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Endogenous Preferences in Games with Type Indeterminate
Players

A. Lambert-Mogiliansky∗†
Paris School of Economics

Abstract

The Type Indeterminacy model is a theoretical
framework that uses some elements of quantum
formalism to model the constructive preference
perspective suggested by Kahneman and Tver-
sky. In this paper we extend the TI-model from
simple to strategic decision-making and show
that TI-games open a new field of strategic in-
teraction. We first establish an equivalence re-
sult between static games of incomplete infor-
mation and static TI-games. We next develop
a new solution concept for non-commuting dy-
namic TI-games. The updating rule captures the
novelty brought about by Type Indeterminacy
namely that in addition to affecting information
and payoffs, the action of a player impacts on the
profile of types. We provide an example show-
ing that TI-game predictions cannot be obtained
as Bayes Nash equilibrium of the corresponding
classical game.
Keywords: type indeterminacy, games, endoge-
neous preferences

1. Introduction
This paper belongs to a very recent and rapidly
growing literature where formal tools of Quan-
tum Mechanics are proposed to explain a variety
of behavioral anomalies in social sciences and in
psychology (see e.g., Deutsch (1999), Busemeyer
et al. (2006, 2007, 2008), Danilov et al. (2008),
Franco (2007), Danilov et al. (2008), Lambert-
Mogiliansky et al. (2009)). To many people it
may appear unmotivated or artificial to turn to
Quantum mechanics when investigating human
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behavioral phenomena. However, the founders of
QM, including Bohr (1993) and Heisenberg (2000)
early recognized the similarities between the two
fields. In particular Bohr was influenced by the
psychology and philosophy of knowledge of Har-
ald Höffding. The similarity stems from the fact
that in both fields the object of investigation can-
not (always) be separated from the process of in-
vestigation. Quantum Mechanics and in particu-
lar its mathematical formalism was developed to
respond to that epistemological challenge(see the
introduction in Bitbol (2009) for a enlightening
presentation).

The use of quantum formalism in game the-
ory was initiated by Eisert et al. (1999) who
study how the extension of classical moves to
quantum ones can affect the analysis of a game.
Another example is La Mura (2005) who investi-
gates correlated equilibria with quantum signals
in classical games.1 Our approach is different
from the so-called quantum game approach. It is
based on the idea that players’ preferences (types)
(rather than the strategies they can choose) can
feature non-classical (quantum) properties. This
idea is formalized in the Type Indeterminacy (TI)
model of decision-making introduced by Lambert-
Mogiliansky, Zamir and Zwirn (2009).
A main interest with TI-game is that the TI-

hypothesis extends the field of strategic interac-
tions. The chosen actions impact not only on the
payoffs of other players but also on the profile
of types of the players i.e., who the players are.
In a TI-model, players do not have a determin-
istic, exogenously given, type (preferences). The

1Whether and when the use of quantum strategies
(or strategies using quantum signals) can bring some-
thing truly novel to game theory has been discussed
in Levine (2005) and in Brandenburger (2010).



types change along the game together with the
decisions made in the Game Situations2 (which
are modelled as measurements of the type). The
players’ type are endogenous to the game.
This paper follows an introduction to TI-games

in Busemeyer et al. (2009) where we show how
the TI approach could provide an explanation to
why cheap-talk promises matter appealing to the
quantum indeterminacy of players’ type. In the
present paper we go a step further by investigat-
ing how players can "exploit" the type indetermi-
nacy of their opponent. More precisely, we want
to model how people can influence a partner or an
opponent with respect to what she actually wants
to do, i.e., with respect to her taste or preferences
(see Feldman 1988). In TI-games, preferences are
intrinsically indeterminate. A pre-play or a node
from which to move may therefore either increase
or decrease the ex-ante probability for a specific
move in the future. Therefore, TI-games provide
an argument why a player would try to induce
or refrain from inducing his opponent to face a
particular node. She may want to "prepare" his
opponent so he plays as she desires.
This idea is captured in the following example

that we investigate in details in Section 3. Alice
wants Bob to agree to cooperate with her in a
new project. Bob is indeterminate with respect
to his willingness to engage in this project which
appeals to open-mindedness. Bob is also inde-
terminate with respect to his taste for personal
challenges.3 Now, Alice who is Bob’s boss han-
dles over legal cases for him to prepare. She has
the choice between two tasks: either a standard
dispute or a more intricate case. The standard
dispute is best handled routinely. The intricate
case can be treated as a routine job too. But
Bob can also adopt a non-standard inventive ap-
proach which is personally challenging. So this
tasks forces Bob to determine himself with respect
to his taste for personal challenges. Alice would
like him to handle the intricate case but she un-
derstands that this may affect his attitude toward
the project. She knows that indeterminacy with
respect to personal challenges has a stimulating
effect with respect to his acceptance to cooper-
ate. Therefore because she mostly cares about
the project and although she would clearly prefer

2Game Situations are situations where the players
must choose an action in a strategic context. In TI-
games, they are modelled as operators.

3Open-mindedness and taste for personnal chal-
lenge are not the same psychological features but they
are somehow related.

him to prepare the intricate case, she asks him to
handle a simple standard case. Her choice reflects
a concern to "prepare" him so as to increase the
chance he accepts to cooperate in the project.
From a formal point of view the one single

novelty compared with the standard approach, is
that we substitute the Harsanyi type space with
a Hilbert space of types. We find that much
of conventional game theory can be maintained.
The first novel results appear in multi-stage non-
commuting games and they are linked to updat-
ing. We formulate an updating rule consistent
with the algebraic structure of the type space of
TI-games. We show that this rule gives new con-
tent (beyond the informational one) to pooling
respectively separating behavior. The intuition is
that when the opponent’s best-reply to an action
implies some pooling of his eigentypes, some in-
determinacy is preserved and the probabilities for
his next-following choices may be marked by in-
terference effects. These interference effects are
absent when the eiegentypes separate. We define
a TI-Nash equilibrium and demonstrate in an ex-
ample that the set of Bayes Nash equilibria and
TI-Nash equilibria do not coincide.
The paper is organized as follows. In Section 2

we introduce static games of maximal information
and establish an equivalence result. In Section
3 we move to dynamic TI-games and investigate
our lead example. We formulate the concept of
TI Nash equilibrium and show how it relates to
the Bayes Nash equilibrium concept. We end with
some concluding remarks.

2. Static TI-games of maximal
information

In the TI-model a simple "decision situation"
is represented by an observable4 called a DS. A
decision-maker is represented by his state or type.
A type is a vector |tii in a Hilbert space. The
measurement of the observable corresponds to the
act of choosing. Its outcome, the chosen item, ac-
tualizes an eigentype5 of the observable (or a su-
perposition6 of eigentypes if the measurement is
coarse). It is information about the preferences

4An observable is a linear operator that operates
on the state of a system.

5The eigentypes are the types associate with the
eigenvalues of the observable i.e., the possible out-
comes of the measurement of the DS.

6A superposition is a linear combination of the
form λi |tii ; λ2i = 1 where the ti are possible
states/types of the players.



(type) of the agent. For a detailed exposition
of the TI-model see Lambert-Mogiliasnky et al.
(2009). How does this simple scheme change when
we are dealing with strategic decision-making?

We denote by GS (for Game Situation) an ob-
servable that measures the type of an agent in a
strategic situation, i.e., in a situation where the
outcome of the choice, in terms of the agent’s
utility, depends on the choice of other agents as
well. The interpretation of the outcome of the
measurement is that the chosen action is a best
reply against the opponents’ expected action.7

This interpretation parallels the one in the sim-
ple decision context. As in standard game theory
the chosen move is information about the type of
the player modulo equilibrium reasoning. We say
that a GS measures a type characteristics and it
changes his type i.e., its outcome actualizes some
(superposition of) eigentype(s) .

Types and eigentypes
We use the term type as the term quantum pure

state. A (pure) type |ti ∈ T8 where T is a (finite
dimensional) Hilbert space, is maximal informa-
tion about the player i.e., about his payoff func-
tion. Generally, the (Harsanyi) type includes a
player’s information and beliefs. But in this pa-
per we let the term type exclusively refer to the
payoff function (or preferences). We shall be deal-
ing with TI-games of maximal information where
all players are represented by pure types and there
is no uncertainty related to the state of the world.
The only uncertainty that we consider is related
to the players’ type because an opponent’s pure
type is probabilistic information about his eigen-
types.
In a TI-game we also speak about the eigen-

types of a gameM, ei (M) ∈ E (M) , E (M) ⊂ T.
The term eigentype parallels the term eigenstate
of a system in Physics. It is a state associated
with one of the possible eigenvalues of an observ-
able. An eigentype is thus the type associated

7The notion of "actualized best-reply" is problem-
atic however. A main issue here is that a best-reply
is a response to an expected play. When the expected
play involves subjective beliefs there may be a prob-
lem as to the observability of the preferences. This
is in particular so if subjective beliefs are quantum
properties. But in the context of maximal informa-
tion games (see below for precise definition) probabil-
ities are objective which secures that the actualized
best-reply is well-defined.

8We use Dirac ket notation |.i to denote a vector
in a Hilbert space.

with one of the possible outcomes of a GS (or
more correctly of a complete set of commuting
GS associated with a game).9 The eigentypes are
truly private and complete information about the
payoff functions in a specific static game M . Any
eigentype of a player knows his ownM -game pay-
off function but he may not know that of the other
players.
The classical Harsanyi approach only uses a

single concept, i.e., that of type and it is iden-
tified both with the payoff function and with the
player. In any specific TI-game M, we must dis-
tinguish between the type which is identified with
the player and the eigentypes (of M) which are
identified with the payoff functions in game M .
A helpful analogy is with multiple-selves mod-
els (see e.g., Strotz (1956) and Fudenberg and
Levine, (2006)). In multiple-selves models, we are
most often dealing with two "levels of identity":
the short-run impulsive selves on the one side and
a long-run "rational self" on the other side. In our
context we have two levels as well: the level of the
player (the type) and the level of the selves (the
eigentypes) which are to be viewed as potential
incarnations of the player in a specific game. In a
TI-model a player is described as a superposition
of (simultaneous) selves.
In a maximal information TI-game the initial

type of the players are pure types (i.e., not mixed)
and they are common knowledge among players.
For any static gameM, a type ti can be expressed
in terms of the eigentypes |ei (M)i ∈ E (M) ⊂
T, with |ei(M)i ⊥ |ej(M)i , i 6= j. An eigentype is
information about the value of (all) the type char-
acteristics relevant to a particular game. Consider
a multi-move game: M followed by N , the TI-
model allows for the case when the type charac-
teristics relevant to M respective N are ”incom-
patible” in the sense that they cannot be revealed
(actualized) simultaneously.10 This is the source
of intrinsic indeterminacy i.e., of an uncertainty
not due to incomplete information. The classical
Bayes-Harsanyi model corresponds to the special
case of the TI-model when all GS commute or
equivalently all type characteristics are compati-
ble.

9A GS corresponds to a specific strategic decision
situation. A complete set of commuting GS provides
information about a type’s behavior for any possible
play of any opponent. It is complete description of
his preferences in this game and we identify it with a
payoff function.
10The tensor product set E (M) ⊗ E (N) does not

exist when M and N are incompatible.



Assumption 1
In a TI-game all strategic reasoning is done by

the eigentypes of the players.

This key assumption says that the reasoning
leading to the determination of the best-reply is
performed at the level of the eigentypes of a player
or equivalently at the level of the (simultaneous)
selves.11 Another way to express this is simply to
assume that the players are able to reason from
different perspectives. Note that this is not as de-
manding as it may at first appear. Indeed we are
used in standard game theory to the assumption
that players are able to put themselves "in the
skin" of other players (and thus other types) to
think out how those will play in order to be able
to best-respond to that.

2.1 TI-Nash equilibrium in static
games

Under Assumption 1, the eigentypes are the "real
players" and we shall see that under this assump-
tion a static TI-game looks very much like a clas-
sical incomplete information game and a static
TI-equilibrium can be defined as a Nash equilib-
rium of the original two-player game expanded to
the eigentypes of each player.
Let Aj be a finite set of actions available

to player j = 1, 2. Each player is represented
by his type |tji ∈ T. For any game situa-
tion M we have Ej (M) ⊂ T, where Ej (M) =n¯̄̄
ej1 (M)

E
, ...,

¯̄̄
ejk (M)

Eo
is the set of eigentypes

of player j in GS M. In the static context of this
section we can delete the qualifier in parenthesis
and write

¯̄̄
ej1

E
and Ej . A pure strategy for player

1 is a function s1 ∈ S1, s1 : E1 → A1.
The initial type vector of player j = 1 can be

expressed in terms of the eigentypes of M :

|t1i =
kX
i=1

λi
¯̄
e1i
®
,

kX
1

λ2i = 1. (1)

The initial common knowledge beliefs about the
eigentypes are given by the types |tji according
to Born’s rule

prob
¡
ei1
¯̄
|t1i
¢
= λ2i .

11We could think of the players as being involved in
some form of parallel reasoning: all the active (with
non-zero coefficient of superposition) eigentypes per-
form their own strategic thinking.

We call ei1 a potential eigentype of player 1 iff
λi > 0.

12

In the Bayes-Harsanyi model, Nature moves
first and selects the type of each player who is pri-
vately informed about it.13 In a TI-game uncer-
tainty is (partially) resolved by the measurement
i.e., the actual act of playing. So before playing,
the player does not know his own payoff function
(i.e., his eigentype) only his initial (superposed)
type . However, each one of his selves (we use the
terms self and eigentype interchangeably) knows
his own payoff function. The potential selves of
a player all have the same information about the
opponent’s type. Now if the selves know the strat-
egy of the eigentypes of their opponent,14 they
can compute their expected payoff using the in-
formation encapsulated in the (superposed) initial
type of his opponent.

Definition
A pure strategy TI-Nash equilibrium of a two-

player static game M with initial types |t1i =P
λi
¯̄
e1i
®
and |t2i =

P
γi
¯̄
e2i
®
is

i. A profile of pure strategies (s∗1, s
∗
2) with

s∗1
¡
e1i
¢
= arg max

s01.∈S1

X
e2i ;γi>0

γ2iui
¡
s01, s

∗
2

¡
e2i
¢
,
¡
e1i , e

2
i

¢¢
(2)

for all e1i ;λi > 0 i = 1, ..k and similarly for
player 2.
ii. A corresponding profile of resulting types

(t01, t
0
2),

| t01| aii =
X

ei;s∗1(e1i )=a1i

λ0i
¯̄
e1i
®

where λ0i =
λi

j 6=i λ
2
j(s∗1(e1j)=a1i)

and ai is the ac-

tion played by player 1. Similarly for
¯̄
t02| a2i

®
.

The first part (i) says that each of the poten-
tial eigentypes of each player maximizes his ex-
pected utility given the (superposed) type of his

12We note that this is equivalent to an incomplete
information representation with player 20s initial be-
liefs about 1 given by

p e1i e2j = λ2i for all ej ∈ E2.

13Se Fudenberg and Tirole (1991) for a definition
of incomplete information games.
14That is they can compute the equilibrium behav-

ior of all other selves.



opponent and the strategies played by the oppo-
nent’s potential eigentypes. It is very similar to
the definition of a Bayesian equilibrium strategy
profile except that the probabilities for the oppo-
nent’s eigentypes are given by the initial super-
posed type instead of a joint probability distrib-
ution.
The second part of the definition (ii) captures

the fact that in a TI-game the players’ type is
modified by their play. The rule governing the
change in the type is given by the von Neuman-
Luder’s projection postulate. As well known
for one single measurement, it is equivalent to
Bayesian updating i.e., within the set Ej (M).

Proposition 1 A pure strategy TI-Nash equilib-
rium profile of a static maximal information game
M with eigentypes (e1, .., ek) and initial types¯̄̄
tji

E
=
Pk

i=1 λ
j
i

¯̄̄
eji

E
, j = 1, 2, is equivalent to a

Bayesian pure strategy Nash equilibrium profile of
a game with type space E = {e1, .., ek} and com-
mon beliefs given by the distributions p (ei| t1) =¡
λ1i
¢2
, p
¡
e2i
¯̄
t2
¢
=
¡
λ2i
¢2
.

The proof follows immediately from the defini-
tions.

3. Multi-stage TI-game
When it comes to games composed of more than
one step for at least one player, the crucial is-
sue for TI-games is whether the corresponding GS
commute with each other or not.

Commutativity of GS We say that two GS
M and N commute if they share a common set
of eigentypes E = E (M) ⊗ E (N). This is the
standard definition of commuting observables.

Definition
A commuting multi-stage TI-game is such that

for each player all the GS he may face (in and
out of the equilibrium path) commute with each
other. Otherwise we say that the multi-stage
game is non-commuting.

If there is no observation between two commut-
ing moves we can merge the two GS into one com-
pound GS with outcome set (ai (M) , ai (N)) and
the static TI-equilibrium concept applies.

3.1 Multi-move games with observed
actions

We noted above that commuting multi-stage TI-
games without observation are not distinguish-
able from static TI-game both of which are equiv-
alent to static incomplete information games.

This result extends further to commuting dy-
namic games with observed action.

Result
Commuting dynamic TI-games are not distin-

guishable from classical games of incomplete in-
formation in terms of equilibrium predictions.

This result follows directly from a general re-
sult proving the equivalence between the quan-
tum and the classical models with respect to the
predictions in a context where all measurements
are commuting (see e.g., Danilov et al. (2008) for
a derivation of this result in a Social Sciences con-
text). The intuition is that the type space repre-
senting commuting type characteristics in the TI-
context has a standard Boolean algebraic struc-
ture.

Non-commuting multi-stage TI-games:
strategic manipulation of players’ type
We are interested in multi-stage game with
observed actions where in each period t the
players simultaneously choose their action which
are revealed at the end of the period.15 A simple
case of a multi-move game with observation is in
next-following example which captures the story
we gave in the introduction.

Example We have 2 players, Alice and Bob and
the following sequence of moves:
stage 1
- Alice chooses between Standard task (S) or

Intricate task (I) and
- Bob observes Alice’s choice and chooses

between Standard treatment (S) and Inventive
treatment (I). We refer to this game situation as
GS1.
stage 2
- Alice invites Bob to join her new project.
- Bob chooses between Accept(A) or Reject(R)

the invitation which ends the game. We refer to
this game situation as GS2.

Alice is of known eigentype with preferences de-
scribed below. Bob is indeterminate with respect
to the eigentypes relevant to GS1: E1 = {θ1, θ2}
with
θ1 : always prefers to do the Standard treat-

ment of any task.

15We adopt the convention that simultaneous move
games include games where the players move in alter-
nation, that is simply we allow for nul moves.



θ2 : enjoys challenges and can exert inventive
effort if he finds it worthwhile.16

Bob’s initial type is
|tBi = λ1 |θ1i+ λ2 |θ2Bi

We set λ1 =
√
.6, λ2 =

√
.4.

We next assume that Bob’s preferences between
Accept and Reject depend only on Bob’s type i.e.,
not on the history of play. GS2 is a simple deci-
sion situation, a DS (see Lambert-Mogiliansky et
al. 2009). We consider two decision types: τ1 who
is open-minded and Accepts the invitation and τ2
who is conservative and Rejects. We assume that
GS1 is an operator that does not commute with
GS2 which means that Bob’s eigentype θi can be
expressed in terms of the τ i:

|θ1i = α1 |τ1i+ α2 |τ2i (3)
|θ2i = β1 |τ1i+ β2 |τ2i

And let α1 =
√
.4, β1 =

√
.6, α2 =

√
.6, β2 =

−
√
.4.
Alice’s payoff depends critically on Bob’s moves

at both stages. In particular Alice’s payoff is zero
if Bob plays R at stage 2. If Bob plays A, Alice’s
payoff depends on her own choice as well. If she
asks to handle the intricate case her payoff is 170
if Bob choose the inventive effort and is 120 if
Bob handles the (intricate) case as a routine job.
If she chooses the standard case, her payoff is 100
whenever Bob plays A. With this payoff structure
Alice badly needs Bob to play A at stage 2 and she
prefers him to handle the intricate case at stage
1.

In the TI-Nash equilibrium we exhibit Alice
asks Bob to handle the Standard case even though
she prefers him to hand the Intricate case. The
reason is that she as an incentive to manipu-
late Bob’s type to increase the probability for his
acceptance to cooperate. More specifically Al-
ice’s realizes that if she plays S, the θ2 of Bob
will choose S and will pool with θ1 (who al-
ways choose S). The resulting type of Bob is then
the same as his initial type, indeterminacy (be-

tween θ1 and θ2) has not been resolved:
¯̄̄
t
0

B

E
=

λ1 |θ1i + λ2 |θ2i = |tBi . This implies (by Born’s
rule) an ex-ante probability17 for the play of A
equal to
prob(A) = λ21α

2
1 + λ22β

2
1 + 2λ1α1λ2β1 = .96

16When the case is intricate, θ2 enjoys exerting the
inventing effort.
17This obtains from substituting the θs in Bob’s

type vector using (3): |tBi = λ1 (α1 |τ1i+ α2 |τ2i) +

Figure 1:

This should be contrasted with the probability for
A that obtains when Alice plays I. In that case
Bob’s θ2 best-replies by playing I thus separat-
ing from θ1. Bob’s resulting type from his play
in GS1 is |t0Bi = |θ1i with probability λ21 and
|t0Bi = |θ2i with probability λ22. This yields an
ex-ante probability for A

Prob (A) = λ21α
2
1+λ

2
2β

2
1 = (.6×.4)+(.4× .6) = .48

In our numerical example Alice’s expected payoff
is then 0.24×120+0.24×170 = 69, 6 while when
she play S her payoff is 0.96 × 100 = 96 > 69, 6.
Note that in our example the interference term is
positive. A psychological interpretation is as fol-
lows: both the type who likes personal challenges
θ1 and the one who dislikes them, θ2, are open
to new ideas. The first because novelties have a
taste of excitement/challenge, the second because
in face of a novel situation you cannot be judged
so easily, i.e., it is a very noisy test of capacity,
not a personal challenge. Therefore when both
types are present in the mind of the player they
interfere positively to determine his propensity to
accept cooperation in the project. The game tree
is in figure 1.
Note that we simplified the tree in particular

we did not write out some of the branches which
are never chosen. We know that Bob’s θ1 always

λ2 (β1 |τ1i+ β2 |τ2i) =
=(λ1α1 + λ2β1) |τ1i+ (λ1α2 + λ2β2) |τ2i .



chooses Standard by definition of the eigentype
so we omitted the Inventive branch. We did sim-
ilarly for the τ types who both have simple strict
preferences defining their choice. The doted line
depicts equilibrium strategies.
As we can see in Figure 1 Nature plays twice

and its 2nd move does not define the same proba-
bilities at each node. In the corresponding (first-
hand) classical model,18 the type set of Bob is
{θ1τ1, θ1τ2, θ2τ1, θ2τ1} . In the TI-game there is
no single probability distribution over that type
set, prob(θ1τ1|SAlice) 6= prob(θ1τ1| IAlice). This
implies that Nature’s 2 moves cannot be collected
at the beginning of the game - before Alice’ move
- as usual. Indeed this is the expression of the
non-commutativity of Bob’s GS in terms of mea-
surements of his type19. The probabilities of Na-
ture’s 2nd move depend on Bob’s strategy in GS1
(more precisely on whether his eigentypes pool
or not). This also implies that in contrast with a
standard game tree we cannot write out the game
tree independently of the strategies played (this
reminds of psychological games see Geanakoplos
et al. (1989)). We collected the two nodes fol-
lowing Bob’s play of S into an "information set"
for Nature. This is to capture the fact that Bob’s
pooling play does not break intrinsic uncertainty
(indeterminacy). The type of Bob is neither θ1
nor θ2 but a (the initial) superposition of the two.
To see that our TI-Nash equilibrium (TINE)

is not a Bayes Nash equilibrium we must de-
termine a probability distribution of the set
{θ1τ1, θ1τ2, θ2τ1, θ2τ1} . Setting prob(τ1) = .4
and prob(τ2) = .6, we obtain that Alice’s pay-
off when playing I with Bob best-replying as in
the game tree is equal to UA(I) = 56 while her
payoff from S is 40. Alternatively if prob(τ1) = .6,
we similarly obtain UA(I) = 84 > UA (S) = 60.
Hence, given Bob’s play Alice prefers to choose I
if she believe Bob is classical rather than S as in
the TINE.

3.2 Nash equilibrium for
non-commuting TI-games

We next provide a general definition of the TINE,
a concept of Nash equilibrium that is standard in
all respect but the updating rule. Instead of the

18The corresponding first-hand classical model is
defined as the TI-game with the restriction that all
type charcteristics of each player are compatible with
each other. It is identical to the TI-game in all other
respects.
19They cannot be merged into one single measure-

ment

usual Bayesian updating consistent with classical
uncertainty we shall have an updating rule that
is consistent with quantum indeterminacy, we call
it QI-updating.
QI-updating in non-commuting multi-move

games
QI-updating is made of two components. The

first is the von-Neuman-Luder’s projection postu-
late. It captures the modification of the type vec-
tor corresponding to the observed action. When
all GS commute this is sufficient and it is equiv-
alent to Bayesian updating. When the next fol-
lowing GS does not commute with the preceding
one, a second component is required. The result-
ing type vector must be written in terms of the
eigenvectors of the next-coming GS. This opera-
tion corresponds to a change of basis. The QI-
updating rule can be presented when considering
one single player who chooses two actions in two
successive non commuting GS.
Let the first GS be called A with a cor-

responding set of actions {a1, ..., an} . It is a
measurement of type characteristics E

¡
h0
¢
=©

e1
¡
h0
¢
, ..., em

¡
h0
¢ª
where h0 is history at time

0. The second GS be called B with a cor-
responding set of actions {b1, ..., bn} it is a
measurement of type characteristics E(h1) =©
e1
¡
h1
¢
, ..., em

¡
h1
¢ª

. The assumption is that
E
¡
h0
¢
and E

¡
h1
¢
are two incompatible type

characteristics or equivalently A and B are non-
commuting measurements.
Step 1
Let |ti =

P
i λi

¯̄
ei
¡
h0
¢®
be the common knowl-

edge type vector of our player. The initial beliefs20

B0 : μ
¡
ei
¡
h0
¢¢
= λ2i , (4)

Assume we observe that our player chooses ac-
tion a1. Let s∗ (h1) be our player’s equilibrium
strategy. The type vector

¯̄
t
¡
h1
¢®

, resulting from
history h1 is, in terms of E

¡
h0
¢
eigenvectors :¯̄

t
¡
h1
¢®
=
X
i

λ0i
¯̄
ei
¡
h0
¢®

(5)

where the sum is taken over i such that
s∗
¡
e1i
¡
h0
¢¢
= a1 and λ

0
i =

λi

k λ
2
k(s∗1(e1k(h0))=a11)

.

The updated beliefs in term of the eigentypes of
E
¡
h0
¢
are

20The beliefs are shared by all eigentypes of the
other players.



B1 : μ
¡
e1i
¡
h0
¢¯̄
a1
¢
= λ02i .

21 (6)

Step 2
We must now express

¯̄
t
¡
h1
¢®
in terms of the

eigentypes of E
¡
h1
¢
.22 The translation is per-

formed using a basis transformation matrix with
elements δij =


ej
¡
h1
¢¯̄
ei
¡
h0
¢®
. Collecting the

terms, we can write

¯̄
t
¡
h1
¢®
=
X
j

ÃX
i

λ0iδij

! ¯̄
ej
¡
h1
¢®

The probability for eigentype e1
¡
h1
¢
at date t = 1

is

B2 : μ
¡
e1
¡
h1
¢¯̄
a1
¢
=

ÃX
i

λ0iδ1i

!2
(7)

This is the crucial formula that captures the key
distinction between the classical and the quan-
tum approach. B2 is not a conditional probability
formula where the δ2ij are statistical correlations
between the eigentypes at the two stages. The
player is a non-separable system with respect to
type characteristics E

¡
h0
¢
and E

¡
h1
¢
.23 As a

consequence, the updated beliefs are given by the
square of a sum (implying cross terms) and not
the sum of squares.
To see that this makes a difference, recall our

example. When Bob’s θ−types separate the prob-
ability for type τ1 (for Accept) is 0.48 while when
Bob’s θ−types pool it jumps to .96 - thanks to
the positive interference effects.

Thus, when considering a move a player must
account not only for the best-reply of his oppo-
nent as usual but also for the induced resulting
type of the opponent. More precisely, type inde-
terminacy gives a new strategic content to pool-
ing respectively separating moves, a content that
goes beyond the informational one. When some

21μ (ei (h0)| a1) is any probability

if k λ
2
k (s

∗
1 (e

1 (h0)) = a1) = 0.
22The potential eigentypes of each player must

reason using the expectation about the opponent’s
play. That expected play is computed from the best-
replies of the opponent’s E h1 −eigentypes and from
their relative probability weights in the type vector
t h1 .
23This means that the tensor product set E (h0)⊗

E (h1) does not exist.

eigentypes of a player pool, that player remains
indeterminate (superposed) with respect to those
eigentypes. This preserved indeterminacy implies
that in the next following (non-commuting) GS,
the superposed eigentypes may interact with each
other producing interference effects that affect the
probabilities for future actions. Property B2 of
the μ () function secures that the players takes
into account the impact of a play on the resulting
profile of types.
For each player i, history ht, eigentype

eij (h
t) and alternative strategy s0

P : ui
¡
s|ht, eij

¡
ht
¢
, μ
¡
., ht

¢¢
≥

ui
¡
s0|ht, eij

¡
ht
¢
, μ
¡
., ht

¢¢
Definition 1 A TI-Nash equilibrium of a multi-
stage game is a pair (s, μ) that satisfies conditions
P and B0-B2 above.

From our example we know a TI Nash equilib-
rium is not necessary a Bayes Nash equilibrium of
the corresponding first-hand classical game where
the corresponding classical game where the type
characteristics θ and τ are compatible with each
other. The game is the same in all other re-
spects.24

4. Concluding remarks
This paper constitutes a first step in the develop-
ment of a theory of games with type indetermi-
nate players. Compared with conventional game
theory the TI approach amounts to substituting
the standard Harsanyi type space for a Hilbert
space. We show that for this has no implication
for the analysis of static games. In contrast in
a multi-move context, we must define an updat-
ing rule consistent with the algebraic structure of
our type space. We show that for non-commuting
TI-games, it implies that players can manipulate
each others’ type thereby extending the field of
strategic interaction. Using the new updating
rule we define an equilibrium concept similar to
the Bayes Nash equilibrium. We call it TI Nash-
equilibrium. We provide an example showing how
the two concepts differ.
We have learned that TI-games may bring forth

new results in the context of multi-stage games or

24We are currently working on establishing the con-
ditions when the TI-game’s predictions cannot not be
reproduced even when considering a larger class of
classical games i.e., including hidden variables.



when a game is preceded by some form of "pre-
play". We conjecture that the Type Indetermi-
nacy approach may bring new light on the a vari-
ety of issues including: players’ choice of selection
principle in multiple equilibria situation, the se-
lection of a reference point or path-dependency.
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