
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, VOL. 67, NO. 4, PP. 559-564

Manuscript received August 26, 2021; revised November, 2021 DOI: 10.24425/ijet.2021.137846

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The paper introduces the distributed framework for

determining the shortest path of robots in the logistic applications,

i.e. the warehouse with a swarm of robots cooperating in the Real-

Time mode. The proposed solution uses the optimization routine to

avoid the downtime and collisions between robots. The presented

approach uses the reference model based on Dijkstra, Floyd-

Warshall and Bellman-Ford algorithms, which search the path in

the weighted undirected graph. Their application in the onboard

robot’s computer requires the analysis of the time efficiency.

Results of comparative simulations for the implemented

algorithms are presented. For their evaluation the data sets

reflecting actual processes were used. Outcomes of experiments

have shown that the tested algorithms are applicable for the logistic

purposes, however their ability to operate in the Real-Time

requires the detailed analysis.

Keywords—shortest path problem, hive of robots, logistics,

microcontrollers

I. INTRODUCTION

HE market of logistic services, including warehouse

applications, has been developing dynamically in recent

years. The amount of warehouse space is increasing, so the

developers' offers also changes during the competition on the

market. Customers, including logistics operators, require

modern, flexible storage space, allowing for easy reorganization

and facilitating its adaptation to market needs. This trend fits

into the usage of automatic and semi-automatic solutions,

including autonomous robots and machines. Their purpose is,

for instance, to collect clients’ orders by picking the selected

goods from the particular locations in the warehouse (such as in

the Amazon company). Optimization of human and machine

tasks is one way to achieve higher resource efficiency and has

been developed for years. Currently equipping logistics

facilities with advanced transport and completing systems

became a new standard. Therefore implementation of automated

algorithms for managing warehouses and commodities is

important [1] [2] .

Algorithms for the route optimization are known and well

documented in the literature (the traveling salesman problem,

shortest path algorithms) [5],[6],[7]. However, replacing human

workers by their autonomous counterparts, requires

transforming the problem of the single route optimization into

the task of managing multiple robots in the warehouse space.

Optimizing their paths, considering the simultaneous

cooperation in the on-line mode should also accept constantly

Piotr Bilski is with Warsaw University of Technology, Poland (e-mail:

pbilski@ire.pw.edu.pl).

arriving new tasks that must be assigned to the specific agents.

Effective operations’ management for up to a dozen of people

working in a specific space is to be replaced by the model

allowing for the effective work management by the hive of

robots. The new goal of optimization is not only minimizing

traveled routes in the warehouse, but also rearranging them

constantly to avoid collisions, which would cause the

unnecessary delays related with stopping the robots and

deciding, which one should pass the crossing first.

The following paper introduces the reference model for

simultaneous optimization of many robots’ paths cooperating in

the warehouse. Various types of warehouses were considered,

differing in shapes and sizes. The selected group of algorithms

(including Dijkstra, Floyd-Warshall and Bellman-Ford) was

used to calculate the paths. Accuracy of used methods and their

time efficiency were evaluated.

The content of the paper is as follows. In Section II the model

of the warehouse is described. Section III introduces the

selected path optimization algorithms. In Section IV the

implementation details are presented. Section V contains results

of simulations. Finally, Section VI covers conclusions and

future prospects.

II. MODELING OF STORAGE SPACE

Development of the model for optimization of autonomous

robot routes requires computer-based mapping of the warehouse

space and tasks to be performed. Literature on the subject

reveals the possibility of presenting warehouse space based on

a graph and the corresponding neighborhood matrix [8] [9] [10].

Solutions used so far consider only a simple model, in which a

single object operates in the warehouse at the specific time

instant. Optimization of its route consists in arranging the

sequence of discrete steps (taking a single time slice) to

minimize the path’s length and suppress the time of the

completing the assignment. These two aims are not the same and

the optimization algorithm should consider both (in the multi-

criteria optimization process), or only one of them, depending

on the particular needs. The warehouse space mapping

considers not only the traveling time, but also the operation

duration (by defining an additional, two-dimensional cost

matrix). The reference algorithm for the method in this paper is

presented on Fig. 1

Its current application is limited to calculations in a single

centralized IT system, but the inclusion of routes for many

robots requires introducing the parallelism and mutual exchange

 Tomasz Markowski is with Lukasiewicz – Institute of Logistics and

Warehousing, Poland (e-mail: tomasz.markowski@ ilim.poznan.pl).

Optimization of Autonomous Agent

Routes in Logistics Warehouse
Tomasz Markowski and Piotr Bilski

T

560 T.MARKOWSKI, P.BILSKI

of information about the planned route between agents. The

model constructed this way will be used to create the distributed

reference structure, which exploits the route optimization

executed locally in each robot’s onboard computer

independently. Results of simulations for such a reference

model and its distributed extension, by including multiple robots

operating in parallel in the warehouse space (using the same,

shared list of tasks to perform) will be evaluated in the future.

Fig. 1. Single robot path optimization algorithm [8]

III. ALGORITHMS OF ROUTE OPTIMIZATION

The proposed algorithm is the modification of the basic version

presented in Fig. 1, which focuses on the standalone agent. The

novel approach assumes coexistence of many autonomous

robots working concurrently, as presented in Fig. 2. The main

difference between the standalone and concurrent version is the

need to consider intersections of routes, as well as delays and

conflicts resulting from them. The usage of the centralized IT

system determining paths for all robots allows for elimination

or minimization of possible collisions between routes. In this

case, the central computer controls all paths and may counteract

accordingly.

Modification of routes requires recalculating all paths,

detecting and resolving conflicts. One of the method to suppress

the time for calculations is marking nodes as occupied in a

specific time instant if the robot located there is pausing (not

moving to avoid conflicts). In such a case calculations for this

robot may be omitted as long as it stands still.

The proposed distributed algorithm consists of simultaneous

calculations by autonomous robots locally in their onboard

computers. Knowledge about a mutual influence of other robots

working in the same area is limited to a specific number of

iterations (referred to as prediction steps) following the

currently performed one. The number of prediction steps should

be determined experimentally, as each warehouse requires

individual algorithm configuration. The proposed algorithm

consists of calculating in each iteration the shortest route (step

A), considering the location of adjacent robots (step B).

Knowledge about their positions is valid for the determining

prediction steps. Each robot sends to its counterparts in the

vicinity a certain number of planned actions during the

incoming iterations, allowing for considering them in their route

planning process and, if possible, avoiding collisions (step C).

Information about prediction steps fills the neighborhood matrix

based on planned fragments of the robots’ path. If the specific

robot is unable to find a route not interfering with any other

robots, it will pause for one iteration (step D).

Fig. 2. Proposed multi-agent route optimization algorithm

IV. IMPLEMENTATION

The original single route optimization algorithm was

implemented in Python 3 programming language to conduct

comparative tests in terms of performance, computational

OPTIMIZATION OF AUTONOMOUS AGENT ROUTES IN LOGISTICS WAREHOUSE 561

complexity and efficiency of operation. Python is currently

popular because of the simple constructs and abundance of

usable libraries. Its disadvantage is relatively low speed

(because of the high level of operation on the application stack),

making it difficult to use in small computing systems, such as

the warehouse robot onboard computer. However, possible

embedded implementations exist, such as Raspberry Pi or

micropython architectures, implementing the code interpreter in

the hardware [3] [4].
To calculate the shortest path between the selected nodes in

the graph, Dijkstra, Bellman-Ford and Floyd-Warshall
algorithms can be used. They are classical route and flow
calculation algorithms applied in weighted graphs with
nonnegative weight values. The important problem is their
implementation in the specific type of graph, representing the
warehouse. [12]

The warehouse model was implemented as a list of vertices’
pairs with their transition weights (costs of travelling through
them), for instance: [(#v1, #v5, 5), (#v7, #v12, 4), (#v11, #v24,
3)]. The vertices of the graph represent the intersections of the
warehouse. It is not necessary to represent each storage location
in the model, as the construction of the warehouse makes it
impossible to reach the storage location in any other way than
through the nearest intersection. On the other hand, replacing
storage locations with intersections allows for a significant
simplification of the model, which does not affect the correct
operation of the algorithm. The edges of the graph exist only for
vertices, between which the direct travel is possible (for some
adjacent vertices, due to the physical design of the warehouse,
the passage is not possible). Duration of the actual operation,
understood as the time of completing single task in a given
location (e.g. picking up or putting the goods on the shelf) was
not taken into account here (though it is not zero).

A. Types of warehouses

The input data sets were prepared in a way to reproduce the
types of warehouses and storage strategies occurring in the real-
world logistics. There are many strategies and methods of
placing goods in a warehouse. Their spatial characteristics result
primarily from the rotation of goods, sales forecasts or assumed
inventory security. Also, indicators defined for a particular
enterprise may be relevant (average warehouse turnover,
capacity utilization, correctness of warehouse inventory, or
technological assessment), as well as share of storage costs, the
number of operations per employee and the number of
employees. Reproducing all these details in a model is difficult.
The easier approach is to create a task list reflecting such details
(by choosing task set and order to reproduce selected strategy).
In the presented study, two cases were considered. The first one
when the goods most often found in particular operations are
stored close to each other. The second case assumes their
storage location is selected completely at random.

The structure of the graph is the two-dimensional lattice with
edges connecting neighboring vertices only vertically and
horizontally (so-called grid graph). The rectangular shape limits
the number of vertices |V| to m·n (where m and n are numbers of
the vertices in both dimensions) and the number of edges |E| to
2·m·n-m-n [7]. In general, the warehouse may have the
composite structure being the combination of multiple
rectangles, but this case is not considered here.

Simulations for four different warehouse graphs were

prepared. The models (later referred to by the roman numerals)

differed in complexity, with |V| ∈ {36, 72, 156, 224}.

B. Input data structure

The definition of logistic operations was implemented as a

list of two values, determining the pickup and delivery location.

Both are interpreted as addresses in the warehouse from which

the commodity is collected and where it is next delivered to. An

example list from a CSV file used to describe the location of

goods is presented in Fig. 3

#v10;#v26

#v5;#v22

#v3;#v12

#v8;#v35

…

 #v6;#x20

Fig. 3. List of warehouse operations

An analogous data format was used to import warehouse

structures. The adjacency matrix was converted into a CSV file

allowing for an easy implementation of different graph structure

and import. The structure of the sample graph is presented in

Fig. 4, where the numbered vertices (starting with the “#v”

symbol) are black dots, while horizontal and vertical edges are

indicated by integers. The corresponding csv-like representation

of this graph is show in Fig. 5.

Fig. 4. Example of the considered warehouse graph

Fig. 5. Warehouse csv-like neighbourhood matrix representation

For the implementation of algorithms some Python build in

modules were used: collection and networkx modules for

Dijkstra algorithm, sys module for Bellman-Ford and the math

and intertools for the implementation of Floyd-Warshall

algorithm.

V. SIMULATIONS

For experiments two reference picking lists have been prepared,

consisting of 1000 items, representing warehouse orders. The

first list was prepared so that the orders were selected randomly

from the entire warehouse area. The second list was created

according to the “ABC” principle, in which the warehouse

layout, location of goods and thus transport orders are selected

562 T.MARKOWSKI, P.BILSKI

according to the Pareto principle (Fig. 6). This rule indicates

three groups of commodities (80%, 15% and 5% of the

cumulative value of the examined feature), where the

percentage share of assortment items in groups A, B, C in the

total number of goods is 20%, 30% and 50% [13] [14] [15].

Both list imported into the simulation were tested on the same

warehouse structures: (i) with 36 vertices (4 x 6), (ii) with 72

vertices (8 x 9), (iii) with 156 vertices (12 x 13) and (iv) with

224 vertices (14 x 16). The simulations were carried out on all

but also on parts of the list (the first 5, 10, 20, 50, 100, 200, 500

and all 1000 orders respectively).

The aim of simulations was to verify the ability of selected

algorithms to perform calculations while the execution time is

important due to the large variability of operations performed in

the warehouse and recalculating routes in the Real-Time.

All calculations were made using a personal computer with

the following configuration: Intel i7 processor (3.2GHz), 8GB

RAM and 128SSD hard drive.

Fig. 6. Graphic representation of a Pareto chart [16]

A. Simulations for random tasks sequencing

In the first experiment, the list of random tasks was analyzed.
All algorithms were tested on the list and graph A. Results are
presented in Fig. 8, from which the computational complexity
can be evaluated.

The algorithms’ work regimes explain the obtained results -
the calculation complexity for the Floyd-Warshall algorithm
does not change for increasing numbers of tasks, for the
Bellman-Ford algorithm the simulation time increases by
approximation with Q2 (where Q is the tasks quantity), while for
the Dijkstra algorithm the increase in the time of determining
the shortest routes also by approximation increases
exponentially with the number of tasks.

The subsequent experiments were aimed at determining the
impact of the warehouse size on time of computations.
Simulations were repeated successively for all warehouses (A,
B, C, D) and various task sets. Obtained results are presented
below. In Fig. 8 the Floyd-Warshall algorithm simulation results
are shown. Fig. 9 presents simulation results for Bellman-Ford
algorithm. Finally, in Fig. 10 Dijkstra algorithm simulation
results are presented.

Fig. 7. Algorithms efficiency in the graph (i)

Fig. 8. Floyd-Warshall algorithm performance

Fig. 9. Bellman-Ford algorithm performance

0,01

0,1

1

10

5 10 20 50 100 200 500

ti
m

e
[s

]

number of tasks

Floyd

Bellman

Dijkstra

0,01

0,10

1,00

10,00

5 10 20 50 100 200 500 1000

ti
m

e
[m

s]

number of tasks
36 72 156 224

0,01

0,10

1,00

10,00

100,00

5 10 20 50 100 200 500 1000

ti
m

e
[m

s]

number of tasks

36 72 156 224

OPTIMIZATION OF AUTONOMOUS AGENT ROUTES IN LOGISTICS WAREHOUSE 563

Fig. 10. Dijkstra algorithm performance

B. ABC tasks simulations

In the second part of experiments the list consisting of tasks
constructed with the ABC rules was used. In Fig. 11 Floyd-
Warshall algorithm simulation results on ABC tasks are
presented. In Fig. 12 Bellman-Ford algorithm simulation results
on ABC tasks are shown. Fig. 13 contains results for Dijkstra
algorithm for ABC tasks. The conducted experiments focused
on comparing the time required to determine the optimal path.
Under this assumption, the way the goods were arranged
(random or ABC-compliant) in the warehouse was irrelevant to
the obtained results, since the calculations were not meant to
depict the picking time of these goods, so the obtained times of
calculation were, as expected, analogous.

Fig. 11. Fig. 8. Floyd-Warshall algorithm performance

Fig. 12. Bellman-Ford algorithm performance

Fig. 13. Dijkstra algorithm performance

VI. CONCLUSIONS

Presented simulations included route mapping for a varying

number of picking tasks - from 5 to 1000, and three different

algorithms for determining the shortest path implemented: the

Floyd-Warshall, Bellman-Ford and Dijkstra algorithms.

An improved way of data preparation has been developed - in

the form of a CSV file, facilitating the introduction of larger

warehouse structures, and a greater number of picking orders

(pairs of vertices between which a path should be marked).

Structures for simulations were warehouses / graphs containing

36 to 224 vertices, and order lists containing 5 to 1000 orders.

The prepared order lists reflected the adopted storage

strategies - completely random, without an ordered storage

structure, and ordered by ABC strategy. Lists of orders were

built based on vertices drawn from areas consistent with the

adopted strategy.

The simulation results compare several cases - dependence of

obtained results on:

• the size of the warehouse

• the number of orders

• the number of agents / robots

• the adopted picking strategy.

The simulations results indicated that in the case of calculating

more paths in one run, the most effective algorithm is the Floyd-

Warshall algorithm. However, for the calculation of single track

changes, the fastest calculation time was obtained for the

Dijkstra algorithm. Therefore, further implementations will be

based on a combination of the use of these algorithms and not

one selected algorithm.

VII. FUTURE WORK

An ESP32 platform was prepared for the implementation of

the abovementioned algorithms (ESP32-wroomer system) –

Fig. 14.

Fig. 14. ESP32 Board

0,01

0,10

1,00

10,00

100,00

1000,00

5 10 20 50 100 200 500 1000

ti
m

e
[m

s]

number of tasks
36 72 156 224

0,01

0,10

1,00

10,00

5 10 20 50 100 200 500 1000

ti
m

e
[m

s]

number of tasks
36 72 156 224

0,01

0,10

1,00

10,00

100,00

5 10 20 50 100 200 500 1000

ti
m

e
[m

s]

number of tasks

36 72 156 224

0,01

0,10

1,00

10,00

100,00

1000,00

5 10 20 50 100 200 500 1000

ti
m

e
[m

s]

number of tasks

36 72 156 224

564 T.MARKOWSKI, P.BILSKI

The implementation is developed in micropython, and the

further development of the algorithm is planned.

Based on the obtained simulation results, the algorithm will

be modified according to which the paths in the distributed

model (in the agent network) will be calculated in order to better

use the capabilities of each algorithm.

REFERENCES

[1] Mobile Robot Platforms, Shuttle Automated Storage and Retrieval
Systems, Industrial Robotic Manipulators, and Gantry Robots: Global

Market Analysis and Forecasts, Informa PLC,

https://www.tractica.com/research/warehousing-and-logistics-robots/
[2] J. Miklinska, “Trends in the logistic market and warehouses for logistics

service providers-experiences from Poland,” Economic and Social

Development: Book of Proceedings, 2020, 193-202.
[3] M. Khamphroo, N. Kwankeo, K. Kaemarungsi, K. Fukawa,

“MicroPython-based educational mobile robot for computer coding

learning,” 2017 8th International Conference of Information and
Communication Technology for Embedded Systems (IC-ICTES),

Chonburi, 2017.

[4] K. Dokic, B. Radisic, M. Cobović, “MicroPython or Arduino C for ESP32
- Efficiency for Neural Network Edge Devices,” Springier, 2020, pp.33-

34, https://doi.org/10.1007/978-3-030-43364-2_4.

[5] N. Deo, “Graph theory with applications to engineering and computer
science,” Englewood Cliffs, NJ: Prentice-Hall, 1974.

[6] G. Laporte, ”The traveling salesman problem: An overview of exact and

approximate algorithms,” EJOR, 1992, Vol.59, pp. 231-247.

[7] Lu Feng, “Shortest path algorithm: Taxonomy and Advance in Research”,
Acta Geodaetica et Car tographica Sinica, vol. 30, no. 3, pp. 269-275,

2001.

[8] D. Dobrilovic, V. Jevtic, I. Beker, Z. Stojanov, “Shortest-path based
Model for Warehouse Inner Transportation Optimization” in 7th IEEE

International Symposium on Applied Computational Intelligence and

Informatics (SACI)
[9] Y. Liu, T. M. Vitolo, “Graph Data Warehouse: Steps to Integrating Graph

Databases Into the Traditional Conceptual Structure of a Data

Warehouse,” 2013 IEEE International Congress on Big Data, 2013, pp.
433-434, https://doi.org/10.1109/BigData.Congress.2013.72

[10] H.Y. Jang, J.U. Sun, “A Graph Optimization Algorithm for Warehouses
with Middle Cross Aisles,” Applied Mechanics and Materials, 2011, 145.

354-358, https://doi.org/10.4028/www.scientific.net/AMM.145.354.

[11] B.D. Acharya, M.K. Gill, “On the Index of Gracefulness of a Graph and
the Gracefulness of Two-Dimensional Square Lattice Graphs, ” Indian J.

Math., 1981, 23, 81-94.

[12] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, “Introduction to
algorithms,” MIT Press, 1994.

[13] Warehouse material flows and flow charts,

https://www.mecalux.co.uk/warehouse-manual/warehouse-
design/warehouse-material-flowchart

[14] A. Niemczyk et al., “Organizacja i monitorowanie procesów

magazynowych,” Instytut Logistyki i Magazynowania, 2014.

[15] A. Szymonik, D. Chudzik, “Logistyka nowoczesnej gospodarki

magazynowej,” Difin, 2018.
[16] B. Mbakop A. Kevine, “The Effectiveness of ABC Cross Analysis on

Products Allocation in the Warehouse,” 2018, January – February, Vol.

5, Issue 1, pp: 11-30.

https://www.tractica.com/research/warehousing-and-logistics-robots/
https://doi.org/10.1007/978-3-030-43364-2_4
https://doi.org/10.1109/BigData.Congress.2013.72
https://doi.org/10.4028/www.scientific.net/AMM.145.354
https://www.mecalux.co.uk/warehouse-manual/warehouse-design/warehouse-material-flowchart
https://www.mecalux.co.uk/warehouse-manual/warehouse-design/warehouse-material-flowchart

