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Abstract—The paper introduces the distributed framework for 

determining the shortest path of robots in the logistic applications, 

i.e. the warehouse with a swarm of robots cooperating in the Real-

Time mode. The proposed solution uses the optimization routine to 

avoid the downtime and collisions between robots. The presented 

approach uses the reference model based on Dijkstra, Floyd-

Warshall and Bellman-Ford algorithms, which search the path in 

the weighted undirected graph. Their application in the onboard 

robot’s computer requires the analysis of the time efficiency. 

Results of comparative simulations for the implemented 

algorithms are presented. For their evaluation the data sets 

reflecting actual processes were used. Outcomes of experiments 

have shown that the tested algorithms are applicable for the logistic 

purposes, however their ability to operate in the Real-Time 

requires the detailed analysis.  

 
Keywords—shortest path problem, hive of robots, logistics, 

microcontrollers 

I. INTRODUCTION 

HE market of logistic services, including warehouse 

applications, has been developing dynamically in recent 

years. The amount of warehouse space is increasing, so the 

developers' offers also changes during the competition on the 

market. Customers, including logistics operators, require 

modern, flexible storage space, allowing for easy reorganization 

and facilitating its adaptation to market needs. This trend fits 

into the usage of automatic and semi-automatic solutions, 

including autonomous robots and machines. Their purpose is, 

for instance, to collect clients’ orders by picking the selected 

goods from the particular locations in the warehouse (such as in 

the Amazon company). Optimization of human and machine 

tasks is one way to achieve higher resource efficiency and has 

been developed for years. Currently equipping logistics 

facilities with advanced transport and completing systems 

became a new standard. Therefore implementation of automated 

algorithms for managing warehouses and commodities is 

important [1] [2] . 

Algorithms for the route optimization are known and well 

documented in the literature (the traveling salesman problem, 

shortest path algorithms) [5],[6],[7]. However, replacing human 

workers by their autonomous counterparts, requires 

transforming the problem of the single route optimization into 

the task of managing multiple robots in the warehouse space. 

Optimizing their paths, considering the simultaneous 

cooperation in the on-line mode should also accept constantly 
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arriving new tasks that must be assigned to the specific agents. 

Effective operations’ management for up to a dozen of people 

working in a specific space is to be replaced by the model 

allowing for the effective work management by the hive of 

robots. The new goal of optimization is not only minimizing 

traveled routes in the warehouse, but also rearranging them 

constantly to avoid collisions, which would cause the 

unnecessary delays related with stopping the robots and 

deciding, which one should pass the crossing first. 

The following paper introduces the reference model for 

simultaneous optimization of many robots’ paths cooperating in 

the warehouse. Various types of warehouses were considered, 

differing in shapes and sizes. The selected group of algorithms 

(including Dijkstra, Floyd-Warshall and Bellman-Ford) was 

used to calculate the paths. Accuracy of used methods and their 

time efficiency were evaluated.  

The content of the paper is as follows. In Section II the model 

of the warehouse is described. Section III introduces the 

selected path optimization algorithms. In Section IV the 

implementation details are presented. Section V contains results 

of simulations. Finally, Section VI covers conclusions and 

future prospects.  

II. MODELING OF STORAGE SPACE 

Development of the model for optimization of autonomous 

robot routes requires computer-based mapping of the warehouse 

space and tasks to be performed. Literature on the subject 

reveals the possibility of presenting warehouse space based on 

a graph and the corresponding neighborhood matrix [8] [9] [10]. 

Solutions used so far consider only a simple model, in which a 

single object operates in the warehouse at the specific time 

instant. Optimization of its route consists in arranging the 

sequence of discrete steps (taking a single time slice) to 

minimize the path’s length and suppress the time of the 

completing the assignment. These two aims are not the same and 

the optimization algorithm should consider both (in the multi-

criteria optimization process), or only one of them, depending 

on the particular needs. The warehouse space mapping 

considers not only the traveling time, but also the operation 

duration (by defining an additional, two-dimensional cost 

matrix). The reference algorithm for the method in this paper is 

presented on Fig. 1 

Its current application is limited to calculations in a single 

centralized IT system, but the inclusion of routes for many 

robots requires introducing the parallelism and mutual exchange 
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of information about the planned route between agents. The 

model constructed this way will be used to create the distributed 

reference structure, which exploits the route optimization 

executed locally in each robot’s onboard computer 

independently. Results of simulations for such a reference 

model and its distributed extension, by including multiple robots 

operating in parallel in the warehouse space (using the same, 

shared list of tasks to perform) will be evaluated in the future.  

 
Fig. 1. Single robot path optimization algorithm [8] 

III. ALGORITHMS OF ROUTE OPTIMIZATION 

The proposed algorithm is the modification of the basic version 

presented in Fig. 1, which focuses on the standalone agent. The 

novel approach assumes coexistence of many autonomous 

robots working concurrently, as presented in Fig. 2. The main 

difference between the standalone and concurrent version is the 

need to consider intersections of routes, as well as delays and 

conflicts resulting from them. The usage of the centralized IT 

system determining paths for all robots allows for elimination 

or minimization of possible collisions between routes. In this 

case, the central computer controls all paths and may counteract 

accordingly.  

Modification of routes requires recalculating all paths, 

detecting and resolving conflicts. One of the method to suppress 

the time for calculations is marking nodes as occupied in a 

specific time instant if the robot located there is pausing (not 

moving to avoid conflicts). In such a case calculations for this 

robot may be omitted as long as it stands still.  

The proposed distributed algorithm consists of simultaneous 

calculations by autonomous robots locally in their onboard 

computers. Knowledge about a mutual influence of other robots 

working in the same area is limited to a specific number of 

iterations (referred to as prediction steps) following the 

currently performed one. The number of prediction steps should 

be determined experimentally, as each warehouse requires 

individual algorithm configuration. The proposed algorithm 

consists of calculating in each iteration the shortest route (step 

A), considering the location of adjacent robots (step B). 

Knowledge about their positions is valid for the determining 

prediction steps. Each robot sends to its counterparts in the 

vicinity a certain number of planned actions during the 

incoming iterations, allowing for considering them in their route 

planning process and, if possible, avoiding collisions (step C). 

Information about prediction steps fills the neighborhood matrix 

based on planned fragments of the robots’ path. If the specific 

robot is unable to find a route not interfering with any other 

robots, it will pause for one iteration (step D). 

 
Fig. 2.  Proposed multi-agent route optimization algorithm 

IV. IMPLEMENTATION 

The original single route optimization algorithm was 

implemented in Python 3 programming language to conduct 

comparative tests in terms of performance, computational 
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complexity and efficiency of operation. Python is currently 

popular because of the simple constructs and abundance of 

usable libraries. Its disadvantage is relatively low speed 

(because of the high level of operation on the application stack), 

making it difficult to use in small computing systems, such as 

the warehouse robot onboard computer. However, possible 

embedded implementations exist, such as Raspberry Pi or 

micropython architectures, implementing the code interpreter in 

the hardware [3] [4]. 
To calculate the shortest path between the selected nodes in 

the graph, Dijkstra, Bellman-Ford and Floyd-Warshall 
algorithms can be used. They are classical route and flow 
calculation algorithms applied in weighted graphs with 
nonnegative weight values. The important problem is their 
implementation in the specific type of graph, representing the 
warehouse. [12] 

The warehouse model was implemented as a list of vertices’ 
pairs with their transition weights (costs of travelling through 
them), for instance: [(#v1, #v5, 5), (#v7, #v12, 4), (#v11, #v24, 
3)]. The vertices of the graph represent the intersections of the 
warehouse. It is not necessary to represent each storage location 
in the model, as the construction of the warehouse makes it 
impossible to reach the storage location in any other way than 
through the nearest intersection. On the other hand, replacing 
storage locations with intersections allows for a significant 
simplification of the model, which does not affect the correct 
operation of the algorithm. The edges of the graph exist only for 
vertices, between which the direct travel is possible (for some 
adjacent vertices, due to the physical design of the warehouse, 
the passage is not possible). Duration of the actual operation, 
understood as the time of completing single task in a given 
location (e.g. picking up or putting the goods on the shelf) was 
not taken into account here (though it is not zero). 

A. Types of warehouses 

The input data sets were prepared in a way to reproduce the 
types of warehouses and storage strategies occurring in the real-
world logistics. There are many strategies and methods of 
placing goods in a warehouse. Their spatial characteristics result 
primarily from the rotation of goods, sales forecasts or assumed 
inventory security. Also, indicators defined for a particular 
enterprise may be relevant (average warehouse turnover, 
capacity utilization, correctness of warehouse inventory, or 
technological assessment), as well as share of storage costs, the 
number of operations per employee and the number of 
employees. Reproducing all these details in a model is difficult. 
The easier approach is to create a task list reflecting such details 
(by choosing task set and order to reproduce selected strategy). 
In the presented study, two cases were considered. The first one 
when the goods most often found in particular operations are 
stored close to each other. The second case assumes their 
storage location is selected completely at random.  

The structure of the graph is the two-dimensional lattice with 
edges connecting neighboring vertices only vertically and 
horizontally (so-called grid graph). The rectangular shape limits 
the number of vertices |V| to m·n (where m and n are numbers of 
the vertices in both dimensions) and the number of edges |E| to 
2·m·n-m-n [7]. In general, the warehouse may have the 
composite structure being the combination of multiple 
rectangles, but this case is not considered here. 

Simulations for four different warehouse graphs were 

prepared. The models (later referred to by the roman numerals) 

differed in complexity, with |V| ∈ {36, 72, 156, 224}. 

B. Input data structure 

The definition of logistic operations was implemented as a 

list of two values, determining the pickup and delivery location. 

Both are interpreted as addresses in the warehouse from which 

the commodity is collected and where it is next delivered to. An 

example list from a CSV file used to describe the location of 

goods is presented in Fig. 3 

 

#v10;#v26 

#v5;#v22 

#v3;#v12  

#v8;#v35 

…  

  #v6;#x20 

Fig. 3. List of warehouse operations 
 

An analogous data format was used to import warehouse 

structures. The adjacency matrix was converted into a CSV file 

allowing for an easy implementation of different graph structure 

and import. The structure of the sample graph is presented in 

Fig. 4, where the numbered vertices (starting with the “#v” 

symbol) are black dots, while horizontal and vertical edges are 

indicated by integers. The corresponding csv-like representation 

of this graph is show in Fig. 5. 

 

Fig. 4. Example of the considered warehouse graph 

 

 
Fig. 5. Warehouse csv-like neighbourhood matrix representation 

 

For the implementation of algorithms some Python build in 

modules were used: collection and networkx modules for 

Dijkstra algorithm, sys module for Bellman-Ford and the math 

and intertools for the implementation of Floyd-Warshall 

algorithm. 

V. SIMULATIONS 

For experiments two reference picking lists have been prepared, 

consisting of 1000 items, representing warehouse orders. The 

first list was prepared so that the orders were selected randomly 

from the entire warehouse area. The second list was created 

according to the “ABC” principle, in which the warehouse 

layout, location of goods and thus transport orders are selected 
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according to the Pareto principle (Fig. 6). This rule indicates 

three groups of commodities (80%, 15% and 5% of the 

cumulative value of the examined feature), where the 

percentage share of assortment items in groups A, B, C in the 

total number of goods is 20%, 30% and 50% [13] [14] [15]. 

Both list imported into the simulation were tested on the same 

warehouse structures: (i) with 36 vertices (4 x 6), (ii) with 72 

vertices (8 x 9), (iii) with 156 vertices (12 x 13) and (iv) with 

224 vertices (14 x 16). The simulations were carried out on all 

but also on parts of the list ( the first 5, 10, 20, 50, 100, 200, 500 

and all 1000 orders respectively). 

The aim of simulations was to verify the ability of selected 

algorithms to perform calculations while the execution time is 

important due to the large variability of operations performed in 

the warehouse and recalculating routes in the Real-Time. 

All calculations were made using a personal computer with 

the following configuration: Intel i7 processor (3.2GHz), 8GB 

RAM and 128SSD hard drive.  

  
Fig. 6. Graphic representation of a Pareto chart [16] 

A. Simulations for random tasks sequencing 

In the first experiment, the list of random tasks was analyzed. 
All algorithms were tested on the list and graph A. Results are 
presented in Fig. 8, from which the computational complexity 
can be evaluated. 

The algorithms’ work regimes explain the obtained results - 
the calculation complexity for the Floyd-Warshall algorithm 
does not change for increasing numbers of tasks, for the 
Bellman-Ford algorithm the simulation time increases by 
approximation with Q2 (where Q is the tasks quantity), while for 
the Dijkstra algorithm the increase in the time of determining 
the shortest routes also by approximation increases 
exponentially with the number of tasks. 

The subsequent experiments were aimed at determining the 
impact of the warehouse size on time of computations. 
Simulations were repeated successively for all warehouses (A, 
B, C, D) and various task sets. Obtained results are presented 
below. In Fig. 8 the Floyd-Warshall algorithm simulation results 
are shown. Fig. 9 presents simulation results for Bellman-Ford 
algorithm. Finally, in Fig. 10 Dijkstra algorithm simulation 
results are presented. 

 

 
Fig. 7. Algorithms efficiency in the graph (i) 

 

 

 
Fig. 8. Floyd-Warshall algorithm performance  

 

 

 
Fig. 9. Bellman-Ford algorithm performance  
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Fig. 10. Dijkstra algorithm performance  

 

B. ABC tasks simulations 

In the second part of experiments the list consisting of tasks 
constructed with the ABC rules was used. In Fig. 11 Floyd-
Warshall algorithm simulation results on ABC tasks are 
presented. In Fig. 12 Bellman-Ford algorithm simulation results 
on ABC tasks are shown. Fig. 13 contains results for Dijkstra 
algorithm for ABC tasks. The conducted experiments focused 
on comparing the time required to determine the optimal path. 
Under this assumption, the way the goods were arranged 
(random or ABC-compliant) in the warehouse was irrelevant to 
the obtained results, since the calculations were not meant to 
depict the picking time of these goods, so the obtained times of 
calculation were, as expected, analogous. 

 

 
Fig. 11. Fig. 8. Floyd-Warshall algorithm performance  

 
Fig. 12. Bellman-Ford algorithm performance 

 
Fig. 13. Dijkstra algorithm performance  

 

VI. CONCLUSIONS 

Presented simulations included route mapping for a varying 

number of picking tasks - from 5 to 1000, and three different 

algorithms for determining the shortest path implemented: the 

Floyd-Warshall, Bellman-Ford and Dijkstra algorithms. 

An improved way of data preparation has been developed - in 

the form of a CSV file, facilitating the introduction of larger 

warehouse structures, and a greater number of picking orders 

(pairs of vertices between which a path should be marked). 

Structures for simulations were warehouses / graphs containing 

36 to 224 vertices, and order lists containing 5 to 1000 orders. 

The prepared order lists reflected the adopted storage 

strategies - completely random, without an ordered storage 

structure, and ordered by ABC strategy. Lists of orders were 

built based on vertices drawn from areas consistent with the 

adopted strategy. 

The simulation results compare several cases - dependence of 

obtained results on: 

• the size of the warehouse 

• the number of orders 

• the number of agents / robots 

• the adopted picking strategy. 

The simulations results indicated that in the case of calculating 

more paths in one run, the most effective algorithm is the Floyd-

Warshall algorithm. However, for the calculation of single track 

changes, the fastest calculation time was obtained for the 

Dijkstra algorithm. Therefore, further implementations will be 

based on a combination of the use of these algorithms and not 

one selected algorithm. 

VII. FUTURE WORK 

An ESP32 platform was prepared for the implementation of 

the abovementioned algorithms (ESP32-wroomer system) – 

Fig. 14. 

 
Fig. 14. ESP32 Board 
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The implementation is developed in micropython, and the 

further development of the algorithm is planned.  

Based on the obtained simulation results, the algorithm will 

be modified according to which the paths in the distributed 

model (in the agent network) will be calculated in order to better 

use the capabilities of each algorithm. 
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