
Parametric Random Generation of Deterministic Tree

Automata

Pierre-Cyrille Heam, Cyril Nicaud, Sylvain Schmitz

To cite this version:

Pierre-Cyrille Heam, Cyril Nicaud, Sylvain Schmitz. Parametric Random Generation of Deter-
ministic Tree Automata. Theoretical Computer Science, Elsevier, 2010, 411 (1), pp.3469–3480.
<hal-00561274>

HAL Id: hal-00561274

https://hal.archives-ouvertes.fr/hal-00561274

Submitted on 3 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48350493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00561274

Parametric Random Generation of Deterministic Tree

Automata✩,✩✩

Pierre-Cyrille Héama,c, Cyril Nicaudb, Sylvain Schmitzc

aLIFC, Université de Franche-Comté & INRIA, Besançon, France
bLIGM, Université Paris Est & CNRS, Marne-la-Vallée, France

cLSV, ENS Cachan & CNRS & INRIA, Cachan, France

Abstract

Uniform random generators deliver a simple empirical means to estimate the average complexity

of an algorithm. We present a general rejection algorithm that generates sequential letter-to-letter

transducers up to isomorphism. We also propose an original parametric random generation al-

gorithm to produce sequential letter-to-letter transducers with a fixed number of transitions. We

tailor this general scheme to randomly generate deterministic tree walking automata and deter-

ministic top-down tree automata. We apply our implementation of the generator to the estimation

of the average complexity of a deterministic tree walking automata to nondeterministic top-down

tree automata construction we also implemented.

1. Introduction

The widespread use of automata as primitive bricks in computer science motivates an ever re-

newed search for efficient algorithms taking automata as input (see for some recent examples [1,

2, 3]). Developing new algorithms and heuristics raises crucial evaluation issues, as improved

worst-case complexity upper-bounds do not always transcribe into clear practical gains [4].

A suite for software performance evaluation can usually gather three types of entries:1

1. benchmarks, i.e. large sets of typical samples, which can be prohibitively difficult to col-

lect, and thus only exist for a few general problems,

2. hard instances, that provide good estimations of the worst case behaviour, but are not

always relevant for average case evaluations,

3. random inputs, that deliver average complexity estimations, for which the catch resides in

obtaining a meaningful random distribution (for instance a uniform random distribution).

As the mathematical computation of the average complexity of an algorithm is an intricate

✩A preliminary version of this work was published under the title Random Generation of Deterministic Tree (Walking)

Automata in Maneth, S., editor, CIAA’09, volume 5642 of Lecture Notes in Computer Science, pages 115–124. Springer,

2009. doi\string:10.1007/978-3-642-02979-0_15.
✩✩This work was supported in part by ANR projects GAMMA (BLAN07-2 195422), RAVAJ (SETIN-2006), and

AVeriSS (SETIN-2006).

Email addresses: heampc@lifc.univ-fcomte.fr (Pierre-Cyrille Héam), cyril.nicaud@univ-mlv.fr (Cyril

Nicaud), sylvain.schmitz@lsv.ens-cachan.fr (Sylvain Schmitz)
1All of the three types are used in SAT-solver competitions like http://www.satcompetition.org/.

Preprint submitted to Theoretical Computer Science May 19, 2010

http://dx.doi.org/10.1007/978-3-642-02979-0_15
http://www.satcompetition.org/

task that cannot be undertaken in general, random inputs can prove themselves invaluable

for its empirical estimation.

This paper is dedicated to the random generation of deterministic tree automata. Tree au-

tomata have witnessed a recent surge of interest in connection with XML applications [5, 6],

fostering a wealth of theoretical results (e.g. [7, 8, 9]). This paper makes the following contribu-

tions:

• Section 3 proposes a generic rejection algorithm for uniformly generating accessible se-

quential letter-to-letter transducers. Thanks to the structural properties of these transduc-

ers, the algorithm can be used for the generation of various kinds of finite automata.

• In Section 3.2 we propose an original parametric algorithm for uniformly generating ac-

cessible sequential letter-to-letter transducers with a fixed number of transitions. This

generation technique is useful in order to evaluate how the performance of an algorithm

depends on the density of transitions, which is a recurrent concern in empirical evaluations

[10, 1, 11].

• We apply these algorithms in Section 4 to the generation of deterministic tree walking

automata. The approach was implemented, and we provide in Section 4.3 an empirical

estimation of the average size of the nondeterministic top-down tree automaton equivalent

to a given deterministic tree walking automaton.

• Section 5 presents a bijection between a class of letter-to-letter transducers and determin-

istic top-down tree automata, providing a uniform random generator for this class of tree

automata.

• We argue in Section 6 that our approach is suitable to randomly generate many other

classes of finite state machines: we illustrate the cases of deterministic Turing machines,

deterministic real-time pushdown automata, and deterministic visibly pushdown automata.

The latter class of systems allows to circumvent the restrictions in Sections 4 and 5, as

deterministic visibly pushdown automata can represent any regular tree language [12], and

are especially suited for representing XML streams.

Our approach consists in reducing the problem to the uniform random generation of deterministic

word automata, as developed by Bassino and Nicaud [13], Bassino et al. [14].

Related Work. In the case of deterministic accessible word automata, two main approaches to

the random generation with uniform distribution on complete automata stand out: one based on

a recursive decomposition [15] and one using Boltzmann samplers [13]. The latter algorithm has

been extended to possibly incomplete automata by Bassino et al. [14]. An implementation of

these algorithms is available in the C++ package REGAL [16].2

The problem of randomly generating nondeterministic finite word automata is still mostly

open. Two recent papers propose such random generation algorithms: Tabakov and Vardi [10]

apply theirs to the evaluation of inclusion testing procedures, whereas Chen et al. [17] evaluate

the performance of a learning algorithm. Both algorithms are ad hoc, using ideas from random

graph theory, and a theoretical analysis of the observed properties may be the next step for

defining a class of meaningful distributions for NFAs.

2Available at http://regal.univ-mlv.fr/.

2

http://regal.univ-mlv.fr/

q1c q2 q3 d

δ(q1, a) = q2 δ(q2, a) = q3 δ(q3, a) = q3

δ(q1, b) = q1 δ(q2, b) = q1 δ(q3, b) = q3

γ(q1, a) = c γ(q2, a) = d γ(q3, a) = c

γ(q1, b) = d γ(q2, b) = d γ(q3, b) = d

ρ(q3) = d

ainit = c

a, c

b, d

a, d

b, d a, c

b, d

Figure 1: A sequential letter-to-letter transducer.

2. Preliminaries

If i and j are positive integers, we denote by [i, j] the set of integers k such that i ≤ k and

k ≤ j. If K is a set, P(K) (resp. P∗(K)) denotes the set of subsets (resp. the set of nonempty

subsets) of K. The domain of a function ϕ is denoted Dom(ϕ).

Sequential Transducers. A sequential letter-to-letter transducer (SLT) from input alphabet Σ1

to output alphabet Σ2 is a tuple T = (Σ1,Σ2,Q, qinit, δ, γ, ρ, ainit) where Q is the finite set of states,

qinit ∈ Q is the initial state, δ is a partial transition function from Q × Σ1 into Q, γ is a partial

output function from Q × Σ1 into Σ2 such that Dom(δ) = Dom(γ), ρ is a partial final function

from Q into Σ2, and ainit ∈ Σ2 is the initial output. An SLT is complete if Dom(δ) = Q × Σ1.

Accessible states of an SLT are inductively defined by: qinit is accessible and if q is accessible,

for every a ∈ Σ1, δ(q, a) is accessible. An SLT is accessible if all its states are accessible. An

example of a complete and accessible SLT is depicted in Figure 1.

Let T1 = (Σ1,Σ2,Q1, qinit1, δ1, γ1, ρ1, ainit1) and T2 = (Σ1,Σ2,Q2, qinit2, δ2, γ2, ρ2, ainit2) be two

SLTs. A function ϕ from Q1 to Q2 is an isomorphism from T1 to T2 if it satisfies the following

conditions:

1. ϕ is bijective,

2. ϕ(qinit1) = qinit2,

3. δ1(q, a) = p iff δ2(ϕ(q), a) = ϕ(p),

4. γ1(q, a) = b iff γ2(ϕ(q), a) = b,

5. ρ1(q) = b iff ρ2(ϕ(q)) = b, and

6. ϕ(ainit1) = ainit2.

If such an isomorphism exists, we say that T1 and T2 are isomorphic. Informally, T1 and T2

are isomorphic if they encode the same SLT, up to state names. The relation is isomorphic to is

trivially an equivalence relation. More formal machines will be introduced as needed later.

In this paper, we are interested in the uniform random generation of SLTs up to isomorphism,

i.e. we want to equiprobably generate equivalence classes for the isomorphic relation (and for a

given number of states). Since the approach is purely syntactic and will be applied to different

classes of finite automata, the semantics of SLTs is moslty irrelevant; its only interest is to justify

our focus on accessible states.

3

Algorithm 1: A rejection algorithm for GenerateX()

repeat1

e← GenerateY ()2

until e ∈ X3

return e4

Rejection Algorithms. Before we describe our generation algorithms, let us recall the defini-

tion of a rejection algorithm: Suppose we want to generate elements of a set X, according to

a probability distribution pX . Furthermore, suppose that X is a subset of Y , and that we have a

probability distribution pY on Y , whose restriction to X is pX . If we have an algorithm GenerateY

that generates elements of Y according to pY , we may use this algorithm to generate elements of

X as follows: repeatedly draw an element of Y , reject it if it is not in X, and stop if it is in X (see

Algorithm 1). Note that if pY is the uniform distribution on Y , then pX is the uniform distribution

on X.

The average complexity of this rejection algorithm depends on the complexity of the gener-

ation algorithm on Y (line 2), added with the complexity to test whether an element of Y is in

X (line 3), and multiplied by the average number of iterations. One can see that if pY (X) is the

probability for an element of Y to be in X, the average number of iterations is 1/pY (X).

One could exploit directly the uniform random generator of Bassino et al. [14], by defining a

bijection between the family of desired (tree) automata Tn and a subfamily X of the deterministic

word automata An, and by employing a rejection algorithm. We rather introduce in the next

section a generic, intermediate step, based on families of SLTs, which allows us to give general

complexity results for our generators.

3. Generating Sequential Transducers

We propose in this section general methods to generate randomly and uniformly deterministic

and accessible automata-like structures with n states. To this end, we develop an algorithm

that generates sequential letter-to-letter accessible transducers with n states, that can be further

parametrized by giving

• some restrictions on the possible outputs for each input letter (Section 3.1),

• a number m of missing transitions (Section 3.2).

The idea thereafter, for each given problem, is to find an effective bijection ϕ between the struc-

tures one wants to generate and such a family of transducers.

The algorithm is in fact more general, since by Proposition 1, one can build an effective

random generator even if ϕ is only an injection, provided that all the complete transducers are in

the image of ϕ. This method will be applied in the following sections to build random generators

for deterministic tree walking automata, deterministic top-down tree automata, and other families

of deterministic automata.

Note that we are only interested here

• in the combinatorial structures of transducers, not on what their models are. Indeed, our

approach will be used in order to generate several kinds of finite automata;

4

• in the uniform random generation of isomorphic classes of SLTs. The algorithms proposed

in this section fulfill this criterion. However, in order to simplify the exposition, we will

write about random generation of SLTs rather than of equivalence classes of SLTs, but

keep in mind that we randomly generate witnesses of equivalence classes.

3.1. Generation with Output Restrictions

The idea to generate deterministic and accessible word automata developed by Bassino et al.

[13, 14] is to exhibit an effective injection ι from automata with n states on a k-letter alphabet

to partitions of [1, kn + 1] in n parts in the complete case and of [1, kn + 2] in n + 1 parts in the

possibly incomplete case. The inverse ι−1 can also be computed, and though all partitions are not

the image of an automaton, there are enough of them to guarantee that a rejection algorithm is

efficient. The algorithm therefore consists in randomly generating a partition, using a Boltzmann

sampler, until the partition is the image of an automaton, and then compute its preimage. Its

average complexity is in O(n3/2).

Families of Transducers. Let us consider the familyDn(Σ1,Σ2, r, ri, rF) of accessible SLTs with

n states, where Σ1 is the input alphabet, Σ2 is the output alphabet, r : Σ1 → P
∗(Σ2) is a restriction

on transitions, ri ∈ P
∗(Σ2) is a restriction on initialization and rF ∈ P

∗(Σ2) is a restriction on

finalizations. An n-state accessible SLT (Σ1,Σ2,Q, i, δ, γ, ρ, ai) belongs to Dn(Σ1,Σ2, r, ri, rF) if

the following conditions are met:

1. ai ∈ ri,

2. ρ(Q) ⊆ rF , and

3. for all a ∈ Σ1, γ(Q, a) ⊆ r(a).

We denote by Cn(Σ1,Σ2, r, ri, rF) the subset of Dn(Σ1,Σ2, r, ri, rF) that contains all the com-

plete transducers. In order to generate a random SLT ofDn(Σ1,Σ2, r, ri, rF) or Cn(Σ1,Σ2, r, ri, rF),

we split the problem into three parts: the underlying graph with input symbols, the transitions

outputs, and the set of final states. For complete transducers, one can perform these parts inde-

pendently and still ensure equiprobability. A rejection algorithm is used to adapt this method to

possibly incomplete ones.

Complete SLTs. The algorithm to generate a random complete SLT of Cn(Σ1,Σ2, r, ri, rF) con-

sists of the following three steps:

1. Randomly generate a complete deterministic and accessible automaton on Σ1.

2. For each q ∈ Q and each a ∈ Σ1, randomly and uniformly choose γ(q, a) in r(a).

3. For each q ∈ Q, randomly and uniformly choose an element x of rF ⊎{#}, where # is a new

symbol indicating that the state is not final; then define ρ(q) = x if x , # and leave ρ(q)

otherwise undefined.

One can give the number of final states as a parameter f and change Step 3 into: Choose a

random subset F with f elements of Q, and for each q ∈ F, choose ρ(q) in rF . The average

complexity of the algorithm remains in O(n3/2).

5

Possibly Incomplete SLTs. In order to generate a random possibly incomplete SLT of the full

Dn(Σ1,Σ2, r, ri, rF) family, we proceed as before, except that we generate a possibly incomplete

automaton at Step 1. The problem here is that the distribution is not uniform anymore, since

we consider multiple choices of γ(q, a) when the transition does not exist, leading to the same

transducer. In order to obtain uniformity, we arbitrarily order Σ2 and only keep, using a rejection

algorithm, transducers such that γ(q, a) is set to the minimum in r(a) for every undefined transi-

tion. Corollary 1 of [14] ensures that a proportion greater than c, where c > 0 is a real number,

of possibly incomplete automata are complete. The average number of rejects of this method is

therefore in O(1), as complete structures are not rejected and are numerous enough. The average

complexity is inO(n3/2) as well. Observe that if we had generated the image of γ(q, a) for defined

transitions only, we would have lost uniformity.

Complexity. Using the same argument about the proportion of complete automata given in Corol-

lary 1 of [14], we can prove the following fairly general proposition:

Proposition 1. Let En be a subset ofDn(Σ1,Σ2, r, ri, rF) such that En containsCn(Σ1,Σ2, r, ri, rF).

The rejection algorithm consisting in generating uniformly an element ofDn(Σ1,Σ2, r, ri, rF) until

it is in En performs O(1) iterations on average.

Therefore, we have a straightforward method to build a random generator for such a class En,

which is efficient if one can quickly test if a given transducer is in En. In particular, if the

membership test can be done in linear time—which will be the case in all the following instances

of this generation scheme—then the average complexity of this method is in O(n3/2). Note that

the constant factor might grow quickly, e.g. when |Σ2| grows.

3.2. Random Generation with a Fixed Number of Undefined Transitions

The previous algorithm for random generation of possibly incomplete structures tends to

generate automata that are nearly complete. This section introduces a different technique that

takes as parameter the number m of missing transitions compared to the complete automaton

with n states. Although its computational complexity is higher, this technique allows to tweak

very finely the shape of the generated automata.

For this section, k = |Σ1| denotes the size of the input alphabet, which is arbitrarily ordered

by a1 < a2 < · · · < ak. We are interested in generating uniformly and randomly elements of

Xn(Σ1,Σ2, r, ri, r f ,m), which we define as the set of elements of Dn(Σ1,Σ2, r, ri, rF) with exactly

m ∈ N undefined transitions, i.e. such that |Dom(δ)| = kn−m. In the sequel, the alphabets and the

restriction functions are fixed, and we denote Xn(Σ1,Σ2, r, ri, rF ,m) by Xn(m). The underlying

graph of A ∈ Xn(m) is the labeled graph obtained after removing the information about the

output and final functions and about the initial output fromA.

As we are working up to isomorphism, we consider in this section that Q = [1, n], that the

initial state is 1 and that the states of an element of Xn(m) are labeled in breadth-first order.

Under these conditions, two different elements of Xn(m) cannot be isomorphic, thus simplifying

the enumerations.

First note that if kn−m < n−1, i.e. m > (k−1) n+1, then there are not enough transitions for

the transducer to be accessible, and therefore Xn(m) = ∅. We therefore assume in the following

that

m ≤ (k − 1) n + 1 .

Also note that Proposition 1 does not apply for m , 0, as complete structures are not included in

Xn(m).

6

Characterizing Accessible Underlying Graphs. To generate uniformly at random an element

of Xn(m), we use a recursive method similar to that of Champarnaud and Paranthoën [15], but

applied to the representation of possibly incomplete deterministic automata described by Bassino

et al. [14]. Let A be in Xn(m). We order Q × Σ1 lexicographically, and denote by ν the unique

non-decreasing mapping from Q × Σ1 onto [1, kn]. Therefore, for (q, a) and (q′, a′) in Q × Σ1,

ν((q, a)) < ν((q′, a′)) if and only if the transition labeled by a from q is considered before the

one labeled by a′ from q′ when performing a breadth-first search from the initial state. The

underlying graph of an element of Xn(m) can therefore be seen as a partial function gA from

[1, kn] to [1, n], with gA = δ ◦ ν
−1. For every i ∈ [1, kn] we denote by q(i) and a(i) the state and

the letter such that ν((q(i), a(i))) = i. Note that q(i) and a(i) can be computed using

q(i) = ((i − 1) div k) + 1 ,

a(i) = a((i−1) mod k)+1 .
(1)

The size of the domain of gA is kn − m, and one can easily build the underlying graph of an

elementA ∈ Xn(m) if gA is given.

A partial function g from [1, kn] to [1, n], with |Dom(g)| = kn −m, is however not always the

function gA of an element of Xn(m), because of the accessibility condition:

Lemma 1. Let g be a partial function from [1, kn] to [1, n] such that |Dom(g)| = kn − m. There

existsA ∈ Xn(m) such that g = gA if and only if for every q ∈ [2, n], there exists i ∈ [1, (q − 1)k]

such that g(i) = q.

Proof. As ν enumerates the (possibly undefined) transitions in breadth-first order, the images of

the elements of [1, (q − 1) k] exactly correspond via ν−1 to the states accessible from the states

[1, q − 1] using one transition. And if a state q is accessible, it is accessible from a smaller state

in breadth-first order. ✷

We denote by Fn,m the set of partial functions from [1, kn] to [1,m] satisfying the conditions of

Lemma 1.

This construction is uniquely defined on underlying graphs [14, Theorem 2], therefore the

number of distinct underlying graphs of elements of Xn(m) is exactly the number of elements of

Fn,m.

Enumerating SLTs. We are now interested in finding a formula for |Xn(m)|. For a given g ∈

Fn,m, corresponding to a unique underlying graph, one can obtain different elements of Xn(m)

by choosing the output (with restriction r) for every defined transition, the initial output (with

restriction ri), and the set of final states and their outputs (with restriction rF). Hence, the number

of elements of Xn(m) having an underlying graph corresponding to g is

|ri|
∏

a∈Σ1

|r(a)|n(g,a)

∑

F⊆[1,n]

|rF |
|F|

= |ri|(1 + |rF |)
n
∏

a∈Σ1

|r(a)|n(g,a)

where n(g, a) is the number of transitions labeled by a that are defined in the underlying graph

associated to g. The number of elements of Xn(m) is therefore

|Xn(m)| = |ri|(1 + |rF |)
n
∑

g∈Fn,m

∏

a∈Σ1

|r(a)|n(g,a) .

7

Note that the terms before the sum on the elements of Fn,m correspond to the choice of the initial

output and to the choice of the final states and of their outputs. This can be done independently

from the transitions and can also easily be parametrized: one can for instance fix the number of

final states just like we fix the number of undefined transitions.

Transitions and their Outputs. We now focus on generating uniformly at random the transitions

and their outputs.

For N ∈ [1, kn − 1], let FN,n,m be the set of all partial functions t from [1,N] to [1, n] × Σ2

such that:

1. |Dom(t)| = N − m,

2. on the first coordinate, the condition of Lemma 1 is satisfied: for every q ∈ [2, n], there

exist i ∈ [1,min(N, (q − 1)k)] and ℓ ∈ Σ2 such that t(i) = (q, ℓ), and

3. the outputs satisfy r: for every i ∈ [1,N], if t(i) = (q, ℓ) is defined, then ℓ ∈ r(a(i)), where

a(i) is the letter corresponding to transition i, defined in Equation (1).

Informally, we are considering the N first transitions only, when they already fulfill the accessi-

bility condition. The idea is to build an inductive formula for |FN,n,m|, by removing the transitions

one by one, from N to 1; this formula will directly give an algorithm to generate uniformly at

random the underlying graph with output.

First remark that if m = 0, then the transition ν−1(kn) = (n, ak) in an element of Xn(0)

is always defined, and can be any element of [1, n] as the graph is already accessible before

examining the transitions from state n. And if m ≥ 1, the last transition can be defined or not, so

that we can count the number xn(m) of underlying graphs with output by:

xn(0) = |r(ak)| · n · |Fnk−1,n,0| ,

xn(m) = |r(ak)| · n · |Fnk−1,n,m| + |Fnk−1,n,m−1| for m ≥ 1 .

Let f (N, n,m) = |FN,n,m| when N < kn and m ≥ 0, and f (N, n,m) = 0 otherwise. For an

element t in FN,n,m the N-th transition, when defined, can be in one of the following cases:

• It is the only transition reaching state n, i.e. ∃a ∈ Σ2, t(i) = (n, a) ⇔ i = N. Hence if it

is removed, the remaining accessible part is an element of FN−1,n−1,m. Note that from the

accessibility condition, we must have N − 1 < k (n− 1) in this case, so that we can use this

case again for a graph with n − 1 states recursively.

• There is a smaller index i ∈ [1,N − 1] and some a ∈ Σ2 such that t(i) = (n, a), hence t(N)

can be any (q, a) in [1, n] × Σ2 satisfying the restriction condition on a(N), or undefined if

m > 0.

Putting all together, with initial conditions, we obtain:

f (N, n,m) = 0 if N ≥ kn or m < 0 or n ≤ 0 ,

f (N, n,m) = 0 if N − m < n − 1 ,

f (0, 1, 0) = 1 ,

f (N, n,m) = |r(a(N))| f (N − 1, n − 1,m) + |r(a(N))| n f (N − 1, n,m)

+ f (N − 1, n,m − 1) otherwise.

(2)

The second condition ensures that there are enough transitions to reach every state.

8

∆(q1, (root, internal), a) = (ց, q2)

∆(q2, (right, leaf), b) = (↑, q1)

q1 q2

(root, internal), a,ց

(right, leaf), b, ↑

Figure 2: A deterministic tree walking automaton.

At this point, random generation becomes straightforward: compute all the required values

of f (N, n,m), and from Equations (2) compute for each transition the probability that it is defined

or not, and if it is, for any (q, a) ∈ Q × Σ2, the probability that it ends in q with output a. See

Algorithm 2 for the details of the procedure; we assume that Uniform(X), where X is a finite set

of elements, returns an element of X uniformly at random.

Complexity. Computing the values of f (N′, n′,m′) is the most expensive part, as stated in the

following proposition.

Proposition 2. Under the RAM model, the complexity of the precomputation step is Θ(n3), both

in time and space. After this precomputation, generating an element of Xn(Σ1,Σ2, r, ri, r f ,m) can

be performed in linear time.

Note that the values reached by f (N′, n′,m′) can be huge, but that this kind of algorithms

behaves well when using floating point approximations, giving only a small bias in uniformity.

See Denise and Zimmermann [18] for more details on this point.

4. Application to Tree Walking Automata

4.1. Deterministic Tree Walking Automata

A deterministic tree walking automaton (DTWA) on binary trees is a tuple (Q,Σ,∆, qinit, F)

where Q is a finite set of states, qinit ∈ Q is the initial state, F ⊆ Q the set of final states

and ∆ is a partial transition function from Q × TYPE × Σ to {ε, ↑,ւ,ց} × Q, where TYPE =

{root, left, right} × {internal, leaf}. A deterministic tree walking automaton is complete if ∆ is a

complete function. Accessible states of a DTWA are defined inductively: qinit is accessible, and

if q is accessible and ∆(q, t, a) = (d, p) for some (t, a) ∈ TYPE × Σ, then p is accessible. An

example of a DTWA is shown in Figure 2.

An isomorphism from a DTWA (Q1,Σ,∆1, qinit1, F1) to a DTWA (Q2,Σ,∆2, qinit2, F2) is a

bijective function from Q1 to Q2 satisfying the three conditions (1) ϕ(qinit1) = qinit2, (2) ϕ(q) ∈ F2

iff q ∈ F1, and (3) ∆1(q, t, a) = (d, p) iff ∆2(ϕ(q), t, a) = (d, ϕ(p)).

4.2. From SLTs to DTWAs

We define in this section a rather straightforward bijection τ between DTWAs and a class of

SLTs, called DTWA-coherent SLTs, that contains all the complete SLTs. We obtain thereafter

a random generation algorithm for DTWAs thanks to the restriction mechanisms introduced in

Section 3.

9

Algorithm 2: Generate uniformly at random a SLT in Xn(m).

// Precomputation

Compute every f (N′, n′,m′) for N′ < kn, n′ ≤ n and m′ ≤ m1

// The last transition

if m = 0 then2

δ(n, ak)← Uniform([1, n])3

γ(n, ak)← Uniform(r(ak))4

end5

else6

if Uniform([1, xn(m)]) ≤ f (nk − 1, n,m − 1) then7

δ(n, ak) is undefined8

m← m − 19

end10

else11

δ(n, ak)← Uniform([1, n])12

γ(n, ak)← Uniform(r(ak))13

end14

end15

N ← kn − 116

// The main loop

while N > 0 do17

dice← Uniform([1, f (N, n,m)])18

if dice ≤ f (N − 1, n,m − 1) then19

δ(q(N), a(N)) is undefined20

m← m − 121

end22

else if dice − f (N − 1, n,m − 1) ≤ |r(a(N))| f (N − 1, n − 1,m) then23

δ(q(N), a(N))← n24

γ(q(N), a(N))← Uniform(r(a(N)))25

n← n − 126

end27

else28

δ(q(N), a(N))← Uniform([1, n])29

γ(q(N), a(N))← Uniform(r(a(N)))30

end31

N ← N − 132

end33

Generate uniformly the final states and their outputs.34

Generate uniformly the initial output.35

return the transducer.36

We first observe that a tree walking automaton can be viewed as an SLT with input al-

phabet Σ1 and output alphabet Σ2 defined by Σ1 = TYPE × Σ and Σ2 = {ε, ↑,ւ,ց}. Let

10

A = (Q,Σ,∆, qinit, F) be a DTWA; we define the SLT τ(A) by

τ(A) = (Σ1,Σ2 ⊎ {$, 1},Q, qinit, δ, γ, ρ, $) ,

with δ(q, (t, a)) = p and γ(q, (t, a)) = d iff ∆(q, t, a) = (d, p), and Dom(ρ) = F with ρ(q) = 1 iff

q ∈ F. For the example depicted in Figure 2,

δ(q1, ((root, internal), a)) = q2 γ(q1, ((root, internal), a)) =ց

δ(q2, ((right, leaf), b) = q1 γ(q2, ((right, leaf), b) = ↑ ρ(q1) = 1 .

An SLT on Σ1,Σ2 ⊎ {$, 1} is DTWA-coherent if its initial output symbol is $ and if for every

q ∈ Dom(ρ), ρ(q) = 1.

Let us now provide an algorithm for random generation up to isomorphism of DTWAs. We

re-use for this purpose the SLT generation algorithm, and need the following two propositions.

Proposition 3. The function τ is a bijection from DTWAs to DTWA-coherent SLTs. Moreover,

for every DTWAA, τ(A) is complete (resp. accessible) if and only ifA is complete (resp. acces-

sible).

Proof. LetA1 = (Q1,Σ,∆1, qinit1, F1) andA2 = (Q2,Σ,∆2, qinit2, F2) such that τ(A1) = τ(A2) =

(Σ1,Σ2 ⊎ {$, 1},Q, qinit, δ, γ, ρ, $). By construction, Q = Q1 = Q2, qinit = qinit1 = qinit2 and

Dom(ρ) = F1 = F2. Moreover, δ(q, (t, a)) = p and γ(q, (t, a)) = d iff ∆1(q, t, a) = (d, p) iff

∆2(q, t, a) = (d, p). Consequently ∆1 = ∆2, proving that τ is injective. Surjectivity of τ is a direct

consequence of its definition. ✷

Proposition 4. Two DTWAs A1 and A2 are isomorphic if and only if τ(A1) and τ(A2) are

isomorphic.

Proof. It suffices to note that the same isomorphism holds between A1 and A2 and τ(A1) and

τ(A2). ✷

Restrictions on Output Functions. Moreover, the restrictions introduced in Section 3 are helpful

in order to generate tree walking automata. Indeed, in a tree walking automaton, a transition

labeled by ((t, a), d), with (t, a) ∈ Σ1 and d ∈ Σ2 is useless (i.e. can never be fired) in either of the

following two cases:

1. t is in {root} × {internal, leaf} and d = ↑, or

2. t is in {root, left, right} × {leaf} and d ∈ {ւ,ց}.

Let us denote by rDTWA the subset of Σ1 × Σ2 of the pairs (a, b) that do not match any of the

above two cases. The class EDTWA
n of useful DTWA-coherent SLTs with n states then contains

Cn(Σ1,Σ2 ⊎ {$, 1}, r
DTWA, {$}, {1}) and is included in Dn(Σ1,Σ2 ⊎ {$, 1}, r

DTWA, {$}, {1}). Thus,

random generation of DTWAs can be performed by first using Proposition 1 or Proposition 2 to

obtain a SLT T and then by computing τ−1(T).

11

A Normal Form for DTWAs. Tree-walking automata are especially useful as a means to define

relations between nodes of a tree; however, when seen as tree language acceptors, there is little

point in allowing several final states or outgoing transitions from final states. Uniform random

generation of n-states DTWAs of this particular form does not fit our framework as such, and

requires specific handling. We point to a sensible solution for generating such automata, but

leave the details for future work.

Formally, a DTWA (Q,Σ,∆, qinit, F) is in final normal form if F is a singleton {q f } and

∆(q f , t, a) is undefined for all t in TYPE and a in Σ. It is in complete final normal form if

the restriction of ∆ to (Q\{q f }) × TYPES × Σ is a total function.

Generating n-states DTWAs in complete final normal form uniformly at random can be per-

formed by a rejection algorithm: generate a (n− 1)-states possibly incomplete DTWA uniformly

at random using our framework, but reject if the DTWA is complete. Given such an incomplete

(n−1)-states automaton, one obtains an n-states DTWA in complete final normal form by (1) for-

getting the final states information, (2) adding a new single final state q f , and (3) having all the

missing transitions point to q f and choosing uniformly at random their directions in Σ2. Assum-

ing that a non negligible proportion of possibly incomplete automata are incomplete—which is

seconded by the experimental results in Section 6.3 of Bassino et al. [14], where more than 80%

of the possibly incomplete automata on alphabets of size larger than 2 are incomplete—then the

average complexity remains in O(n3/2).

Beyond the complete final normal form, we conjecture that the other constructions for pos-

sibly incomplete automata and automata with a fixed number of missing transitions could be

adapted as well, and even retain the same complexities.

4.3. Experimentation: From DTWAs to Top-Down Tree Automata

Tree walking automata enjoy a tight connection with several logical formalisms [7, 9], includ-

ing some XPath fragments. Formula satisfiability then reduces to the emptiness of the language

of a tree walking automaton. Nevertheless, the latter problem is rather hard to decide: it is an

ET-complete problem, for which the known algorithms consist essentially in constructing

an exponentially larger equivalent top-down tree automaton, and (on the fly) checking this au-

tomaton for emptiness in polynomial time.

We have implemented a prototype tool for converting DTWAs into coaccessible nondeter-

ministic top-down tree automata (under the form of R NG grammars [6]). Given a DTWA

with n states, the resulting top-down tree automaton can hold as many as O(2n2

) states, that en-

code which pairs (p, q) of states allow a run of the DTWA to start from state p on a given tree

node and return to it in state q without ever visiting its parent node.

We ran the algorithm on 100 randomly generated incomplete DTWA for each n and report

the mean number of states in the computed equivalent top-down tree automaton in Figure 3. Due

to very high standard deviation values, we exclude the 10 smallest and 10 largest output automata

from the mean computation, and display their mean number of states on separate plots. All three

plots display an exponential behaviour. Overall, the translation results in a O(2n) size increase

on average, which is significantly better than the worst-case O(2n2

) bound.

5. Application to Top-Down Tree Automata

5.1. Deterministic Top-Down Tree Automata

In this section, F denotes a finite ranked alphabet, i.e. there is an arity function ar from F

into N. We denote by Fi the subset of elements C of F such that ar(C) = i. We assume that

12

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

3 4 5 6 7 8 9 10

N
u

m
b

er
o

f
o

u
tp

u
t

st
at

es
(b

as
e

2
lo

g
sc

al
e)

.

Number n of states in the original DTWA.

10% largest
80% median

10% smallest

Figure 3: Average number of states in the 10 smallest, the 10 largest, and the 80 median top-down tree automata obtained

from transforming 100 2-letter DTWAs with n states.

$ < F . Let F = {(f , i) | f ∈ F \ F0, 1 ≤ i ≤ ar(f)}.

A deterministic top-down tree automata (DTDA) is a tuple (Q,F , θ, qinit) where Q is a finite

set of states satisfying 0 < Q, qinit ∈ Q is the initial state, and θ is a partial transition function

mapping elements of Q×Fi to Qi (for all i ≥ 1) and elements of Q×F0 to 0. One can inductively

define accessible states of a DTDA by: the initial state qinit is accessible and for every f < F0, if

q is accessible and θ(q, f) = (q1, . . . , qar(f)) then the qi’s are accessible. A DTDA is complete if

Q × (F \ F0) ⊆ Dom(θ). For more information on top-down tree automata, the reader is referred

to [19].

Let A1 = (Q1,F , θ1, qinit1) and A2 = (Q2,F , θ2, qinit2) be two DTDAs. An isomorphism

ϕ is a bijective function ϕ from Q1 to Q2 such that (1) for every state q, every f ∈ F \ F0,

θ1(q, f) = (q1, . . . , qar(f)) iff θ2(ϕ(q), f) = (ϕ(q1), . . . , ϕ(qar(f))), (2) ϕ(qinit1) = qinit2, and (3) for

every state q, every C ∈ F0, θ1(q,C) = 0 iff θ2(ϕ(q),C) = 0.

5.2. From SLTs to DTDAs

We define in this section a bijection ψ from DTDAs to a subclass of SLTs, called DTDA-

coherent SLTs, that contains all the complete SLTs. For every DTDA A = (Q,F , θ, qinit), let

ψ(A) be the SLT

ψ(A) = (F ,P(F0) ⊎ {$},Q, qinit, δ, γ, ρ, $)

defined by: γ(q, (f , i)) = ∅ and δ(q, (f , i)) = pi iff θ(q, f) = (p1, . . . , pn), and ρ(q) = {A ∈ F0 |

θ(q, A) = 0} iff this set is not empty, and ρ(q) is undefined otherwise. The mapping ψ is closely

related to the path closure characterization of deterministic top-down tree languages [19].

For example, letF0 = {A, B}, F1 = {h} andF2 = { f } in the DTDAAex = ({q1, q2},F , θex, {q1})

with θex(q1, f) = (q1, q2), θex(q2, h) = q2, and θex(q1, A) = θex(q1, B) = θex(q2, A) = 0. This en-

tails F = {(h, 1), (f , 1), (f , 2)} in the SLT ψ(Aex) depicted in Figure 4.

A SLT (F ,P∗(F0) ⊎ {$},Q, qinit, δ, γ, ρ, $) is DTDA-coherent if

1. for every state q, every (f , i) ∈ F , δ(q, (f , i)) is defined iff δ(q, (f , j)) is defined for all

j ∈ [1, ar(f)],

2. γ(q, (f , i)) is either undefined or equal to ∅, and

13

δex(q1, (f , 1)) = q1

δex(q1, (f , 2)) = q2

δex(q2, (h, 1)) = q2

ρex(q1) = {A, B}

ρex(q2) = {A}

q1$

{A, B}

q2 {A}
(f , 2), ∅

(f , 1), ∅ (h, 1), ∅

Figure 4: The SLT ψ(Aex) = (F ,P∗({A, B})⊎{$}, {q1, q2}, q1, δex, γex, ρex, $).

3. its initial output is $.

Proposition 5. The function ψ is a bijection from DTDA to DTDA-coherent SLTs. Moreover, for

every DTDA A, ψ(A) is complete (resp. accessible) if and only if A is complete (resp. accessi-

ble).

Proof. IfA is a DTDA, then it is clear that ψ(A) is DTDA-coherent. LetA1 = (Q1,F , θ1, qinit1)

and A2 = (Q2,F , θ2, qinit2) be DTDAs such that ψ(A1) = ψ(A2). By definition of ψ, Q1 = Q2

and qinit1 = qinit2. Set ψ(A1) = ψ(A2) = (F,P(F0) ⊎ {$},Q1, qinit1, δ, γ, ρ, $). Reasoning on δ

shows that θ1 and θ2 are equal for letters in F \ F0. Reasoning on ρ shows that θ1 and θ2 are

equal for letters in F0. It follows that ψ is injective. The remaining points of the proposition are

straightforward verifications. ✷

Proposition 6. Two DTDAs A1 and A2 are isomorphic if and only if ψ(A1) and ψ(A2) are

isomorphic.

Proof. It suffices to note that the same isomorphism holds between A1 and A2 and ψ(A1) and

ψ(A2). ✷

Let rDTDA = F × {∅}. The class EDTDA
n of DTDA-coherent SLTs with n states contains

Cn(F ,P(F0)⊎ {$}, rDTDA, {$},P∗(F0)) and is included inDn(F ,P(F0)⊎ {$}, rDTDA, {$},P∗(F0)).

Thus, random generation of DTDAs can be performed using Proposition 1 or Proposition 2 to

obtain a SLT T and by computing ψ−1(T).

6. Beyond Tree Automata

We present in this section how to tailor our approach for the random generation of determin-

istic Turing Machines (Section 6.1), normalized deterministic pushdown automata (Section 6.2),

and deterministic visibly pushdown automata (Section 6.3). These examples provide further

testimony on the ease of adapting our uniform random generator for SLTs.

14

6.1. Deterministic Turing Machines

A deterministic Turing machine (DTM) is a tuple (Q,Σ,∆, qinit, F) where Q is a finite set of

states, Σ is a finite alphabet, qinit ∈ Q is the initial state, F ⊆ Q is the set of final states and ∆ is

a partial transition function from Q × Σ into Σ × Q × {←,→}. A deterministic Turing machine

is complete if ∆ is a function. Weakly-accessible states of a DTM are defined inductively: qinit

is weakly-accessible, and if q is weakly-accessible and ∆(q, a) = (b, p, t) for some a, b ∈ Σ

and t ∈ {←,→}, then p is weakly-accessible. A DTM is weakly-accessible if all its states are

weakly-accessible.

An isomorphism from a DTM (Q1,Σ,∆1, qinit1, F1) to a DTM (Q2,Σ,∆2, qinit2, F2) is a bijec-

tive function from Q1 to Q2 satisfying the three conditions (1) ϕ(qinit1) = qinit2, (2) ϕ(q) ∈ F2 iff

q ∈ F1, and (3) ∆1(q, a) = (b, p, t) iff ∆2(ϕ(q), a) = (b, ϕ(p), t).

We define now a bijection ν between DTMs and a class of STLs, called DTM-coherent STLs,

that contains all the complete STLs. As in previous cases, we obtain this way a random genera-

tion algorithm for DTMs.

LetM = (Q,Σ,∆, q0, F) be a deterministic Turing machine. The SLT ν(M) is defined by

ν(M) = (Σ,Σ2,Q, qinit, δ, γ, ρ, $) ,

with Σ2 = Σ× ({←,→})⊎{$, 1}, δ(q, a) = p and γ(q, a) = (b, t) iff ∆(q, a) = (b, p, t) (t ∈ {←,→}),

and Dom(ρ) = F with ρ(q) = 1 iff q ∈ F.

An SLT on Σ, Σ × ({←,→}) ⊎ {$, 1} is DTM-coherent if its initial output symbol is $ and if

for every q ∈ Dom(ρ), ρ(q) = 1.

The two following propositions hold. Proofs are similar to the ones of Propositions 3 and 4

and are left to the reader.

Proposition 7. The function ν is a bijection from DTMs to DTM-coherent SLTs. Moreover, for

every DTMM, ν(M) is complete (resp. accessible) if and only ifM is complete (resp. weakly-

accessible).

Proposition 8. Two DTMs M1 and M2 are isomorphic if and only if ν(M1) and ν(M2) are

isomorphic.

6.2. Normalized Real-time Deterministic Pushdown Automata

A normalized real-time deterministic pushdown automaton (NRDPDA) is a tuple of form

(Q,Σ,Γ,∆, qinit,Zinit, F) where Q is a finite set of states, Σ a finite alphabet, Γ a (finite) stack

alphabet, qinit ∈ Q the initial state, Zinit ∈ Γ a distinguished symbol that serves as initial stack

content, F ⊆ Q the set of final states, and ∆ a partial function from Q×Γ×Σ into Q×Γ∗ satisfying

for any state q, letter q ∈ Σ and stack symbol X ∈ Γ, that if ∆(q, X, a) is defined, then it is either

of a pop transition to (q′, ε), an internal transition to (q′, X), or a push transition (q′, XY) where

Y ∈ Γ and q′ ∈ Q. A NRDPDA is complete if ∆ is a total function.

Weakly-accessible states of a NRDPDA are defined inductively: qinit is weakly-accessible,

and if q is weakly-accessible and ∆(q, X, a) = p for some a ∈ Σ and X ∈ Γ, then p is weakly-

accessible. An example of a NRDPDA is depicted in Figure 5.

An isomorphism from a NRDPDA A1 = (Q1,Σ,Γ,∆1, qinit1,Zinit, F1) to a NRDPDA A2 =

(Q2,Σ,Γ,∆2, qinit2,Zinit, F2) is a bijective function form Q1 to Q2 satisfying (1) ϕ(qinit1) = qinit2,

(2) ϕ(q) ∈ F2 iff q ∈ F1, and (3) ∆1(q, a, X) = (p, t) iff ∆2(ϕ(q), a, X) = (ϕ(p), t).

15

q1Z q2 q3 q4
Z, a,Z

Z, a,ZA

A, a, AA

A, b, ε

Z, b, ε

A, b, ε

Z, b, ε

Figure 5: A normalized real-time deterministic pushdown automaton.

q1Z

1

q2 q3 q4 1
(Z, a),Z

(Z, a),ZA

(A, a), AA

(A, b), ε

(Z, b), ε

(A, b), ε

(Z, b), ε

Figure 6: The NRDPDA-coherent SLT corresponding to the automaton of Figure 5.

Now we define a bijection η between normalized real-time deterministic pushdown automata

and a class of SLTs, called NRDPDA-coherent SLTs that contains all complete SLTs. For every

NRDPDAA = (Q,Σ,Γ,∆, qinit, F), the SLT η(A) is defined by

η(A) = (Γ × Σ, {ε} ⊎ Γ ⊎ Γ2 ⊎ {1},Q, qinit, δ, ρ, Zinit)

where δ(q, (X, a)) = p and ρ(q, (X, a)) = γ iff ∆(q, X, a) = (p, γ), and Dom(ρ) = F with ρ(q) = 1

iff q ∈ F. The image by η of the NRDPDA depicted in Figure 5 is shown in Figure 6.

An SLT on Γ×Σ,{ε}⊎Γ⊎Γ2⊎{1} is NRDPDA-coherent if it fulfills the following conditions:

• its initial output symbol is Zinit,

• for every q ∈ Dom(ρ), ρ(q) = 1, and

• if δ(q, (X, a)) is defined, then ρ(q, (X, a)) ∈ {ε} ∪ {X} ∪ ({X} × Γ).

Proposition 9. The function η is a bijection from NRDPDAs to NRDPDA-coherent SLTs. More-

over, for every NRDPDA A, η(A) is complete (resp. accessible) if and only if A is complete

(resp. weakly-accessible).

Proof. The proposition is a direct consequence of the definition of η. ✷

Proposition 10. Two NRDPDAs A1 and A2 are isomorphic if and only if η(A1) and η(A2) are

isomorphic.

Proof. It suffices to check that the same isomorphism holds betweenA1 andA2 and η(A1) and

η(A2). ✷

16

Let Σ1 = Γ × Σ and Σ2 = {ε} ⊎ Γ ⊎ Γ
2 ⊎ {1}. For each a in Σ and X in Γ, let rPDA(X, a) =

{ε} ∪ {X} ∪ ({X} × Γ). The class EPDA
n of NRDPDA-coherent SLTs with n states contains

Cn(Σ1,Σ2, r
PDA, {Zinit}, {1}) and is included in Dn(Σ1,Σ2, r

PDA, {Zinit}, {1}). Thus, random gen-

eration of NRDPDAs can be performed using Proposition 1 or Proposition 2 to obtain a SLT T

and by computing η−1(T).

6.3. Deterministic Visibly Pushdown Automata

Deterministic visibly pushdown automata (DVPA) form a subclass of the normalized real-

time deterministic pushdown automata of Section 6.2. Visibly pushdown automata were in-

troduced by Alur and Madhusudan [12] as a robust class of context-free languages fit for pro-

gram analysis and tree language representation. In particular, DVPAs can represent all regular

tree languages—which is neither the case of DTWAs nor DTDAs—including languages of un-

bounded trees, i.e. where the arity of symbols in not bounded.

A DVPA operates on an input alphabet Σ divided into three disjoint subsets Σc of calls, Σi

of internal actions, and Σr of returns. The automaton itself is a tuple A = (Q,Σ,Γ,∆, qinit, F)

where Γ contains a distinguished bottom-of-stack symbol⊥, and ∆ is the union of three functions

∆c : Q × Σc → (Γ\{⊥}) × Q for push transitions, ∆r : Q × Σr × Γ → Q for pop transitions, and

∆i : Q×Σi → Q for internal transitions: the input symbol constrains the type of transition that the

automaton can make. An example of a DVPA equivalent to the NRDPDA of Figure 5 is shown

in Figure 7.

The translation to SLTs is very similar to that of NRDPDAs, and we merely sketch it: define

µ(A) as the SLT

µ(A) = (Σc ∪ (Σr × Γ) ∪ Σi, (Γ\{⊥}) ⊎ {$, 1},Q, qinit, δ, ρ, $)

where

• the initial output is always $, thanks to the restriction rVPA
i
= {$},

• for a ∈ Σc and Z ∈ Γ\{⊥}, δ(q, a) = p and ρ(q, a) = Z iff ∆c(q, a) = (p,Z), which is

obtained through the restriction ∀a ∈ Σc, r
VPA(a) = Γ\{⊥},

• for b ∈ Σr and Z ∈ Γ, δ(q, (b,Z)) = p and ρ(q, (b,Z)) = 1 iff ∆r(q, b,Z) = p, which is

obtained through the restriction ∀b ∈ Σr,∀Z ∈ Γ, rVPA((b,Z)) = {1},

• for c ∈ Σi, δ(q, c) = p and ρ(q, c) = 1 iff ∆i(q, c) = p, which is obtained through the

restriction ∀c ∈ Σi, r
VPA(c) = {1}, and

• Dom(ρ) = F with ρ(q) = 1 iff q ∈ F, which is obtained through the restriction rVPA
F
= {1}.

As always, using Proposition 1 or Proposition 2 and the above restrictions, we obtain a suit-

able SLT T from which the desired DVPA can be computed as µ−1(T). Note however that the

complexity bounds we have disappear if Γ grows too large, i.e. becomes commensurate with n,

which is the case in the translation of Alur and Madhusudan [12] from regular tree languages

to visibly pushdown languages. Furthermore, unlike the tree languages of the DTDAs that we

generated in Section 5, the languages of our DVPAs might be empty since we can only guarantee

weak accessibility.

17

q1 q2 q3 q4
a,Z

a, A

b, A

b,Z

b, A

b,Z

Figure 7: A deterministic visibly pushdown automaton with Γ = {⊥,Z, A}, Σc = {a}, Σi = ∅, and Σr = {b}.

7. Conclusion

In this paper we define a rejection algorithm to randomly and uniformly generate sequen-

tial letter-to-letter transducers parametrized with output restrictions and/or a fixed number of

transitions. We exhibit two bijections from this class of transducers to the class of determinis-

tic tree walking automata and deterministic top-down tree automata respectively, and report on

an empirical evaluation of a O(2n) average complexity instead of a O(2n2

) worst-case bound for

turning a deterministic tree walking automaton into an equivalent nondeterministic top-down tree

automaton.

We show that the approach we propose in this paper is straightforward to use on other classes

of finite state machines, like deterministic Turing machines or some classes of pushdown au-

tomata. By tailoring the restrictions, we can even generate deterministic visibly pushdown au-

tomata, which recognize (encodings) of all regular tree languages. This is still somewhat unsat-

isfactory from a tree language viewpoint, but a much less obvious variation would be needed in

order to randomly generate deterministic bottom-up tree automata or hedge automata.

References

[1] M. D. Wulf, L. Doyen, T. A. Henzinger, J.-F. Raskin, Antichains: A new algorithm for checking universality of

finite automata, in: T. Ball, R. B. Jones (Eds.), CAV’06, volume 4144 of Lecture Notes in Computer Science,

Springer, 2006, pp. 17–30.

[2] R. J. van Glabbeek, B. Ploeger, Five determinisation algorithms, in: O. H. Ibarra, B. Ravikumar (Eds.), CIAA’08,

volume 5148 of Lecture Notes in Computer Science, Springer, 2008, pp. 161–170.

[3] S. Schewe, Büchi complementation made tight, in: S. Albers, J.-Y. Marion (Eds.), STACS’09, volume 3 of Leibniz

International Proceedings in Informatics, Schloss Dagstuhl - LCI, 2009, pp. 661–672.

[4] F. Bassino, J. David, C. Nicaud, On the average complexity of Moore’s state minimization algorithm, in: S. Albers,

J.-Y. Marion (Eds.), STACS’09, volume 3 of Leibniz International Proceedings in Informatics, Schloss Dagstuhl -

LCI, 2009, pp. 123–134.

[5] F. Neven, Automata theory for XML researchers, SIGMOD Record 31 (2002) 39–46.

[6] M. Murata, D. Lee, M. Mani, K. Kawaguchi, Taxonomy of XML schema languages using formal language theory,

ACM Transactions on Internet Technology 5 (2005) 660–704.

[7] J. Engelfriet, H. J. Hoogeboom, Tree-walking pebble automata, in: J. Karhumäki, H. A. Maurer, G. Paun, G. Rozen-

berg (Eds.), Jewels are Forever, Springer, 1999, pp. 72–83.

[8] M. Bojańczyk, T. Colcombet, Tree-walking automata do not recognize all regular languages, SIAM J. Comput. 38

(2008) 658–701.

[9] B. ten Cate, L. Segoufin, XPath, transitive closure logic, and nested tree walking automata, in: M. Lenzerini,

D. Lembo (Eds.), PODS’08, ACM, 2008, pp. 251–260.

[10] D. Tabakov, M. Y. Vardi, Experimental evaluation of classical automata constructions, in: G. Sutcliffe, A. Voronkov

(Eds.), LPAR’05, volume 3835 of Lecture Notes in Computer Science, Springer, 2005, pp. 396–411.

[11] A. Bouajjani, P. Habermehl, L. Holı́k, T. Touili, T. Vojnar, Antichain-based universality and inclusion testing over

nondeterministic finite tree automata, in: O. H. Ibarra, B. Ravikumar (Eds.), CIAA’08, volume 5148 of Lecture

Notes in Computer Science, Springer, 2008, pp. 57–67.

18

[12] R. Alur, P. Madhusudan, Visibly pushdown languages, in: STOC’04, ACM, 2004, pp. 202–211.

[13] F. Bassino, C. Nicaud, Enumeration and random generation of accessible automata, Theor. Comput. Sci. 381

(2007) 86–104.

[14] F. Bassino, J. David, C. Nicaud, Enumeration and random generation of possibly incomplete deterministic au-

tomata, Pure Mathematics and Applications 19 (2008) 1–16.

[15] J.-M. Champarnaud, T. Paranthoën, Random generation of DFAs, Theor. Comput. Sci. 330 (2005) 221–235.

[16] F. Bassino, J. David, C. Nicaud, REGAL: A library to randomly and exhaustively generate automata, in: J. Holub,

J. Žd’árek (Eds.), CIAA’07, volume 4783 of Lecture Notes in Computer Science, pp. 303–305.

[17] Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, B.-Y. Wang, Learning minimal separating DFA’s for compositional

verification, in: S. Kowalewski, A. Philippou (Eds.), TACAS’09, volume 5505 of Lecture Notes in Computer

Science, Springer, 2009, pp. 31–45.

[18] A. Denise, P. Zimmermann, Uniform random generation of decomposable structures using floating-point arith-

metic, Theor. Comput. Sci. 218 (1999) 233–248.

[19] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree Automata

Techniques and Applications, 2007.

19

	Introduction
	Preliminaries
	Generating Sequential Transducers
	Generation with Output Restrictions
	Random Generation with a Fixed Number of Undefined Transitions

	Application to Tree Walking Automata
	Deterministic Tree Walking Automata
	From SLTs to DTWAs
	Experimentation: From DTWAs to Top-Down Tree Automata

	Application to Top-Down Tree Automata
	Deterministic Top-Down Tree Automata
	From SLTs to DTDAs

	Beyond Tree Automata
	Deterministic Turing Machines
	Normalized Real-time Deterministic Pushdown Automata
	Deterministic Visibly Pushdown Automata

	Conclusion

