
T✁1➳
t✏0

①S✁1

t ♣wt ✁ wtq, ♣wt ✁ wtq② ↕ 1� 1

(36)

where wt is a parameter.

4.2.1 Linear case

Let us consider one way to choose Lt in the linear case: Mt ✏ Mt. Consider
the DAE in the form

Ft�1zt�1 ✏ MtFtzt � rt , F0z0 ✏ F0F
T
0
♣xg

0
� eq . (37)
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We recall that FT
t�1

Ft�1 ✏ In✂n and that the solution of a linear algebraic
equation Ft�1z ✏ b is given by FT

t�1
b, provided ♣I ✁Ft�1F

T
t�1

qb ✏ 0. According
to this, we write:

zt�1 ✏ FT
t�1

MtFtzt � FT
t�1

rt , z0 ✏ FT
0
♣xg

0
� eq,

0 ✏ ♣I ✁ Ft�1F
T
t�1

qMtFtzt � ♣I ✁ Ft�1F
T
t�1

qrt .
(38)

In order to explore the connection between (32) and (38), we define

rt ✏ Ft�1F
T
t�1

♣et �Mtxtq ✁MtFtF
T
t xt . (39)

As FT
t�1

Ft�1F
T
t�1

✏ FT
t�1

we see that FT
t�1

rt is equal to FT
t�1

pt defined by (22).
Since the structure of the first equation of (32) coincides with the structure of
the first equation in (38), we conclude that the solutions also coincide, provided
pt is defined by (22) and rt is defined by (39). Note that for rt defined by (39),
the algebraic constraint in (38) is also satisfied.

rt can be written in the form

rt ✏ Ft�1F
T
t�1

pt � ♣I ✁ Ft�1F
T
t�1

qMtFtF
T
t xt . (40)

The first term is the sum of the projected model error and the reduction error
(see the discussion about pt in section 4.1). The second term represents the in-
formation about the part of the model lying in the orthogonal completion of the
reduction subspace. Equations (38) reduce to (32) if Lt :✏ ♣I ✁Ft�1F

T
t�1

qMtFt

and wt ✏ LtF
T
t xt. We choose S✁1

t so that

T✁1➳
t✏0

①S✁1

t LtF
T
t xt, LtF

T
t xt② ↕ 1 ,

which allows to keep information about the dynamics of ♣I ✁ Ft�1F
T
t�1

qxt�1.
Indeed,

♣I✁Ft�1F
T
t�1

qxt�1 ✏ ♣I✁Ft�1F
T
t�1

qMt♣FtF
T
t xt�♣I✁FtF

T
t qxtq�♣I✁Ft�1F

T
t�1

qet ,

so that

LtF
T
t xt ✏ ♣I✁Ft�1F

T
t�1

qxt�1✁
✏
♣I ✁ Ft�1F

T
t�1

qMt♣I ✁ FtF
T
t qxt � ♣I ✁ Ft�1F

T
t�1

qet
✘
.

Note that ♣I ✁ Ft�1F
T
t�1

qxt�1 corresponds to the part of the state which is
suppressed by the reduction as: xt�1 ✏ Ft�1zt�1 � ♣I ✁ Ft�1F

T
t�1

qxt�1.
The bounding set is defined with (36), which introduces a link between the

reduced state and the full state through ♣I ✁ Ft�1F
T
t�1

qxt�1. This allows to
limit the artificial increase of the reachability set due to the reduction.

Let us illustrate this feature on the previous example. We have M ✏
✏

1 1

✁ 1

2
0

✘
and x

g
0
✏ 0. Then (38) reads

zt�1 ✏ zt � r
♣1q
t , z0 ✏ e♣1q,

0 ✏ ✁
1

2
zt � r

♣2q
t .

(41)

Define Lt ✏ ✁1

2
. Now we need to define S✁1

i from the condition (34). To do so
we define

q1♣T q :✏

☎✆1�

❣❢❢❡max
qeT✁1

T➳
t✏0

♣x
♣1q
t q2

☞✌2

.
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Let us compute q1♣T q and q2♣T q for a given T → 0. Define X♣T ✁ 1q :✏

♣x
♣1q
0

, x
♣2q
0

, x
♣1q
1

, x
♣2q
1

, . . . , x
♣1q
T✁1

, x
♣2q
T✁1

qT ,X1♣T✁1q ✏ ♣x
♣1q
0

, x
♣1q
1

, . . . , x
♣1q
T✁1

qT ,X2♣T✁

1q ✏ ♣x
♣2q
0

, x
♣2q
1

, . . . , x
♣2q
T✁1

qT and

A ✏

✄
I2✂2 0 ... 0

✁M I2✂2 ... 0
... ...

0 ... ✁M I2✂2

☛

Also let us introduce a linear mapping πi defined by the rule πi♣X♣T ✁ 1qq ✏
Xi♣T ✁ 1q, i ✏ 1, 2. Then X♣T ✁ 1q ✏ AqeT✁2 as it follows from (25) so that
Xi♣T ✁ 1q ✏ πi♣AqeT✁2q. We have

T✁1➳
t✏0

♣x
♣iq
t q2 ✏ ①ATπT

i πiAqeT✁2, qeT✁2②, i ✏ 1, 2 ,

so that

max
qeT✁2

T✁1➳
t✏0

♣x
♣iq
t q2 ✏ max

qeT✁2

①ATπT
i πiAqeT✁2, qeT✁2②, i ✏ 1, 2 ,

and since ⑥qeT✁2⑥
2

2
↕ 1 due to (26) we find that

max
qeT✁2

①ATπT
i πiAqeT✁2, qeT✁2② ✏ λmax

i ♣ATπT
i πiAq, i ✏ 1, 2 ,

where λmax

i ♣ATπT
i πiAq denotes the maximal eigenvalue of the matrix ATπT

i πiA,
i ✏ 1, 2. Recalling that

qi♣T ✁ 1q :✏

☎✆1�

❣❢❢❡max
qeT✁2

T✁1➳
t✏0

♣x
♣iq
t q2

☞✌2

, i ✏ 1, 2 ,

we find

qi♣T ✁ 1q ✏

✂
1�
❜
λmax

i ♣ATπT
i π1Aq

✡2

, i ✏ 1, 2 .

Straightforward computation shows that

λmax

1
♣ATπT

1
π1Aq ✓ 8.58, λmax

2
♣ATπT

2
π2Aq ✓ 2.83

for T ✏ 4. Using the above formulae we find that

q1♣3q ✓ 15.44, q2♣3q ✓ 7.19

Setting Sj ✏
q1♣3q
4

we obtain:

3➳
j✏0

S✁1

j L2

jz
2

j ↕ 1

Now, taking into account the bounding set (31), we obtain that (36) has the
following form

♣e♣1qq2 �
3➳

j✏0

♣r
♣1q
j q2 �

3➳
j✏0

S✁1

j L2

jz
2

j ↕ 1� q2♣3q � 1

RR n➦ 7500
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We claim that r
♣1q
t ✏

❜
q2♣3q�1

4
, e♣1q ✏ 0 is not admissible for T ✏ 4 in contrast to

the bounding set (26) considered above. To see this we note that
➦

3

j✏0
♣r
♣1q
j q2 ✏

q2♣3q�1 so that it is enough to show that
➦

3

j✏0
S✁1

j L2

jz
2

j → 1. We find from (41)
that

z2j ✏ j2♣r
♣1q
0
q2 ✏ j2

q2♣3q � 1

4
,

so that
3➳

j✏0

S✁1

j L2

jz
2

j ✏
3➳

j✏0

j2
♣q2♣3q � 1q

4q1♣3q
✓ 1.858 → 1 .

Finally we see that the solution zt of the reduced state equation (41) corre-

sponding to r
♣1q
t ✏

❜
q2♣3q�1

4
and e♣1q ✏ 0 is not admissible starting from T ✏ 4.

In contrast, it is admissible for any T in the case of the reduced model (29).

4.3 Extended minimax state estimation for DAE

After the considerations of the previous section, we introduced the following
filtering problem:

zt�1 ✏ FT
t�1

Mt♣Ftztq � FT
t�1

pt,

z0 ✏ FT
0
♣xg

0
� eq, Ltzt � wt ✏ 0,

①Q✁1♣e✁ eq, e✁ e② �
T➳

t✏0

①R✁1

t ♣ηt ✁ ηtq, ηt ✁ ηt②

�
T✁1➳
t✏0

①♣FT
t Q✁1

t FtqF
T
t pt, F

T
t pt② �

T✁1➳
t✏0

①S✁1

t wt, wt② ↕ 1� 1 .

(42)

We define a descriptor matrix rF ✏
✏
In✂n

0

✘
. We can extend the model

and its associated error matrix: the new DAE model is ⑩Mt ✏
✑
FT

t
MtFt

Lt

✙
andrQt ✏

✑
FT

t
Q
✁1

t
Ft 0

0 S
✁1

t

✙
. With these definition, we can apply the (extended) DAE

minimax filter from section 3.2, simply by substituting Ft with rF , Mt with ⑩Mt

and Qt with rQt. Also Rt should be modified to take into account the additional
error due to reduction in the observation equation, since Ht♣Ftztq is involved
instead of Ht♣xtq. The computational version of this algorithm is presented in
the section 5.

4.3.1 Notes about the reduction

The reduction can be seen as a projection of the full model state onto the
subspace Ft spanned by the columns of Ft. The columns of Ft can be determined
in a number of ways, but the usual reduction approach is based on Proper
Orthogonal Decomposition (POD), also called principal component analysis. In
order to carry out a POD, we propose the following procedure.

The simulation period r0, T s is split into sub-periods r0, T1r, rT1, T2r, . . . .
Within a sub-period rTi, Ti�1r, before any filtering takes place, the model can
be run and a sequence of full states ♣rxTi

, . . . , rxTi�1
q is generated5. A POD is

5These states can be seen as forecasts.
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carried out on this sequence, so that the reduction retains the dynamics of the
model.

Over the period r0, T s, this algorithm produces matrices Ft that only depend
on the sub-period: for any t1, t2 P rTi, Ti�1r, Ft1 ✏ Ft2 . Let us focus on a sub-
period during which the reduction matrix is constant in time: Ft ✏ F . Consider
the definition (39) of the error in the linear case. It is decomposed in the
projection of the model error FFT et and the difference FFTMtxt ✁MtFFTxt

that is the commutation error between FFT and Mt. If the projector FFT

commutes with the model, then no error due to the reduction can accumulate
in time. Otherwise, some of the model dynamics is lost because of the reduction.

Another source of error may lie at the transitions between two sub-periods.
There are changes in the matrix Ft that lead to additional errors, even if the pro-
jectors FtF

T
t and Ft�1F

T
t�1

commute with Mt: rt ✏ Ft�1F
T
t�1

et � ♣Ft�1F
T
t�1

✁
FtF

T
t qMtxt.
The POD of ♣rxTi

, . . . , rxTi�1
q may be efficient to reproduce the dynamics of

the model, but it may be irrelevant for the assimilation of the observations.
In (19), the second term on the right-hand side is a correction that involves the
discrepancy between observations and model state. If this discrepancy is not in
the subspace Ft, the correction can be removed. For instance, if yt�1 ✁ ηt�1

✁♣Ht�1F
T
t�1

Mt♣Ft♣ztq ❘ Ft and Rt�1 ✏ Im✂m, then the correction term is zero,
which means that the observations have no impact on the state estimate (except
indirectly through Gt�1). It is therefore advised to take this issue into account,

e.g., by using the POD of ♣rxTi
, . . . , rxTi�1

, yTi
✁ ηTi

✁ ♣HTi
FT
Ti
rxTi

, . . . , yTi�1
✁

ηTi�1
✁ ♣HTi�1

FT
Ti�1

rxTi�1
q.

5 Algorithm and computations

5.1 Derivation of the computational form for the gain Gt

Either in (7) or in (14), the gain may not be computed directly because of
the large computational costs. If the dimension N of the state space is high,
e.g., N ✏ 107, the inversion of Qt in (7) and the inversion of Qt � ①MtG

✁1

t
①MT

t

in (14) cannot be performed due to memory requirements and computational
cost. In order to make the computations tractable, the filter’s matrices should
be transformed.

A key step is the representation of the matrices Qt. In practice, it is expected

that they are approximated in square root form: Qt ✔ Q
1

2

t Q
T

2

t , where Q
1

2

t is

composed of q ✦ N columns, and Q
T

2

t ✏
✁
Q

1

2

t

✠T
. As a consequence, some

directions in the state space are assumed to be perfectly known (no uncertainty),

which is usually not a realistic assumption. In addition, Q
1

2

t Q
T

2

t is singular. In
order to circumvent this issue, it is reasonable to introduce

Qt ✏ Q
1

2

t Q
T

2

t �Dt (43)

where Dt is a positive definite diagonal matrix. The diagonal elements of Dt are
likely to be small. They essentially acknowledge the fact that every component
in the space state is associated with at least a small error.
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One needs to make sure that for any errors satisfying the inequality (3) with
the exact Qt, the inequality still holds after Qt is replaced with its approxima-
tion. At least, the ellipsoid induced by the approximation should contain the
ellipsoid induced by the exact model error description. It is always possible to
make the ellipsoid bigger with a larger Dt, so that it is always possible to rely
on the approximation (43) without underestimating the model error.

5.1.1 First form compatible with computations in high dimension

In the form (14), the main computational issue is the inversion of

Qt � ①MtG
✁1

t
①MT

t ✏ Q
1

2

t Q
T

2

t �Dt � ①MtG
✁1

t
①MT

t . (44)

Introducing the positive-definite matrix Jt ✏ Dt � ①MtG
✁1

t
①MT

t and using the
Sherman-Morrison-Woodbury formula (see section A), the inversion of (44) can
be written as✁

Qt � ①MtG
✁1

t
①MT

t

✠✁1

✏ J✁1

t ✁ J✁1

t Q
1

2

t

✁
Iq✂q �Q

T

2

t J✁1

t Q
1

2

t

✠✁1

Q
T

2

t J✁1

t . (45)

Applying the Sherman-Morrison-Woodbury formula to J✁1

t gives✁
Dt � ①MtG

✁1

t
①MT

t

✠✁1

✏ D✁1

t ✁D✁1

t
①Mt

✁
Gt � ①MT

t D✁1

t
①Mt

✠✁1 ①MT
t D✁1

t . (46)

We introduce the following scaled matrices

qFt�1 ✏ D
✁ 1

2

t Ft�1 P R
N✂n ,qQ 1

2

t ✏ D
✁ 1

2

t Q
1

2

t P R
N✂q ,

qUt ✏ D
✁ 1

2

t
①Mt

✁
Gt � ①MT

t D✁1

t
①Mt

✠✁ 1

2

P R
N✂n .

(47)

Then J✁1

t ✏ D
✁ 1

2

t ♣IN✂N ✁ qUt
qUT
t qD

✁ 1

2

t . With this expression of J✁1

t and the
identity (45), the expression (14) of Gt reads

Gt�1 ✏ qFT
t�1

♣IN✂N ✁ qUt
qUT
t q

qFt�1

✁ qFT
t�1

♣IN✂N ✁ qUt
qUT
t q

qQ 1

2

t

✁
Iq✂q �Q

T

2

t J✁1

t Q
1

2

t

✠✁1

✂

✂ qQT

2

t ♣IN✂N ✁ qUt
qUT
t q

qFt�1 � ♣HT
t�1

R✁1

t�1
♣Ht�1 ,

(48)

and

Gt�1 ✏ qFT
t�1

qFt�1 ✁ qFT
t�1

qUt

✁ qFT
t�1

qUt

✠T

✁
✑ qFT

t�1
qQ 1

2

t ✁ qFT
t�1

qUt
qUT
t
qQ 1

2

t

✙ ✁
Iq✂q �Q

T

2

t J✁1

t Q
1

2

t

✠✁1

✂

✂
✑ qFT

t�1
qQ 1

2

t ✁ qFT
t�1

qUt
qUT
t
qQ 1

2

t

✙T
� ♣HT

t�1
R✁1

t�1
♣Ht�1 .

(49)

Let Vt ✏ Iq✂q �Q
T

2

t J✁1

t Q
1

2

t , then

Vt ✏ Iq✂q � qQT

2

t
qQ 1

2

t ✁ qQT

2

t
qUt
qUT
t
qQ 1

2

t P R
q✂q (50)
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is symmetric positive-definite (because J✁1

t is symmetric positive-definite). Fi-
nally,

Gt�1 ✏ qFT
t�1

qFt�1 ✁ qFT
t�1

qUt

✁ qFT
t�1

qUt

✠T

✁
✑ qFT

t�1
qQ 1

2

t ✁ ♣ qFT
t�1

qUtq♣qUT
t
qQ 1

2

t q
✙
V
✁ 1

2

t V
✁T

2

t

✑ qFT
t�1

qQ 1

2

t ✁ ♣ qFT
t�1

qUtq♣qUT
t
qQ 1

2

t q
✙T

� ♣HT
t�1

R✁1

t�1
♣Ht�1 .

(51)

The matrix G0 can be computed as

G0 ✏ qFT
0
qF0 ✁ qFT

0
qQ 1

2

✑
Iq✂q � qQT

2 qQ 1

2

✙✁1 qQT

2 qF0 � ♣HT
0
R✁1

0
♣H0 . (52)

In the forms (52) and (51), the computation of Gt, t P t0, . . . , T ✉, is tractable.
In (51), the rounded brackets indicate in what order the matrix multiplications
should be carried out. With these indications, the largest multiplications require
nqN or n2N operations. Note that the operation ①MT

t D✁1

t or D✁1

t
①Mt is simply

the multiplication of every row of ①Mt with a diagonal element of D✁1

t . Three
matrix inversions and three square root decompositions are needed:

1. D
✁ 1

2

t which is trivial since Dt is diagonal;

2.
✁
Gt � ①MT

t D✁1

t
①Mt

✠✁ 1

2

which is tractable because the matrix is of small

size—it is in R
n✂n;

3. V
✁ 1

2

t which also involves a small matrix, in R
q✂q.

In (52), the matrix Iq✂q � qQT

2 qQ 1

2 is of small size as well.
The algorithm corresponding to the filter in this form is shown in section 5.2.

5.1.2 Second form compatible with computations in high dimension,

for the gain

A derivation similar to that of section 5.1.1 is possible, but starting from (7)
directly. In this approach, Q✁1

t is decomposed with the Sherman-Morrison-
Woodbury formula:

Q✁1

t ✏ D✁1

t ✁D✁1

t Q
1

2

t

✁
Iq✂q �Q

T

2

t D✁1

t Q
1

2

t

✠✁1

Q
T

2

t D✁1

t . (53)

Injecting this expression for Q✁1

t in (7) leads to another tractable form of
reduced minimax filter.

5.2 Algorithm

The algorithm presented below is valid for the case when the gain Gt is non-
singular. Also, for simplicity, we assume that rt ✏ 0. Based on the filter in the
form of section 3.3, the algorithm reads:

Parameters x
g
0
, e, Q ✏ Q

1

2Q
T

2 �D, Mt, Ft, Qt ✏ Q
1

2

t Q
T

2

t �Dt, yt, Ht, ηt, Rt.
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Initialization qF0 ✏ D✁
1

2F0 ,qQ 1

2 ✏ D✁
1

2Q
1

2 ,♣H0 ✏ DH0♣x
g
0
� eqF0 ,

G0 ✏ qFT
0
qF0 ✁

✁ qFT
0
qQ 1

2

✠ ✑
Iq✂q � qQT

2 qQ 1

2

✙✁1 ✁ qFT
0
qQ 1

2

✠T
� ♣HT

0
R✁1

0
♣H0 ,

v0 ✏ qFT
0
D✁

1

2 ♣xg
0
� eq ✁

✁ qFT
0
qQ 1

2

✠ ✑
Iq✂q � qQT

2 qQ 1

2

✙✁1 qQT

2 D✁
1

2 ♣xg
0
� eq � ♣HT

0
R✁1

0
♣y0 ✁ η

0
q ,

♣z0 ✏ G✁1

0
v0 .

For t P t0, . . . , T ✁ 1✉

⑤Mt ✏ D
✁ 1

2

t DMt♣♣ztq ,qUt ✏ ⑤Mt

✁
Gt � ⑤MT

t
⑤Mt

✠✁ 1

2

,

qFt�1 ✏ D
✁ 1

2

t Ft�1 ,qQ 1

2

t ✏ D
✁ 1

2

t Q
1

2

t ,♣Ht�1 ✏ DHt�1♣Mt♣Ft♣ztq � rtqFt�1 ,

Vt ✏ Iq✂q � qQT

2

t
qQ 1

2

t ✁
✁ qQT

2

t
qUt

✠✁ qQT

2

t
qUt

✠T
,

Gt�1 ✏ qFT
t�1

qFt�1 ✁
✁ qFT

t�1
qUt

✠✁ qFT
t�1

qUt

✠T
✁
✑ qFT

t�1
qQ 1

2

t ✁ ♣ qFT
t�1

qUtq♣qUT
t
qQ 1

2

t q
✙
V ✁1

t

✑ qFT
t�1

qQ 1

2

t ✁ ♣ qFT
t�1

qUtq♣qUT
t
qQ 1

2

t q
✙T

� ♣HT
t�1

R✁1

t�1
♣Ht�1 ,♣zt�1 ✏ FT

t�1
Mt♣Ft♣ztq �G✁1

t�1
♣HT
t�1

R✁1

t�1
♣yt�1 ✁ ηt�1

✁ ♣Ht�1F
T
t Mt♣Ft♣ztqq

�G✁1

t�1
qFT
t�1

D
1

2

t ♣I ✁ Ft�1F
T
t�1

qMt♣Ft♣ztq
✁G✁1

t�1
♣ qFT

t�1
qUtqqUT

t D
1

2

t ♣I ✁ Ft�1F
T
t�1

qMt♣Ft♣ztq
✁G✁1

t�1

✑ qFT
t�1

qQ 1

2

t ✁ ♣ qFT
t�1

qUtq♣qUT
t
qQ 1

2

t q
✙
V
✁ 1

2

t ✂

✂ V
✁T

2

t

✑ qQT

2

t ✁ ♣ qQT

2

t
qUtqqUT

t

✙
D

1

2

t ♣I ✁ Ft�1F
T
t�1

qMt♣Ft♣ztq .
In order to derive the equation for ♣zt, we transformed FT

t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1 ①Mt

found in equation (19) in the same way as FT
t�1

✁
Qt � ①MtG

✁1

t
①MT

t

✠✁1 ♣Ft�1 in

the gain in (51).

A similar form of the algorithm is available in the data assimilation library
Verdandi (http://verdandi.gforge.inria.fr/).
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6 Consistency with Kalman filter

In the linear case (Mt♣xq ✏ ①Mtx), without systematic model error or observa-
tional error (rt ✏ 0 and ηt ✏ 0) and without reduction (Ft ✏ In✂n), the filter
coincides with the Kalman filter. The bound on the error ♣e, rt, ηtq (see equa-
tion (3)) should be reinterpreted in terms of variances. We introduce a scaling
coefficient α → 0. It is assumed that the variance of e is αQ, the variance of rt
is αQt, and the variance of ηt is αRt.

At time t ✏ 0, from (10), (8) and (9), the minimax estimator is

♣x0 ✏
✁
Q✁1 � ♣HT

0
R✁1

0
♣H0

✠✁1

♣Q✁1e� ♣HT
0
R✁1

0
y0q , (54)

which leads to

♣x0 ✏
✁
Q✁1 � ♣HT

0
R✁1

0
♣H0

✠✁1 ✁
Q✁1 � ♣HT

0
R✁1

0
♣H0 ✁ ♣HT

0
R✁1

0
♣H0

✠
e

�
✁
Q✁1 � ♣HT

0
R✁1

0
♣H0

✠✁1 ♣HT
0
R✁1

0
y0 ,

hence ♣x0 ✏ e�
✁
Q✁1 � ♣HT

0
R✁1

0
♣H0

✠✁1 ♣HT
0
R✁1

0
♣y0 ✁ ♣H0eq , (55)

which coincides with the best linear unbiased estimator (BLUE) of x0, based
on the background state e with error variance αQ and the observation vector y0
with error variance αR0. The gain matrix isK0 ✏ ♣Q✁1� ♣HT

0
R✁1

0
♣H0q

✁1 ♣HT
0
R✁1

0
✏

Q ♣HT
0
♣ ♣H0Q ♣HT

0
� R0q

✁1. In addition, the error variance of BLUE is Q✁1 �♣HT
0
R✁1

0
♣H0 ✏ G✁1

0
.

Let us assume that at time t✁ 1, ♣xt✁1 coincides with the Kalman estimator
and that its error variance is G✁1

t✁1
. Gt is invertible and the minimax estimator

at time t is

♣xt ✏ G✁1

t Q✁1

t✁1
①Mt✁1

✁
Gt✁1 � ①MT

t✁1
Q✁1

t✁1
①Mt✁1

✠✁1

Gt✁1♣xt✁1 �G✁1

t HT
t R

✁1

t yt .

(56)
According to (14),

Gt ✏ P✁1

t � ♣HT
t R

✁1

t
♣Ht , (57)

with
Pt ✏ Qt✁1 � ①Mt✁1G

✁1

t✁1
①MT

t✁1
. (58)

Note that, in the Kalman framework, αPt corresponds to the error variance
of the forecast ①Mt✁1♣xt✁1, and αG✁1

t corresponds to the error variance of the
Kalman estimator.

We now prove that ♣xt ✏ G✁1

t P✁1

t
①Mt✁1♣xt✁1�G✁1

t HT
t R

✁1

t yt with the follow-
ing derivation (using the Sherman-Morrison-Woodbury formula, see section A):

Q✁1

t✁1
①Mt✁1

✁
Gt✁1 � ①MT

t✁1
Q✁1

t✁1
①Mt✁1

✠✁1

Gt✁1 ✏

✏ Q✁1

t✁1
①Mt✁1

✁
G✁1

t✁1
✁G✁1

t✁1
①MT

t✁1
♣Qt✁1 � ①Mt✁1G

✁1

t✁1
①MT

t✁1
q✁1①Mt✁1G

✁1

t✁1

✠
Gt✁1

✏ Q✁1

t✁1
①Mt✁1

✁
In✂n ✁G✁1

t✁1
①MT

t✁1
P✁1

t
①Mt✁1

✠
✏ Q✁1

t✁1
①Mt✁1 ✁Q✁1

t✁1
♣Pt ✁Qt✁1qP

✁1

t
①Mt✁1

✏ P✁1

t
①Mt✁1 .

(59)
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Therefore, (56) can be rewritten as

♣xt ✏ G✁1

t P✁1

t
①Mt✁1♣xt✁1 �G✁1

t HT
t R

✁1

t yt , (60)

or

♣xt ✏
✁
P✁1

t � ♣HT
t R

✁1

t
♣Ht

✠✁1

P✁1

t
①Mt✁1♣xt✁1 �

✁
P✁1

t � ♣HT
t R

✁1

t
♣Ht

✠✁1

HT
t R

✁1

t yt .

(61)
This equation is in the same form as (54), with Pt in place of Q and the

forecast ①Mt✁1♣xt✁1 in place of e. The same derivation gives

♣xt ✏ ①Mt✁1♣xt✁1 �Kt♣yt ✁Ht
①Mt✁1♣xt✁1q , (62)

where we introduce the Kalman gain Kt ✏
✁
P✁1

t � ♣HT
t R

✁1

t
♣Ht

✠✁1

HT
t R

✁1

t .

This concludes the proof of the consistency between the minimax filter and
the Kalman filter under the assumptions previously mentioned. Nevertheless,
the meaning of the matrices Q, Qt✁1 and Rt differ since they are covariance
matrices in the Kalman filter while they define bounded errors in the minimax
filter. In many practical applications (e.g., in geophysical modeling), the errors
are bounded and modeling the errors with normal distributions is not realistic.
As a consequence, a typical assumption is that a random variable has a clipped
normal distribution and always lies in an interval centered at its expectation
and of width equal to four times its standard deviation (where one finds about
95% of the total probability of a normal distribution). In this case, the scaling
parameter α would be 1

4
.
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A Sherman-Morrison-Woodbury formula

The Sherman-Morrison-Woodbury matrix identity is

♣S �N1WN2q
✁1

✏ S✁1 ✁ S✁1N1♣W
✁1 �N2S

✁1N1q
✁1N2S

✁1 (63)

if S and W are nonsingular matrices.
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