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Abstract
Drought is the most serious environmental challenge that limits plant growth and causes more severe yield losses than other abiotic 

stress factors resulting in a serious food shortage. Nanomaterials (NMs) are considered as vital tools to overcome contemporary and future 
challenges in agricultural production. Recently, NMs have been applied for enhancing seed germination, growth, physiology, productivity 
and quality attributes of various crops under normal or stress conditions. Up to date, there is no a comprehensive review about the poten-
tial role of NMs in attenuating the drought-induced adverse effects in crop plants. Thus, this review will highlight this issue. Generally, 
NMs minimize drought-induced osmotic stress by accumulation of osmolytes that result in osmotic adjustment and improved plant water 
status. In addition, NMs play a key role to improve root growth, conductive tissue elements and aquaporin proteins facilitating uptake and 
translocation of water and nutrients. Furthermore, NMs reduce water loss by stomatal closure due to abscisic acid signaling. However, this 
leads to reduced photosynthesis and oxidative stress damage. At the same time, NMs increase the content of light-harvesting pigments, 
enzymatic and non-enzymatic antioxidants leading to enhancing photosynthesis with reducing oxidative stress damage. Overall, NMs can 
ameliorate the deleterious effects of drought stress in crop plants by regulation of gene expression and alternation of various physiological 
and biochemical processes.
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Introduction
By mid this century, the growing of global popula-

tion is expected to reach about 9.8 billion people. At the 
same time, drought may lead to a serious food shortage 
that will be worsened due to the global climate change 
(Kah et al., 2019). Drought is considered the most serious 
abiotic stress limiting plant growth and causes great los-
ses in crop yields higher than other stresses (Lambers et 
al., 2008). It causes adverse effects on morphological, 

physiological, biochemical, and molecular aspects of the 
plant that negatively affect crop yield and quality (Farooq 
et al., 2009). Therefore, there is an urgent need to deve-
lop and improve drought tolerance in plants via safe and 
economic strategies. Among various strategies adopted to 
cope drought-induced plant death, the application of na-
nomaterials (NMs) has been proved as a promising and 
effective one (Khan et al., 2017).

While practicing sustainable agriculture, various 
NMs have been reported to enhance crop production to 
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meet the growing global demands for food, feed and fuel 
(Kah et al., 2019). During the past two decades, research 
findings indicated the important role of NMs in diver-
se life aspects including agriculture and food industry. 
In this regard, NMs of particle size 1-100 nm have a 
great interest due to their high surface-to-volume ratio, 
and thus can play an important role in developing sus-
tainable agriculture (Chen & Yada, 2011). They can be 
applied to plants through several application methods 
(Mohamed & Kumar, 2016). 

Recent literature suggests that significant toxic effects 
in animal cell culture and animal models are caused by 
several metallic NPs such as silver and titanium dioxide 
(Cox et al., 2017). In general, NPs can cause negative 
or positive effects on plant growth, development, and 
productivity based on type, size and concentration of 
nanoparticles (NPs), application method, and plant spe-
cies (Du et al., 2017; Tripathi et al., 2017). For example, 
Ag-NPs at 50-2500 mg/L inhibited root elongation in 
corn, whereas the growth of watermelon and zucchini 
seedlings was positively affected with the same concen-
trations (Almutairi & Alharbi, 2015). Turnip (Brassica 
rapa L.) treated with 5 and 10 mg/L of Ag-NPs showed 
an increase in ROS production and DNA damages, asso-
ciated with up-regulation of genes related to the biosyn-
thesis of glucosinolates and phenolic compounds, resul-
ted in more damages under biotic and abiotic stresses 
(Thiruvengadam et al., 2015). In addition, Tiwari et 
al. (2017) noted the dual response on growth and pho-
tosynthetic performance in tomato plants treated with 
TiO2-NPs depending on their concentration, where these 
traits are boosted by low concentrations (0.5-2 g/L) and 
adversely affected by high concentration (4 g/L).

Up to date, there is no a comprehensive review con-
cerning the potential role of NMs in ameliorating the 
drought-induced oxidative and osmotic damages in 
crop plants. Thus, this review will shed light on this 
issue. After providing a brief overview on the dele-
terious effects of drought stress on physiological and 
biochemical processes in plants, this review highlights 
the recent findings of the possible applications of NMs 
in mitigating the drought-induced adverse effects on 
various field and horticultural crops. Considering avai-
lable literature, the NMs that are used to mitigate the 
drought-induced damage in either field or horticultural 
crops include carbon-based NMs (carbon nanotubes 
and fullerene), metallic/metallic oxide (CeO2, Fe and 
Fe-oxides, K, Ag, TiO2 and ZnO), metalloids (Si and 
SiO2), non-metallic (P) NPs, in addition to nano-size 
polymers and composites (nano-chitosan, hydroxyapa-
tite, nano-clay, analcite and micronutrient nano-com-
posites). The potential role of these NMs to cope with 
drought in plants will be discussed.

Drought stress
Under the ongoing global climate change scenarios, 

drought severity and frequency will be increased (Wal-
ter et al., 2011). Generally, drought-induced-damage in 
plants is due to lower water uptake by roots with higher 
water loss from plant leaves and evaporation from soil 
(Trenberth et al., 2014). Drought stress (inadequate wa-
ter supply) induces more losses in crop yield than other 
stress factors. Hence, it is considered as the major cons-
traint limiting growth, development and productivity of 
crop plants (Lambers et al., 2008). Accordingly, drought 
stress is the most critical threat to food security (Farooq 
et al., 2009). 

Drought stress: adverse effects on crop plants

Inadequate water supply for plants causes various ad-
verse effects from cellular to whole-plant levels that ulti-
mately lead to a reduction in growth and productivity of 
crop plants (Fig. 1)  Drought stress affects several physio-
logical and biochemical processes. It negatively affects 
plant water status indicated by a decrease in leaf water 
content, relative water content (RWC), water potential, 
stomatal conductance and transpiration rate with increa-
sing canopy and leaf temperature that correlated linear-
ly with increased drought severity (Reddy et al., 2004). 
Drought limits availability, uptake, translocation and me-
tabolism of mineral nutrients due to limited water supply, 
lowered transpiration and impaired enzyme activity in-
volved in the nutrient assimilation (Farooq et al., 2009). 

Under drought stress, abscisic acid (ABA) accumulates 
in plants and stimulates a signaling pathway, which 
affects anion and K+ efflux from guard cells resulting in 
loss turgor and ultimately stomatal closure (Osakabe et 
al., 2014). Reduced photosynthesis in drought-stressed 
plants is mainly attributed to stomatal closure that leads 
limited CO2 influx and increased leaf temperature leading 
to thylakoid membrane damage, and disturbed activity of 
various enzymes including RuBisCO and other enzymes 
involved in Calvin cycle and ATP synthesis, in addition 
to diminished light-harvesting pigments and obstruc-
tion of photosynthetic machinery (Farooq et al., 2012). 
Diminished photosynthesis and respiration and increased 
photo-respiration in drought-stressed plants lead to ge-
neration and accumulation of reactive oxygen species 
(ROS) in chloroplasts, mitochondria and peroxisomes, 
respectively resulting in oxidative stress damage of cell 
compartments including lipid peroxidation, denaturation 
of proteins and obstruction of nucleic acids (Das & Roy-
choudhury, 2014). Finally, osmotic and oxidative stresses 
induced by drought as well as impaired cell division and 
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elongation leading to negative effects on growth, develop-
ment and productivity of crop plants. 

Inducing drought stress tolerance in crop plants

Under drought stress conditions, plants have developed 
various mechanisms for drought resistance (avoidance 
and tolerance). The deleterious effects of drought stress on 
plants are mainly related to osmotic and oxidative stresses 
induced by drought. In order to cope with osmotic stress, 

plants synthesize and accumulate neutral and nontoxic 
compound (compatible solutes or osmolytes) in cyto-
plasm along with certain inorganic ions in vacuoles (Abid 
et al., 2018). The accumulation of compatible solutes 
maintains cell hydrated state and membrane structural 
integrity and stabilizes structural and functions of macro-
molecules (Hoekstra et al., 2001). These compatible so-
lutes include several compounds such as proline, glycine 
betaine and soluble sugars. In addition to its role in os-
motic adjustment, proline plays important roles as a cell 
redox balancer, a free radical scavenger and a cytosolic 
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Figure 1. The adverse effects of drought stress on different physio-biochemical processes in plants. RWC: 
relative water content; ABA: abscisic acid; NMs: nanomaterials.
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pH buffer (Ali et al., 2017) and reduces photo-damage in 
thylakoid membranes (Lawlor & Cornic, 2002).

Drought induces oxidative stress via the production 
of ROS including superoxide radical (O2

−•), hydrogen 
peroxide (H2O2), and hydroxyl radical (OH•) that cause 
oxidative damage to lipids, proteins, and DNA (Schieber 
& Chandel, 2014). Enzymatic and non-enzymatic antioxi-
dants are involved in cellular defense mechanism respon-
ses for ROS detoxification. Superoxide dismutases (SOD) 
covert O2

−• stress through dismutation reaction of O2 and 
H2O2 (Schieber & Chandel, 2014). As a result, H2O2 can 
be converted into H2O and O2 by catalase (CAT) and spe-
cific peroxidases (POX) (Roychoudhury et al., 2012). 
Non-enzymatic antioxidants mainly include ascorbate 
(AsA), flavonoids, glutathione (GSH), and carotenoids 
(Foyer & Noctor, 2012). Overall, the coordinated antioxi-
dant activity associated to increased activities of SOD and 
CAT, together with a modulation of the AsA-GSH cycle, 
reduces drought stress-induced oxidative damage in crops 
(Zandalinas et al., 2017).

For achieving enhanced crop drought tolerance, three 
prominent plant breeding approaches (conventional bree-
ding, marker-assisted breeding, and genetic engineering) 
have been performed (Ashraf, 2010). Plant hormones are 
active members of the signal compounds involved in the 
induction of plant stress responses. In the last decade, a 
lot of work has been done to understand plant hormo-
ne-mediated abiotic stress tolerance, using physiological, 
biochemical, genetic, molecular, and genomic approaches 
for crop breeding and management, including exoge-
nous application of plant growth regulators (De Ollas et 
al., 2015; Muñoz-Espinoza et al., 2015; De Ollas et al., 
2018). In addition to phytohormones, seaweed extracts, 
biochar, osmoprotectants, plant growth promoting rhizo-
bacteria (PGPR) and nanoparticles have been applied to 
induce drought tolerance in crop plants (Ali et al., 2017). 
Among various strategies adopted to counter drought-in-
duced damage in plants, use of NMs has been proved pro-
mising (Khan et al., 2017).

Nanomaterials 
and agricultural crops
General overview 

According to the European Commission, “Nanomate-
rial means a natural, incidental or manufactured material 
containing particles, in an unbound state or as an aggrega-
te or as an agglomerate and where, for 50% or more of the 
particles in the number size distribution, one or more exter-
nal dimensions is in the size range 1–100 nm” (Rai et al., 
2018). The manufactured or engineered NMs are widely 
used in diverse aspects of our life including agriculture sec-
tor thanks to their properties including high surface-to-vo-

lume ratio, high stability and adsorption capacity, extraor-
dinary electrical and optical properties, and diverse and 
easy functionalities, etc. (Ghormade et al., 2011; Rai et al., 
2018). In the recent technological revolution, NMs have 
demonstrated to have a great potential in providing novel 
and improved solutions to various global challenges facing 
agriculture (Chen & Yada, 2011; Huang et al., 2015). Ove-
rall, the application of nanotechnology in agriculture is still 
in its infancy; however, it will develop fast in the near fu-
ture with deep understanding of the interactions between 
engineered NMs and plants (Pulizzi, 2019). 

The application of NMs to plants ranges from seed 
manipulation to other modern technologies that require 
necessarily the use of in vitro plant tissue culture (Mo-
hamed & Kumar 2016). When NMs are taken from soil 
by plant roots, plants uptake NMs by an active-transport 
mechanism through the xylem (Tripathi et al., 2017). In-
side plants, NMs may change their structure and become 
ions-form complexes with other molecules or nutrients, 
or remain as NMs (Dimkpa & Bindraban, 2018). NMs 
inside plant tissues seem to modulate the activity of the 
oxidative stress enzymes, and hence NMs can activate 
the plant defense system (Montes et al., 2017). At cellu-
lar level, NMs can induce ROS generation, which trigger 
secondary signaling messengers leading to transcriptio-
nal regulation of secondary metabolism (Marslin et al., 
2017). However, NMs can cause either beneficial or ad-
verse effects on plant growth, development and producti-
vity. This opposite effect depends on NMs types and their 
physicochemical properties, particularly size and concen-
tration, mode of application, soil conditions as well as 
plant species (Du et al., 2017). For example, ZnO-NPs 
improved growth in beans while reduced the growth of 
wheat (Dimkpa & Bindraban, 2018). Generally, the effect 
of most NMs on plants is characterized by a biphasic dose 
response “hormesis” with a low dose stimulation and a 
high dose inhibition (Agathokleous et al., 2019). 

Nanomaterials and drought stress tolerance in 
plants

Carbon-based NMs

Carbon-based nanomaterials (CNMs) have been 
widely used for numerous applications in different areas 
of the plant system (Zaytseva & Neumann, 2016). CNMs 
are characterized by stable molecular architecture and uni-
form dispersion in the medium, in which these are applied 
due to their special properties including small surface area 
and increased chemical reactivity (Verma et al., 2019). 
Due to their good properties, carbon-based NPs like car-
bon nanotubes (CNTs), fullerenes, and graphene can be 
used in different life fields including precision agriculture 
(Zaytseva & Neumann, 2016). CNMs including CNTs 
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and fullerol have been used to induce drought tolerance in 
several field and horticultural crops (Table 1).

―Carbon nanotubes (CNTs). Generally, CNTs 
comprising single-walled (SWCNTs), double-walled 
(DWCNTs) and multi-walled (MWCNTs) CNTs, at lower 
concentrations (≤ 100 mg/L) have been found to be effec-
tive in enhancing seed germination and plant growth. 
The overall stimulation in growth of plants due to the 
application of CNTs has been ascribed to the increase in 
water and nutrient uptake (Verma et al., 2019). In addi-
tion, the stimulation effect of CNTs may be attributed to 
the up-regulation of genes involved in cell division/cell 
wall formation and water transport, such as those con-
trolling synthesis of water channel protein “aquaporins” 
(Khodakovskaya et al., 2012). 

Previous findings proved the potential role of SWCNTs 
with diameter of 1-3 nm, and MWCNTs with diameter of 
5-40 nm (Zaytseva & Neumann, 2016) in ameliorating cell 
damages caused by drought stress. Hatami et al. (2017) re-
ported a positive effect of SWCNTs at low concentration 
(50 μg/mL) on the growth of Hyoscyamus niger seedlings 
under polyethylene glycol (PEG)-induced drought stress. 
This effect was basically through enhancing water uptake, 
inducing the regulation of mechanisms involved in starch 

hydrolysis, reducing oxidative injury indices, activating 
plant defense enzymes SOD, POD, CAT and ascorbate 
peroxidase (APX) and improving the biosynthesis of pro-
teins, phenolics and proline. At the same time, increasing 
the concentration of SWCNTs up to 800 μg/mL caused 
opposite effects due to cell injury.

In the same context, the application of MWCNTs at 50 
mg/L as foliar spray to Salvia mirzayanii plants increased 
chlorophyll index, membrane stability index, total phe-
nolics, and antioxidant capacity under moderate drought 
stress (Chegini et al., 2017). Maximum seedling growth of 
Caucasian alder (Alnus subcordata) under drought stress 
(from -2 to -10 bars) has been attained with seed nano-pri-
ming using MWCNTs at 30 mg/L (Rahimi et al., 2016). 
However, this concentration was only enough to improve 
seedling growth of Dodonaea viscosa (L.) Jacq. (Hop-
bush) grown under non-stress conditions, whereas 50-100 
mg/L were required to improve growth under drought 
conditions (Yousefi et al., 2017). By enhancement of wa-
ter uptake, the concentrations of MWCNTs (500-1000 
mg/L) can induce drought and salinity tolerance in barley 
(Karami & Sepehri, 2017). On the other hand, MWCNTs 
at different concentrations (125-1000 µg/mL) negatively 
affected seed germination and seedling growth of cucum-
ber under both PEG-induced stress and normal growing 

Table 1. Effects of carbon-based NMs in ameliorating drought stress-induced damage in different plant species.
Nanomaterials

Plant species Effects ReferenceType Conc. Application 
method

CNTs
SWCNTs 50 mg/L Seed socking Hyoscyamus niger L. Enhancing water uptake, up-regulation of mechanisms involved 

in starch hydrolysis, and reduction in oxidative injury indices, 
activating plant defense enzymes (SOD, POD, CAT, and APX), and 
also biosynthesis of proteins, phenolics, and proline

Hatami et al. (2017)

800 mg/L cell injury
MWCNTs 30 mg/L Seed priming Alnus subcordata C.A. Mey. Increasing seedling growth traits Rahimi et al. (2016)

50 mg/L Foliar spray Salvia mirzayanii Rech. f. 
and Esfand

Improving chlorophyll index, electrolyte leakage, total phenolics, 
and antioxidant capacity

Chegini et al. (2017)

0.5-1 g/L Seed socking Cucurbita pepo L. Enhancement of water uptake, seed germination and seedling 
growth

Karami & Sepehri (2017)

125-1000 
µg/mL

Seed socking Hordeum vulgare L. Oxidative injury, negative effects on seed germination and seed-
ling growth

Hatami (2017)

50-100 
mg/L

Seed priming Dodonaea viscosa Jacq. Improving seed germination and growth traits Yousefi et al. (2017)

Fullerol
[(C60(OH)24] 70-700 

µmol/L
Foliar spray Beta vulgaris L. Able to bind with water in distinct cell compartments and posses-

sed hydroscopic and antioxidant activities
Borišev et al. (2016)

[(C60(OH)27] 10-100  
mg/L

Seed priming Brassica napus L. Repressing ROS accumulation by enhancing the regulatory 
mechanisms on enzymatic and non-enzymatic antioxidants and 
ABA accumulation

Xiong et al. (2018)

NMs: nanomaterials; CNTs: carbon nanotubes; SW: single-walled; MW: multi-walled; SOD: superoxide dismutase; POD: 
peroxidase; CAT: catalase; APX: ascorbate peroxidase; ROS: reactive oxygen species; ABA: abscisic acid.
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conditions. These negative effects are consequence of 
oxidative injury due to inactivation of various cellular an-
tioxidant enzymes (Hatami, 2017).

―Fullerene and its derivatives. The fullerene molecule 
is made up of sixty carbon atoms. Polyhydroxy fullerene 
(fullerol, C60(OH)n), is one of the water-soluble derivatives 
of fullerene that have numerous hydroxyl groups (OH) at-
tached to the C60 molecule (Husen & Siddiqi, 2014). The 
appropriate concentrations of fullerol NPs are effective in 
improving the drought tolerance (Verma et al., 2019). For 
example, foliar application of fullerol [(C60(OH)24] NPs 
at 70-700 µmol/L alleviated the drought negative impacts 
on sugar beets (Borišev et al., 2016), due to their action as 
intracellular water binders in addition to their beneficial 
effect on alleviating drought-induced oxidative effects by 
enhancing antioxidant activity. In the same context, seeds 
priming or foliar spray with fullerol [C60(OH)27] NPs at 
10-100 mg/L promoted seed germination, growth and 
physiological traits of Brassica napus under water stress 
through repressing ROS accumulation by enhancing the 
regulatory mechanisms on enzymatic and non-enzymatic 
antioxidants and ABA accumulation in stressed treated 
plants (Xiong et al., 2018).

―Metallic/metallic oxides, metalloids and non-metallic 
NMs. Metallic/metallic oxides-NPs (CeO2, Fe and 
Fe-oxides, Ag, TiO2 and ZnO), metalloids (Si and SiO2) 
and non-metallic (P) NPs have been used to ameliorate 
the deleterious effects of drought stress in various field 
and horticultural crops (Table 2).

―Cerium oxide NPs (Nanoceria). Cerium oxide NPs 
(Nanoceria, CeO2-NPs) are one of the most important NPs 
in agriculture. Cao et al. (2018) demonstrated that, the 
application of CeO2-NPs at 100 mg/kg soil improved bio-
mass, photosynthetic performance, RuBisCO activity and 
water use efficiency (WUE) of soybean plants under di-
fferent soil moisture conditions. Similarly, foliar-sprayed 
CeO2-NPs at 10 mg/L improved photosynthetic efficien-
cy, pollen germination and seed-set of drought-stressed 
sorghum plants and possessed potent antioxidant proper-
ties that mitigated drought-induced oxidative stress by 
catalytic scavenging ROS leading to higher grain yield 
(Djanaguiraman et al., 2018). 

―Iron and iron oxides NPs. Iron (Fe) is a constituent and 
co-factor of various enzymes, and it is essential for many 
physiological processes including chlorophyll biosynthe-
sis, chloroplast development, respiration, redox reactions, 
and nucleic acid metabolism (Mimmo et al., 2014).

Fe/Fe-oxides NPs such as nano zero-valent iron (nZVI), 
nano-goethite (α-FeOOH), nano-hematite (α-Fe2O3), na-
no-maghemite (ɤ-Fe2O3), nano-magnetite (Fe2O4), and 
nano-iron pyrite (FeS2) have attracted a lot of resear-

chers due to their magnetic properties, and their benefi-
cial effects on plant growth and productivity (Srivastava 
et al., 2014; Zuverza-Mena et al., 2017). Seed priming 
with nano iron oxide (Fe2O3-NPs) at 500 mg/L improved 
growth, photosynthesis, and photosystem II efficiency in 
sorghum plants (Maswada et al., 2018). 

Regarding drought stress, foliar application of Fe-NPs 
(1.5 mg/L) increased seeds per pod and seed nitrogen con-
tent, as well as yield and oil percentage of drought-stressed 
cowpea and safflower, respectively (Afshar et al., 2012; 
Zareii et al., 2014). Soil application of 1% iron oxide NPs 
(maghemite, γ-Fe2O3; 20-100 nm particle size) enhanced 
the growth of drought-stressed sunflower planted in con-
taminated mine soil (Martínez-Fernandez et al., 2015). 
Similarly, low concentrations of γ-Fe2O3 (3.4 mg/L) and 
Fe3O4 NPs (0.8 mg/L) improved growth and productivi-
ty of drought-stressed Brassica napus (Palmqvist et al., 
2017) and strawberry (Mozafari et al., 2018), respectively 
throughout improving oxidative defense system. Recent-
ly, Fe-NPs as soil supplementation (100 mg/kg) increased 
photosynthesis, Fe uptake, grain yield and decreased the 
oxidative stress and Cd concentrations in drought-stres-
sed wheat plants grown in Cd-contaminated soil (Adrees 
et al., 2020).

―Potassium (K) NPs. Hosseini et al. (2016) reported 
that barley genotypes with a high K content in flag leaves 
promoted ABA degradation and attenuated starch degra-
dation leading to conferring tolerance to drought-induced 
leaf senescence. In addition, K application increased the 
contribution of K+ and malate to osmotic potential leading 
to improvement of osmotic adjustment in drought-stres-
sed cotton plants (Zhao et al., 2019). In a similar man-
ner, foliar spray of nano-K fertilizer at 2.5 g/L improved 
growth of drought-stressed pumpkin by enhancing stoma-
tal conductance (Gerdini, 2016).

―Silver NPs. Silver (Ag) NPs have been implicated in en-
hancing seed germination, growth rate, and physiological 
characteristics of several plants under normal and stressful 
conditions. Ag-NPs have been implicated as an effective 
antimicrobial agent to control plant diseases (Kedziora et 
al., 2018); however, their role in improving plant toleran-
ce against abiotic stresses is still limited. Application of 
Ag-NPs at 10 μg/mL significantly increased germination 
and seedling growth rate of drought-stressed lentil seeds 
(Hojjat, 2016). On the other hand, the application of Ag-
NPs at 40 g/ha in irrigation water had no positive effects 
on WUE and yield characteristics of drought-stressed 
Carum copticum plants (Seghatoleslami et al., 2015).

―Titanium dioxide NPs (Nanotitania). Titanium is not 
an essential element for plants; but at low concentrations, 
it shows beneficial impacts on various physiological at-
tributes (Tiwari et al., 2017). Concerning drought stress, 
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foliar application of TiO2-NPs at 0.02% increased yield, 
and gluten and starch content in drought-stressed wheat 
plants (Jaberzadeh et al., 2013). Aghdam et al. (2016) 
demonstrated that exogenous application of nano-TiO2 
(10 mg/L) significantly alleviated the drought stress-in-
duced damage in flax (Linum usitatissimum) compared to 

higher concentration (500 mg/L). Under severe drought 
stress nano-TiO2 at 0.03% significantly improved leaf 
RWC, anthocyanin concentration, and catalase activity in 
Ocimum basilicum (Kiapour et al., 2015). Pre-flowering 
treatment of cotton plants with nano-TiO2 (50 mg/L) in-
creased yield characteristics under drought conditions 

Table 2. Effects of metallic/metallic oxides, metalloids and non-metallic NMs in ameliorating drought stress-induced damage in 
different plant species.

Nanomaterials
Plant species Effects ReferenceType Conc. Application 

method

Metallic and metallic oxides NPs
CeO2 100 mg/kg Soil Glycine max  (L.) Merr. Improved biomass, photosynthetic performance, RuBisCO 

activity and WUE
Cao et al. (2018)

10 mg/L Foliar spray Sorghum bicolor (L.) 
Moench

Improved photosynthesis, pollen germination, seed-set, grain 
yield and scavenged ROS accumulation

Djanaguiraman et al. 
(2018)

Fe-NPs 1.5 mg/L Foliar spray Vigna unguiculata (L.) 
Walp.

Increasing seedling growth traits Rahimi et al. (2016)

- Foliar spray Carthamus tinctorious L. Improving yield, yield components and oil percentage Zareii et al. (2014)

100 mg/kg Soil Triticum aestivum L Increased photosynthesis, Fe concentration, grain yield and 
decreased the oxidative stress

Adrees et al. (2020)

γ-Fe2O3 NPs 1% Soil Helianthus annuus L. Growth improvement Martínez-Fernandez 
et al. (2015)

3.4 mg/L Nutrient 
solution

Brassica napus L. Enhancing growth and agronomic traits by reducing ROS damage 
and improving oxidative defense system

Palmqvist et al. (2017)

Fe3O4 NPs 0.8 mg/L In vitro 
culture media

Fragaria × ananassa 
Duch.

Adapting strawberry plants to drought before transplanting in 
the field

Mozafari et al. (2018)

TiO2-NPs 0.02% Foliar spray Triticum aestivum L. Increased yield and yield components as well as gluten and starch 
content

Jaberzadeh et al. (2013)

10 mg/L Foliar spray Linum usitatissimum L. Increased photosynthetic pigments, protein and seed oil contents 
and decreased lipid peroxidation 

Aghdam et al. (2016)

0.03% Foliar spray Ocimum basilicum L. Improved RWC, anthocyanin concentration, and catalase activity Kiapour et al. (2015)

50 mg/L Foliar spray Gossypium barbadense L. Increased yield, pigments, TSS, proline, total phenolics, total 
soluble proteins, total antioxidant capacity and antioxidant 
enzyme activities

Shallan et al. (2016)

20 mg/L Foliar spray Eruca sativa Mill. Enhanced H2S and cysteine synthesis that led to improving in 
antioxidant activity, accumulation of osmolytes and RWC with 
reduction in H2O2, lipid peroxidation and electrolyte leakage

Khan & Alzuaibr (2018)

10 mg/L Foliar spray Dracocephalum 
moldavica L.

Accumulation of proline and reduction in ROS (H2O2) and lipid 
peroxidation

Mohammadi et al. 
(2014)

30-50 mg/L Foliar spray Increased essential oils and phenolic compounds Kamalizadeh et al. 
(2019)

K-NPs 2.5 g/L Foliar spray Cucurbita pepo L. Increasing growth traits and stomatal conductance Gerdini (2016)

Ag-NPs 40 g/ha Irrigation 
water

Carum copticum (L.) Link No positive effect on WUE and yield characteristics Seghatoleslami et al. 
(2015)

10 μg/mL Seed socking Lens culinaris Medikus Enhanced germination percentage and seedling growth traits Hojjat (2016)

ZnO-NPs 1000 mg/L Seed socking Glycine max (L.) Merr. Increasing germination, and decreasing seed residual fresh and 
dry weight of seedlings

Sedghi et al. (2013)

1000 mg/L Foliar spray Helianthus annuus L. Increasing seed yield and water use efficiency Seghatoleslami & 
Forutani (2015)

1000 mg/L Seed priming Oryza sativa L. Improved growth, yield and yield-related traits with increasing 
Zn uptake and higher expression of Cu/Zn SOD

Rameshraddy et al. 
(2017)

5 mg/kg Soil Sorghum bicolor (L.) 
Moench

Reduced the delay of flag leaf and grain head emergence, 
improved grain yield and grain nutrient translocation

Dimkpa et al. (2019)



8 Hanafey F. Maswada, Yasser S. A. Mazrou, Abdelnaser A. Elzaawely et al.

Spanish Journal of Agricultural Research June 2020 • Volume 18 • Issue 2 • e08R01

through increasing plant pigments, accumulation of to-
tal soluble sugars, proline, total phenols, total soluble 
proteins, and antioxidant enzymes activity (Shallan et 
al., 2016). TiO2-NPs (20 mg/L) had a significant effect 
in mitigating the deleterious effects of drought stress in 
Eruca sativa plants by enhancing the synthesis of H2S and 
cysteine that improved the antioxidant activity, accumula-
tion of osmolytes and RWC with the simultaneous decrease 
in H2O2 content and lipid peroxidation (Khan & Alzuaibr, 
2018). Likewise, Moldavian dragonhead plant treated with 
TiO2-NPs (10 mg/L) showed accumulation of proline and 
reduction in ROS (H2O2) and lipid peroxidation, and the-
reby counteracted the negative impacts of drought stress 
(Mohammadi et al., 2014). Recently, Kamalizadeh et al. 
(2019) found that TiO2-NPs treatment had no significant 
effect on plant dry weight, but increased the essential oil 
content with the highest value at 30 mg/L, and reported that 
both drought stress (75% of field capacity) and TiO2-NPs 
(30-50 mg/L) could be applied to increase phenolic com-
pounds in Moldavian dragonhead plant.

―Zinc oxide NPs. Zinc is an essential micronutrient in 
plant cells for the synthesis of tryptophan, which is the 
precursor of indolacetic acid; a phytohormone responsi-
ble of cell division and other physiological and bioche-
mical functions (Cakmak et al., 1989). Zinc is also im-
portant for ameliorating the adverse effects of abiotic 
stress (Cakmak, 2008; Hafeez et al., 2013). The effect of 
ZnO-NPs on plants depends on their size, concentration 
and plant species. For example, canola (Brassica napus) 
showed improvement in plant growth with ZnO-NPs at 10 
mg/L, while higher concentration (1000 mg/L) resulted 
in toxic effects (Rahmani et al., 2016). Recently, foliar 
application of ZnO NPs (10 mg/L) led to higher biomass 
and photosynthetic rate, fruit set and quality in one-year 
old coffee plants compared to control and ZnSO4-treated 
plants (Rossi et al., 2019).

Under drought conditions, nano-ZnO (1000 mg/L) in-
creased seed germination and seedling growth, yield, and 

WUE of rice, soybean and sunflower crops. The positive 
effect of nano-ZnO is thought to be related to facilitating 
the rapid use of seed reservoirs, increase in Zn uptake and 
expression of Cu/Zn SOD activity (Sedghi et al., 2013; 
Seghatoleslami & Forutani, 2015; Rameshraddy et al., 
2017). Recently, Dimkpa et al. (2019) demonstrated that 
soil amended with ZnO-NPs mitigated the negative in-
fluences of drought stress (40% of field moisture capacity) 
in sorghum plants. ZnO-NPs at 5 mg/kg reduced the delay 
of flag leaf and grain head emergence, and improved grain 
yield and grain nutrient (N, K and Zn) translocation in 
drought-stressed sorghum plants.

―Metalloids (silicon and silica NPs).  Over past 
two-decades, silicon (Si) application has been known to 
improve growth performance of plants and attenuate the 
adverse effects of abiotic stresses by regulating the ge-
neration of ROS and alteration of gene expression (Kim 
et al., 2017). Pretreatment of hawthorn (Crataegus aro-
nia) seedlings with SiO2-NPs (10-30 nm) at 100 mg/L 
positively affected leaf RWC, membrane permeability, 
pigments, carbohydrate and proline contents, as well as 
photosynthetic rate, stomatal conductance, and plant bio-
mass content under drought stress conditions (Ashkavand 
et al., 2015). Under severe drought conditions, nano-sili-
con dioxide at 1 mM improved mineral nutritional value 
and other quality indexes in perennial ryegrass (Mahdavi 
et al., 2016). In the context, nano-Si at 1 or 2 mM impro-
ved germination rate of tomato seeds under drought stress 
induced by PEG (Haghighi et al., 2013). Moreover, soil 
application of silica NPs (10 nm) at 200 mg/kg induced 
cucumber plants to alleviate water deficit and soil salinity 
due to the effect of high Si and K in regulating transpi-
ration and maintaining ion homeostasis (Alsaeedi et al., 
2019).

―Non-metallic (phosphorus) NPs. Phosphorus nutri-
tion has a significant role in enhancing drought toleran-
ce in plants. The application of P fertilizer increased P 

Table 2. Continued.
Nanomaterials

Plant species Effects ReferenceType Conc. Application 
method

Metalloids and non-metallic NPs
SiO2-NPs 100 mg/L Irrigation 

water
Crataegus aronia L. Increasing RWC, electrolyte leakage, pigments, carbohydrate 

and proline contents as well as photosynthetic rate, stomatal 
conductance and plant biomass

Ashkavand et al. (2015)

1 mM Foliar spray Lolium perenne L. Improving mineral nutrient values and other quality indices Mahdavi et al. (2016)

Si-NPs 1-2 mM Seed socking Lycopersicum esculentum 
Mill.

Enhancing germination rate Haghighi et al. (2013)

200 mg/kg Soil Cucurbita pepo L. High Si and K concentration regulated transpiration and 
maintained ion homeostasis

Alsaeedi et al. (2019)

P-NPs 0.5-1.0 mg/L Foliar spray Gossypium barbadense L. Improving macro and micro-nutrients uptake Hussien et al. (2015)
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absorption and transfer efficiency, and improved biomass 
and chlorophyll content of leaves but decreased root/
shoot ratio, thereby enhanced drought tolerance in cot-
ton plants (Jun et al., 2017). In the same context, foliar 
application of P-NPs at 0.5-1.0 mg/L improved nutrient 
uptake of cotton plants under drought stress conditions 
(Hussien et al., 2015).

Nano-size polymers and composites

The potential mechanisms of nano-polymers such as 
nano-chitosan and nano-composites including hydroxya-
patite, nano-clay, analcite and micronutrient in enhancing 
drought tolerance in crop plants are presented in Table 3.

 
―Nano-chitosan. Chitosan, a modified biopolymer, is 
mainly used as a stabilizer of biological molecules like 
proteins, peptides or genetic material and as bioactive 
ingredients carrier for controlled release of active ingre-
dients (Ghormade et al., 2011) due to its cationic proper-
ties and solubility in acidic solution. Moreover, chitosan 
prolongs the contact time between plant surface and agro-
chemical due to its easly absorption with plant surface 
(Kananont et al., 2010; Sonia & Sharma, 2011).

Chitosan NPs are usually used with different bulk or 
other nanoparticles (nano-composites). For example, 
nano chitosan-NPK fertilizer application promotes the 
growth and productivity of wheat plants grown in sandy 
soil (Abdel-Aziz et al., 2016). Recently, seed treatment 
and foliar application of Zn-chitosan NPs (0.01–0.16%) 
showed strong efficacy against Curvularia leaf spot in 

maize plants through strengthening innate immunity by 
balancing ROS, elevating antioxidant defense enzymes, 
and enhancing lignin accumulation (Choudhary et al., 
2019). Under water deficit, the encapsulation of NO donor 
(S-nitrosoglutathione) into chitosan NPs, as foliar spray 
at 100 µM, increased leaf CO2 assimilation and biomass 
allocation to root system and was effective in attenuating 
the diverse impact of water deficit on sugarcane plants 
due to controlled release of NO that prolonged its effect 
(Silveira et al., 2019).

―Nano-composite fertilizers. Several natural or en-
gineered metal-based NPs are combined together and 
served as a source of various macro or micronutrients 
(fertilizer nano-composites) such as hydroxyapatite, na-
no-clay, analcite and micronutrient nano-composites that 
play a vital role for improving crop performance under 
stressed and non-stressed conditions (Iqbal et al., 2019).

Calcium hydroxyapatite (Ca5(OH)(PO4)3) NPs, hold 
a potential to deliver both Ca and P, have been reported 
as an effective remedy against environmental stresses. 
It was reported that, the imbibition of jute seeds with 
hydroxyapatite NPs (20 µg/mL) for 24 h led to up-re-
gulation of several genes including late embryogenesis 
abundant (LEA) protein and dehydration responsive 
element along with some biochemical markers such as 
proline and peroxidase. Hence, pre-treated seeds with 
hydroxyapatite NPs could be applied to counter the de-
leterious effects of drought stress in jute seedlings (Das 
et al., 2016).

Silicon nano-composites like nano-clay (H2Al2O6Si) 
and analcite (AlSi2O6-H2O) have been used to improve 

Table 3. Effects of nano-size polymers and composites in ameliorating drought stress-induced damage in different plant species.
Nanomaterials

Plant species Effects ReferenceType Conc. Application 
method

Chitosan- NPs
S-nitrosoglutathione
(NO donor) 
encapsulated into 
nano-chitosan

100 µM Foliar spray Saccharum officinarum L. Controlled release of NO and prolonged its effect 
resulted in increased leaf CO2 assimilation and biomass 
allocation to root system

Silveira et al. (2019)

Metallic and metallic oxides NPs
Hydroxyapatite NPs 20 µg/mL Seed socking Corchorus capsularis L. Increasing seedling growth traits Das et al. (2016)

Nano-clay 1 g/L Nutrient 
solution

Solanum tuberosum L. Improving yield, yield components and oil percentage Soltani et al. (2018)

Analcite-NPs 500-1500 
mg/L

Soil Triticum aestivum L. and 
Zea mays L. 

Increased photosynthesis, Fe concentration, grain yield 
and decreased the oxidative stress

Zaimenko et al. (2014)

Nano-FeSO4 and
nano-MnSO4

1 and 1.5 
g/L

Foliar spray Brassica napus L. Enhancing growth and agronomic traits by reducing 
ROS damage and improving oxidative defense system

Pourjafar et al. (2016)

ZnO, B2O3, and CuO 
nano-composite

1.77, 0.92 
and 0.8 g/L

Foliar spray Glycine max (L.) Merr. Adapting strawberry plants to drought before 
transplanting in the field

Dimkpa et al. (2017) 

Zn/Cu- NPs 1% Seed priming Triticum aestivum L. Increased yield and yield components as well as gluten 
and starch content

Taran et al. (2017)
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the performance of crop plants grown under mild or ex-
treme abiotic stresses. Nano-clay (20-30 nm) at 1 g/L po-
sitively increased nutrient uptake, alleviated the toxicity 
of heavy metals, improved plant growth and root cha-
racteristics of potato, which in turn make plants more 
resistant to drought and element-deficit stresses (Solta-
ni et al., 2018). Analcite, a natural mineral of volcanic 
tuffs, at concentrations of 500-1500 mg/L improved 
soil agro-physical characteristics and enhanced seed 
germination, seedling growth, photosynthetic activity, 

and the accumulation of protective antioxidants in corn 
and wheat plants grown under different levels of drou-
ght stress (20, 40 and 60% of field capacity) (Zaimenko 
et al., 2014).

Concerning micronutrient nano-composites, the com-
binations of nano-FeSO4 (1 g/L) and nano-MnSO4 (1.5 
g/L) were effective in enhancing growth and yield attribu-
tes of canola plants exposed to deficit irrigation (Pourjafar 
et al., 2016). The nano-formulations of ZnO, B2O3, and 
CuO NPs minimized the adverse effects of drought stress 
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Nano-composite fertilizers: 
Hydroxyapatite: up-regulation process of several genes including late 

embryogenesis abundant (LEA) and dehydration responsive element 
proteins, proline and peroxidase.

Nano-clay: improved nutrient uptake, plant growth and root characteristics.
Analcite: enhanced seed germination, seedling growth, photosynthetic activity, and 

the accumulation of protective antioxidants.
Micronutrients: enhanced nutrient uptake, photosynthetic pigments, leaf RWC, 

activity of antioxidative enzymes, and reduced lipid peroxidation.

CeO2-NPs: improved photosynthesis, RuBisCO activity, WUE, and possessed 
potent antioxidant properties.

Fe/Fe-oxides NPs: induced cell wall loosening, improved root growth and 
nutrient uptake, increased photosynthesis, reduced oxidative stress 
damage.

K-NPs: increased stomatal conductance and growth.
Ag-NPs: stimulated germination rate and seedling growth.
TiO2-NPs: increased RWC, anthocyanin, pigments, osmolytes and antioxidants 

and reduced oxidative damage.
ZnO-NPs: increased nutrient uptake and translocation, SOD activity
Si and SiO2-NPS: improved seed germination and seedling growth, 

photosynthetic activity, antioxidants, osmolytes, nutrient uptake, RWC, 
leaf pigments, WUE, ion homeostasis, reduced electrolyte leakage.

P-NPs: enhanced nutrient uptake and growth.

CNTs: Aquaporins synthesis, increased root density and root hairs, large 
conductive elements, enhancing antioxidant defense system, accumulation 
of osmolytes, improved water and nutrient uptake, enhancing growth and 
productivity

Fullerol: ABA accumulation, reduced ROS by improved antioxidant defense 
system, intercellular water binders

Figure 2. Roles of different nanomaterials (NMs) to overcome the drought-induced damage in 
plants. NPs: nanoparticles; ABA: abscisic acid; ROS: reactive oxygen species; WUE: water use 
efficiency; RWC: relative water content.
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by increased N, P, K, Zn, B and Cu uptake and boosted 
crop performance of soyabean plants (Dimkpa et al., 
2017). Taran et al. (2017) investigated the effect of binary 
composition of Zn/Cu- NPs (1%), as seed treatment, on 
drought-stressed wheat plants. They reported increased 
leaf relative water content, activity of antioxidative en-
zymes, reduced lipid peroxidation and stabilized the con-
tent of photosynthetic pigments in drought-stressed wheat 
plants due to the composition of Zn/Cu- NPs.

Conclusions and future 
perspectives

Drought stress is one of the major contemporary and 
future challenges for crop production and food security. 
The present review reveals that NMs ameliorate drought 
stress-induced damages in several field and horticultural 
crops by regulation of the expression of several genes in-
volved in drought tolerance like LEA and aquaporins, in 
addition to alteration of various physiological and bioche-
mical processes as follows (Fig. 2): (1) alleviating oxi-
dative stress damage by enhancing antioxidant defense 
system; (2) mitigating osmotic stress though accumula-
tion of compatible solutes and ion homeostasis; (3) im-
proving photosynthesis through increasing the content of 
photosynthetic pigments and RuBisCO activity; (4) en-
hancing uptake and translocation of water and nutrients 
owing to their role in improving root growth, conducti-
ve tissue elements and up-regulation of aquaporins; (5) 
reducing water loss from leaves through stomatal closu-
re owing to ABA accumulation; and ultimately, (6) im-
proving growth, development and productivity of drou-
ght-stressed crop plants.

The effect of NMs as triggers to induce drought to-
lerance in various field and horticultural crop plants 
needs more studies to elucidate different plant responses 
like phenological, anatomical, ecological, cytological 
and molecular mechanisms besides physio-biochemical 
mechanisms. In addition, the application of NMs to im-
prove crop performance under normal or stress conditions 
under field conditions needs great efforts to achieve this 
aim to be cost-effective with no negative impacts on envi-
ronment and human health. Thus, the optimized concen-
tration and application method should be taken into ac-
count. Further, several studies are required to investigate 
the potential toxicity of feed and food plants treated with 
NMs on animal and human health. 
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