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Abstract
Aim of study: Mexico's large irrigation areas demand non-structural actions to improve the irrigation service, such as monitoring crop 

phenology; however, its application has been limited by the large volumes of field information generated, diversity of crop management 
and climatic variability. The objective of this study was to generate and validate a methodology to monitor corn (Zea mays L.) phenology 
from the historical relationship of the vegetation indexes (VIs), EVI and NDVI, with the phenological development (PD) of corn grown in 
large irrigation zones.

Area of study: Irrigation District (ID) 075 “Valle del Fuerte”, northern Sinaloa, Mexico.
Material and methods: We used a database of 20 years of climate, field crop growth and crop phenology data, and Landsat satellite 

images. A methodology was proposed on a large scale supported with GIS and remote sensing data series.
Main results: The methodology was validated in 19 plots with an acceptable correlation between observed PD and estimated PD for the 

two VIs, with slightly better values for EVI than for NDVI. NDVI and EVI models agreed with experimental PD observations in 92.1% of 
the farms used to validate the methodology, in 2.5% only the NDVI model coincided with the real, in 3.1% only the EVI model coincided, 
and in 2.3% both models disagreed with observation, generated a stage out of phase with respect to the real phenological stage.

Research highlights: is possible to generalize the methodology applied to large irrigation zones with remote sensing data and GIS.
Additional key words: Zea mays L.; irrigation districts; climate variability; GIS; Mexico
Abbreviations used: AW (Autum-Winter season); C (Cold); CGDD (Cumulative Growing Degree Days); EVI (Enhanced Vegetation 

Index); GDD (Growing Degree Days); GIS (Geographic Information Systems); H (Hot); ID (Irrigation District); IM (Irrigation Module); N 
(Neutral); NDVI (Normalized Difference  Vegetation Index); PD (Phenological Development); Ta (air daily mean temperature); Tm (mean 
temperature); VARI (Visible Atmospherically Resistant Index); VI (Vegetation Index); WUA (Water Users Association)
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Introduction
In Mexico, more than six million hectares are annually 

irrigated, representing almost a third of the agricultural 

area cultivated, and generating 50% of the total value of 
agricultural production (SIAP, 2019). Mexican irrigation 
zones (IZs) institutionally are classified in 86 Irrigation 
Districts (IDs) integrated by Irrigation Modules (IMs) 
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and managed by Water Users Associations (WUAs), and 
50735 Irrigation Units (IUs) that users operate autono-
mously (CONAGUA, 2019a,b). 

One of the main problems of these large areas is the 
low irrigation efficiencies (30 to 45%) at farm level, as-
sociated with poor irrigation service by WUAs and poor 
conduction efficiency (Sifuentes et al., 2015). To impro-
ve irrigation efficiency and service, detailed knowledge 
of the phenological development of crops is required to 
better couple irrigation to crops’ water demand that chan-
ge with their phenological development (Espinosa et al., 
2017). Although efforts have been made to implement 
farm monitoring of crop phenology in Mexico’s IDs, its 
application has been limited due to the large quantity of 
irrigated areas, diversity of crops and high volumes of 
field information that are managed (Ojeda-Bustamante et 
al., 2007). In a scenario of high competition for limited 
resources, coupled with food security and the effects of 
climate change, agricultural monitoring becomes very im-
portant (Heupel et al., 2018).

The Growing Degree Day (GDD) concept has been 
used for several decades to estimate the phenological 
crop stages for corn (Zea mays L.) (Ojeda-Bustamante et 
al., 2006), wheat (Triticum aestivum L.) (Kimball et al., 
2012) and potato (Solanum tuberosum L.) (Flores et al., 
2012), among others; however, its application depends on 
the knowledge of accurate agronomic and environmental 
information such as sowing date, type and variety crop, air 
daily temperature (Ta) and a non-restrictive development 
management such as the absence of water, nutritional or 
environmental stress (Roth & Yocum, 1997; Ghamghami 
et al., 2019; Hufkens et al., 2019).

The use of remote sensing to identify and classify 
crops is currently a common task, using their spectral 
characteristics (Heupel et al., 2018). However, its prac-
tical application to estimate other agricultural variables 
remains a major challenge due to the high heterogenei-
ty and size of cultivated farms, the presence of clouds 
and spatial resolution of images (Burke & Lobell, 2017; 
Hufkens et al., 2019). Vegetation Indices (VIs), defined 
as mathematical combinations or transformations of two 
or more bands of the electromagnetic spectrum to maxi-
mize vegetation characteristics (Tsouros et al., 2019), 
are the most widely used products of remote sensing to 
estimate crop phenology (Kamble et al., 2013; Zhong et 
al., 2014). The VIs most commonly used have been re-
ported to be the Normalized Difference Vegetation Index 
(NDVI) and the Enhanced Vegetation index (EVI) (Mat-
sushita et al., 2007). De Bernardis et al. (2016) fitted 
functions of phenological development data and NDVI 
values to predict the rice (Oryza sativa L.) phenology. 
Reed et al. (1994) used historical series of NDVI obtai-
ned from Advanced-Very-High-Resolution-Radiometer 
images to predict wheat phenology; Wei et al. (2019) 
used EVI and NDVI indices to monitor the phenology of 

12 crops in large areas reporting an accuracy of 85% and 
81%, respectively.

Remote sensing also allows monitoring the actual crop 
conditions in the field with adequate spatial and tempo-
ral resolution. When the cumulative growing degree days 
(CGDD) are coupled with the VIs, phenological monito-
ring is significantly improved (Mavi & Tupper, 2004; Teal 
et al., 2006). Viña et al. (2004) reported a good fit of the 
Visible Atmospherically Resistant Indices (VARIs), VA-
RIgreen and VARIred-edge, and NDVI with the corn CGDD 
and chlorophyll content. The VARIs were more sensiti-
ve than the NDVI with respect to the green fraction of 
vegetation cover, improving the detection of senescence, 
vegetative development and presence of various types of 
stress. Liao et al. (2019) used the cumulative temperature 
in the parameters related to a phenology model and in-
formation extracted from Landsat-8 and MODIS images 
to simulate growth and biomass production in corn and 
soybeans (Glycine max L.).

Landsat satellite image time series is an alternative for 
monitoring crops in large agricultural areas, with a mo-
derate spatial and temporal resolution (30 m and 16 days 
respectively). They are freely accessible with enough 
information for use and application (Ghamghami et al., 
2019; NASA, 2019). However, in Mexico studies focu-
sed on developing practical methodologies for monitoring 
crop phenology are scarce. Moreover, the sowing period 
and corn genotypes have changed drastically in the last 
decade in the northwest of Mexico, so this type of tool to 
monitor crop phenology is a recurrent demand. The ob-
jective of this study was to generate and validate a me-
thodology to monitor corn phenological using vegetation 
indices, validated with historical data obtained from field 
and meteorological data and Landsat satellite images of 
20 agricultural years; this was done in the largest Mexican 
ID, where corn is the dominant crop.

Material and methods
Study area

This study was carried out in an area of approximately 
20,000 ha located at the union of the IMs “Santa Rosa” 
and “Batequis” in ID075 “Valle del Fuerte” in the northern 
region of the state of Sinaloa Mexico, located in the coor-
dinates 25°45’N and -108° 51’W (Fig. 1). The ID075 is the 
largest in the country, with more than 260,000 ha harves-
ted annually and a production value about 850 million U.S. 
dollars, with more than 170,000 ha of corn with an average 
yield of 12.7 t ha-1 and a production value of 400 million 
U.S. dollars (SIAP, 2019), the study area records an avera-
ge annual rainfall of 352 mm, average annual temperature 
of 25 °C and an altitude of 15 m.a.s.l. The soils are flat, 
deep, with no problem of salts and mostly with clay and 
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loam clay textures with available moisture in the range of 
0.143 to 0.155 cm3 cm-3 (UAS, 2014).

Thirty commercial corn farms that had a detailed his-
torical record of at least twenty agricultural years (1998-
2018) were selected as reference in the study area, 20 far-
ms located in the IM Santa Rosa (240.8 ha) and 10 in the 
IM “Batequis” (120 ha).

Climatic seasonal analysis

This arid region shows high climatic variability, which 
impacts the phenology and season duration of crops. To 
obtain more information on this effect, an analysis of 
seasonal climatic variability in the corn phenological 
was carried out with respect to a typical growing season 
from November 12 to April 14 of the following year. This 
approach was performed to classify each agricultural sea-
son: Hot (H), Neutral (N) or Cold (C), according to the 
CGDD during this fixed period of 152 days, wich corres-
ponds to the duration in CGDD from sowing to matura-
tion in the study area with November 12 as the sowing 
date (INIFAP, 2017). In this way, a cold season is defined 
as when the CGDD value in the 152 days was from 1100 
to 1200, a neutral season when the value was from 1201 to 
1300 GDD and for a hot season when the value was more 
than 1300 CGDD.

Historical series of Landsat images

A total of 116 Landsat satellite images (5, 7 and 8) 
were downloaded for the analysis period (USGS, 2018) 

(https://glovis.usgs.gov/), which were corrected radio-
metrically and atmospherically to improve both, position 
and radiometric quality, according to the methodology 
proposed by Chander et al. (2009) for Landsat 5 and 7, 
and USGS (2019) for Landsat 8 (OLI/TIRS). The annual 
period analyzed was seven months (November to May), 
which corresponds to the main agricultural season Au-
tumn-Winter (AW) of the study area, where the presence 
of clouds is reduced. Fig. 2 shows the type and number of 
Landsat images used.

Historical relationship VIs-CGDD 

In order to analyze the historical behavior of VIs-CG-
DD, the first step was to estimate the CGDD value in each 
reference farm for each available satellite image. Com-
plementary data, as sowing, harvest and irrigation data, 
as well as agronomic and management data, were extrac-
ted from the SPRITER system as detailed and applied by 
Ojeda-Bustamante et al. (2007) in the study zone. To es-
timate the CGDD, a historical series (1998-2018) of air 
daily mean temperature (Ta) was used from an automated 
meteorological station operated by the Instituto Nacional 
de Investigaciones Forestales, Agrícolas y Pecuarias (INI-
FAP) located in the center of the study area. The GDD 
calculation was performed using the following equation 
applied in the study area (Ojeda-Bustamante et al., 2006):

GDD=Ta-Tcmin, if Ta<Tcmax ; 
GDD=Tcmax -  Tcmin, if Ta≥Tcmax ; 

GDD=0, if Ta≤TCmin 

 

         (1)

Figure 1. Location of the study area 

https://glovis.usgs.gov/
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where GDD are the daily growing degree days (ºC day-1), 
Ta is the average daily air temperature calculated from re-
cords of 15 minutes (ºC), Tcmax is the maximum critical 
temperature of the corn crop (30 ºC) and Tcmin is the mi-
nimum critical temperature of the corn crop (10 ºC). With 
CGDD values, the phenological development (PD) was 
calculated as a development ratio using equation (2):

PD = CGDDID

CGDDMaturity
 

 

                      (2)

where CGDDID are the GDD accumulated from the 
sowing date to the interest date (ºC) and GDDMaturity is the 
GDD accumulated from the sowing date to crop physio-
logical maturity (1451 CGDD) (ºC).

After that, using the raster calculation and "Area Sta-
tistics Calculation" tools of the QGIS (2019), the VI ave-
rages for each reference farm on each image date were 
calculated to be associated with the CGDD. The expres-
sions for the calculation of the VIs used were those in-
dicated by Rouse et al. (1974) for the NDVI (3) and by 
Huete et al. (2002) for the EVI (4).

   
                 

NDVI = 
ρNIR - ρred
ρnir + ρred

 

 

                     (3)

EVI = 2.5 [
ρnir  -  ρred

ρnir  + 6ρred - 7.5ρblue + 1] 

 

      (4)

where ρNIR is the average reflectance in the near-infrared 
band (840 to 880 nm), ρred is the average reflectance in 
the red band (620 to 670 nm) and ρblue the average reflec-
tance in the blue band (460 to 480 nm). 

Finally, a statistical fitting analysis was done among 
the values of the two VIs with PD. Table 1 shows the 
CGDD intervals with their corresponding phenological 
phases and PD values for each range for most hybrids in 
the study area, characterization based on the methodology 
reported by Ritchie et al. (1992) and in the studies carried 
out by Ojeda-Bustamante et al. (2006). 

Methodological approach

The proposed methodology is based on the estimation 
of PD as a function of VIs, using historical series of Land-
sat satellite images and phenological field data. The step 
sequence was the following (as shown in Fig. 3):

1. Compilation of climate data and reference farm data. 
2. Download the Landsat image series for the dates of 

interest from a remote sensing website with histo-
rical satellite images (i.e. https://glovis.usgs.gov/). 

3. Calibration and radiometric correction of satellite 
images according to the methodology described 
previously.

4. Calculation of VIs with Geographic Information 
Systems (GIS) software for each reference farm 
data using the corresponding multispectral-satellite 
image (i.e. QGIS).

5. Estimation of PD using reference-farm data based 
on CGDD with equation (2) and Table 1 using se-
veral agricultural years (Table 2).

6. Estimation of PD as a function of VIs using the 
fitted quadratic equations (Table 3) or using Table 4. 
Make sure to locate PD in the correct zone of crop 
development, in the ascending zone (I) if current 
VI (VIi) is greater than previous VI (VIi-1), in the 
descending zone (II) if current VI (VIi) is less than 
previous VI (VIi-1).

Figure 2. Number and type of Landsat images used in the study area 
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7. Map generation with the estimated phenological 
development (PD), using either quadratic equations 
(Table 3) or Table 4 for zone I and zone II.

Validation

The phenological phases determined with CGDD (from 
sowing to image date) were compared against the stages 
observed weekly in the fields. This was done for 19 of the 
30 reference plots established with corn during the AW 
2017-2018 season. Field information from these plots 
(farms) was also used to validate the spectral models. The 
accuracy of the large-scale methodology was determined 
in the total of corn farms in two different dates of the IM 
Batequis for the agricultural season AW 2017-2018. It was 
determined by comparing the observed PD with the pre-
dicted by the model.

Results and discussion
Historical behavior of crop development

Fig. 4 shows the behavior of the historical develop-
ment of the corn crop in the reference farms associated 
with CGDD. Each point is the value of CGDD from 
sowing to the date of the image. The high variability in 
the behavior of the series is related to climatic variabi-
lity among years and sowing dates, which is consistent 
with Ojeda-Bustamante et al. (2014), who estimated in-
crease of at least 1.2 ºC in the annual mean temperature 
for northern Sinaloa for the first third of this century with 
respect to the base period (1951-2000), as a result of a 
possible effect of climate change. In C (Cold) years, the 
series’ trend showed a lower slope due to a lengthening of 
the season, in H (Hot) years the slope is more vertical as a 
result of a shortening of the season, while for N (Neutral) 

Table 1. Phases of development, cumulative growing degree days (CGDD, ºC) and 
phenological development (PD) (%/100) for the most used corn hybrids in the north 
of Sinaloa, Mexico.

Phases of development CGDD PD

1-2 leaves (V1-V2) 200-300 0.14-0.21

3-4 leaves (V3-V4) 300-400 0.21-0.28

4-6 leaves (V4-V6)  400-500 0.28-0.34

6-8 leaves (V6-V8) 500-600 0.34-0.41

8-11 leaves (V8-V11) 600-700 0.41-0.48

11 leaves-tasseling (V11-VT) 700-800 0.48-0.55

Tasseling-silking (VT-R1) 800-900 0.55-0.62

Blister-milk stage (R2-R3) 900-1100 0.69-0.76

Milk stage-dough stage (R3-R4) 1100-1200 0.76-0.83

Dough stage-dent stage (R4-R5) 1200-1300 0.83-0.90

Dent stage-physiological maturitv(R5-R6) 1300-1400 0.90-0.96

Physiological maturity (R6) 1400-1500 0.96-1-03

Harvest stage (H) 1600-1700 1.10-1.17

Figure 3. Sequential scheme of the generated methodology 
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seasons, the slope is intermediate. Table 2 shows a more 
detailed historical analysis, where the effect of the sowing 
date and temperature on the duration of crop phenological 
season is observed. 

For early (October), typical (November) and late 
(December) sowing periods, it was possible to quantify 
the CGDD historical variation and the mean temperatu-

re (Tm), calculated for a fixed interval of 152 days from 
sowing to physiological maturity, as well the elapsed time 
expressed in days after sowing to maturity (DAS). In the 
early and late sowing periods, high CGDD values were 
observed due to the effect of high temperature at the be-
ginning and the end of crop seasons respectively, which 
reduced the duration of crop phenological season. On the 

Table 3. Parameters for equation PD=f(VI)=α1±[α2+(α3*VI)]0.5  form, for VI≤VI-
max, otherwise PD=PDVT, to estimate phenological development (PD) as a function 
of vegetation indices (VIs) considering two zones of corn development. Zone I: 
equation with negative sign (-) for the square root. Zone II: equation with positive 
sign (+) for the square root.

PD = f (VI)
Parameter

VImax PDVT R2

α1 α2 α3

PDNDVI 0.6130 0.3740 -0.5150 0.726 0.607 0.7059

PDEVI 0.6191 0.3106 -0.4052 0.767 0.616 0.6975

CGDD: cumulative growing degree days (º C) from sowing to 152 days after sowing. Tm: air average temperature (º C) from 
sowing to 152 days after sowing. Duration: crop season duration (days)

Table 2. Years classification [Cold (C), Normal (N) and Hot (H)] to indicates the historical effect of temperature on the phenological 
development of corn as expressed in CGDD and season duration in days, established in three sowings periods (early, typical and late 
sowing) for the agricultural years analyzed 

Agricultural 
year Type

Early Late Typical

CGDD Tm Duration CGDD Tm Duration CGDD Tm Duration

1998-1999 C 1409 19.3 158 1245 18.2 165 1150 17.6 177

1999-2000 N 1329 18.8 165 1378 19.1 157 12230 18.1 169

2000-2001 N 1326 18.8 165 1388 19.2 156 1247 18.3 168

2001-2002 N 1411 19.3 157 1456 19.6 152 1272 18.4 165

2002-2003 H 1440 19.5 154 1520 20.0 148 1384 19.1 157

2003-2004 N 1265 18.3 170 1282 18.4 163 1182 17.8 174

2004-2005 N 1479 19.8 149 1329 18.7 160 1219 18.0 172

2005-2006 N 1353 18.9 164 1459 19.6 152 1214 18.0 172

2006-2007 C 1299 18.5 167 1226 18.1 167 1151 17.6 177

2007-2008 C 1203 17.9 175 1234 18.1 168 1143 17.5 178

2008-2009 H 1474 19.7 150 1418 19.3 154 1300 18.6 165

2009-2010 H 1374 19.0 160 1374 19.0 157 1279 18.4 167

2010-2011 C 1204 17.9 175 1271 18.4 166 1142 17.5 176

2011-2012 C 1247 18.2 174 1303 18.6 162 1137 17.5 176

2012-2013 N 1240 18.2 172 1305 18.6 162 1180 17.8 176

2013-2014 H 1381 19.1 160 1384 19.1 156 1256 18.3 167

2014-2015 H 1463 19.6 151 1427 19.4 154 1300 18.6 165

2015-2016 H 1478 19.8 150 1414 19.3 154 1354 18.9 161

2016-2017 H 1591 20.5 138 1478 19.7 150 1381 19.1 158

2017-2018 H 1629 20.7 130 1528 20.1 147 1428 19.4 154

Mean 1380 19.1 159 1371 19.0 158 1247 18.2 169
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other side, the typical or conventional sowing dates pro-
duced the largest crop duration due to colder temperatu-
res. The warming trend found in the last five years com-
pared to previous 15 agricultural years, had a reduction 
of up to 24 days, which represents a 13% reduction when 
compared to the phenological duration at the beginning 
of the analyzed period; this effect was also reported by 
Castillo & Ibáñez (2017). In consequence, there is an in-
verse relation between Tm and CGDD, the more Tm is 
related to a lesser CGDD. The high inter and intra-seaso-
nal variability suggest an improvement crop phenology 

monitor to better coupling crop water demands, in large  
irrigation zones.

The comparison between the phenological development 
estimated with CGDD in the dates of the images and the 
observed growth in the sowings of 19 farms for the AW 
season 2017-2018 is shown in Fig. 5, where a high corre-
lation can be observed between the values observed with 
those estimated with an RMSE of 0.029 corresponding to 
2.9% (4.5 days) of the total development; the value of one 
corresponds to the physiological maturity of the crop and 
values higher than this are farms close to harvest.

Table 4. Minimum and maximum values of NDVI and EVI and their relationship with phenological development (PD) and stages 
of corn, located in two zones and at the maximum point of the development curve, used for large-scale phenological monitoring.

Zone NDVI EVI
PD Phases of development

min max min max
I 0.26 0.31 0.19 0.26 0.14-0.21  V1-V2

0.32 0.50 0.27 0.41 0.21-0.28 V3-V4
0.51 0.60 0.42 0.57 0.28-0.34 V4-V6
0.61 0.67 0.58 0.69 0.34-0.41 V6-V8

0.68 0.73 0.70 0.81 0.41-0.48 V8-V11
Peak 0.74 0.74 0.82 0.82 0.48-0.55 V11-VT
II 0.69 0.73 0.73 0.81 0.55-0.62 VT-R1

0.65 0.68 0.65 0.72 0.69-0.76 R2-R3
0.63 0.64 0.61 0.64 0.76-0.83 R3-R4
0.59 0.62 0.56 0.6 0.83-0.90 R4-R5
0.51 0.58 0.50 0.55 0.90-0.96 R5-R6
0.44 0.50 0.40 0.49 0.96-1-03 R6
0.27 0.43 0.25 0.39 1.10-1.17 Harvest

Figure 4. Cumulative growing degree-days (CGDD) in Autumn-Winter (AW) seasons for each Landsat image in reference farms, 
as a reference, each crop-farm is shown in a unique color and the type of year as cold (C), normal (N) and hot (H) in years analyzed.
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Spectral models
 
Fig. 6 shows the PD as a function of the two VIs. It is 

observed a points dispersion due to variability in crop ma-
nagement and crop stress; Viña et al. (2004) mentioned that 
the use of VIs through remote sensors makes it possible to 
detect some symptoms of crop stress that most crop growth 
and development models do not recognize. A higher dis-
persion range can be observed in the zone of maximum 
development or peak zone in EVI (0.6-1.0) than in NDVI 
(0.6-0.8), probably due to the higher capacity of EVI for the 
detection of stressed fields in the same phase of crop deve-
lopment. It is also observed that after the maximum value 
(PD = 0.61), the VIs values have a decreasing behavior and 
are similar to the values before the maximum PD. To ex-
press PD as a unique function of VIs, the curve was divided 
into two zones (Fig. 6): zone I (upward, from sowing to 
VI peak) and zone II (falling, from VI peak to harvest). 
The fitted model for the calculation of PD as a function of 
VIs for the two zones were derived from the roots of a se-
cond-order equations (obtained from PD-VIs data), where 
VI corresponds to the independent variable and the PD to 
the dependent variable. Equation parameters for both zones 
are indicated in the Table 3.

Another option to calculate PD as a function of VI is 
by using a tabular format. Table 4 shows the interval of 
NDVI and EVI values for each interval of phenological 
stages as well as the values of PD in the interval, which 
were obtained from Fig. 6; the location zone is also indi-
cated. The peak VIs, estimated with the fitted model, are 
also reported. The first four phases the values of NDVI are 
slightly higher than those of EVI, while from the fifth to 
the ninth phase EVI values are greater than NDVI values; 

while in the last four phases EVI was lower than NDVI. 
This behavior was also reported by Wei et al. (2019), in-
dicating that it was due to the higher sensitivity of the 
EVI to high biomass, bare soil, and senescence than the 
NDVI. EVI showed higher response with high biomass 
for PD = 0.54 (800 CGDD) and in the senescence stage 
of the crop from PD = 0.69 after 1000 CGDD. This is 
also seen in Fig. 7 representing the relationship of the two 
indices studied, as suggested by Huete et al. (2002) and 
Jensen (2007). This figure also indicates the relevance of 
estimating either of the two indices from the value of one 
of these, due to its high determination coefficient.

GIS-based phenology monitoring

To implement the spectral models in a GIS an algorithm 
was generated, to automatically estimate PD for each corn-
field of the IM, from VIs values calculated using multispec-
tral-satellite images. To find out the zone (Fig. 6 and Table 
4), an indicator was obtained when subtracting the value of 
a previous date image (VIi-1) with the current VIi; positive 
values correspond to Zone I and negative values corres-
pond to Zone II. An algorithm was implemented in Visual 
Basic language to calculate the PD in the total of cornfields 
as a function of the VIs, subsequently these results were 
incorporated into the GIS to visualize them spatially.

Methodology precision

The validation results of the models in the 19-referen-
ce farms for AW 2017-2018 season was done by using the 
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Figure 5. Comparison of estimated crop development with cumulative growing degree days (CGDD) on Landsat 
image and development observed on corn reference farms (Autum-Winter 2017-2018 season), Phenological Deve-
lopment (PD) calculated as the ratio of daily CGDD and CGDD until physiological maturity 
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equation parameters indicated on Table 3 and shown in Fig. 
8. A determination coefficient (R2) of 0.9154 for the NDVI 
model and of 0.9124 for EVI, with RMSE values of 0.1307 
and 0.1219, respectively, were estimated. The values indi-
cated good precision for both models, however the effect of 
the point´s dispersion and the spatial and temporal variabi-
lity in the 19 farms distributed in the 20,000 ha of the study 
area was also reflected, mainly when the value was greater 
than peak value estimated by the model. This influenced 
the precision to estimate phenology as reported by Burke 
& Lobell (2017) and Hufkens et al. (2019).

Fig. 9 shows the actual phenology (a) and the valida-
tion of the spectral models (b), at IM to two contrasting 

moments of crop development (beginning and end of the 
season) generated with a GIS, and using Table 4 in the 
algorithm. At the first moment (January 11, 2018),  Fig. 
9 (above), the corn farms were predominantly in phases 
V6-V8, V8-V11 and V11-VT. In a scenario of normal 
water availability, this information is very useful for the 
authorization by the WUA for the second and third irriga-
tion since these should coincide with stages V6-V8 and 
V11-VT respectively as recommended by INIFAP (2017) 
and Ojeda-Bustamante et al. (2006); under restricted wa-
ter availability scenarios, this approach can have greater 
relevance since the IM operated by a WUA has the recu-
rrent need to optimize the number of needed irrigations 
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y = 0.7328x + 0.1535 
R² = 0.9003
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Figure 7. EVI-NDVI relationship using remote sensing corn data period 1998 to 2018 in 
the irrigation district (ID) 075. 
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EVI (b) in irrigation district (ID) 075, north of the state of Sinaloa, Mexico.
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and distribute them in the most sensitive phases to water 
stress without affecting the yield. The validation in this 
date indicated that compared with the actual phenology, 
92.1% of the farms coincided with that generated by both 
spectral models, 2.5% with NDVI model, 3.1% with EVI 
model and 2.3% with neither model.

On the second date (April 17, 2018) as Fig. 9 (below) 
shows, the predominant phases were from R2-R3 to R6 
and farms close to being harvested. This is important to 
schedule the last irrigation and to estimate farms close to 
phenological maturity. The validation indicated that com-
pared with the actual phenology, 86.6% of the monitored 
farms coincided with the phenology generated from both 
models, 2.7% with the NDVI model, 1.8% with EVI mo-
del and 8.9% with neither model. This decrease in pre-
cision of the models and the increase of the error with 
respect to the first date may be due to the presence of har-

vested farms o in senescence, with weeds and the effect of 
clouds, as reported by Whitcraft et al. (2015).

Conclusions
The spatio-temporal inter and intra-seasonal variabi-

lity of corn phenological development, justifies the use 
of remote sensing data to monitor crops over large agri-
cultural areas. The historical behavior of two VIs (NDVI 
and EVI), associated with the phenological development 
(PD), showed differences in the early and late stages of 
development, having EVI higher sensitivity. An algorithm 
and methodology for monitoring corn phenology on lar-
ge scale using both field data and remote sensing data 
were generated and integrated with the GIS-based phe-
nology monitoring. The validation of the methodology 

Figure 9. Observed corn phenology (a), spectral model’s precision using NDVI and EVI (b) on January 11 
2018 (above) and April 17 2018 (below), in irrigation module (IM) Batequis.
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in reference fields indicated an acceptable correlation 
between the observed PD and the estimated PD for the 
two VIs with R2 = 0.9154 and 0.9124 for NDVI an EVI 
respectively, and RMSE values of 0.1307 for NDVI and 
0.1219 for EVI, however, the effect of point´s dispersion 
and spatial variability was also observed, which can be 
reduced by using homogeneous areas. On the other hand, 
the validation of methodology at large-irrigated scale, 
using field data on two contrasting dates, was more prac-
tical and precise due to the points dispersion effect was 
reduced by using values interval. This model indicated 
that at the beginning of the crop season the precision to 
monitoring the phenological phases was of more than 
92% with the two VIs and decreased to 86.6% in the end 
crop season, mainly due to the presence of harvested far-
ms with bare soil o in senescence. 
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