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Abstract
Aim of study: To investigate the content, contamination levels and potential sources of five heavy metals (Hg, Pb, Cd, Cr, As) in sewage 

sludge from eight wastewater treatment plants (W1 to W8).
Area of study: Wuhu, located in southeastern Anhui Province, southeastern China.
Material and methods: The sewage sludge pollution assessment employed the single-factor pollution index, Nemerow’s synthetic po-

llution index, monomial potential ecological risk coefficient and potential ecological risk index. The potential sources among the five heavy 
metals were determined using the Pearson’s correlation analysis and principal component analysis (PCA).

Main results: The mean concentrations of the heavy metals were 0.27 mg/kg (Hg), 70.78 mg/kg (Pb), 3.48 mg/kg (Cd), 143.65 mg/kg 
(Cr) and 22.17 mg/kg (As). W1, W5 and W6 sewage sludge samples showed the highest levels of heavy metal contamination, and cadmium 
had the highest contamination level in the study area. Pearson’s correlation analysis and PCA revealed that Pb and Cd mainly derived from 
traffic emissions and the manufacturing industry and that As and Cr originated from agricultural discharges. 

Research highlights: The pollution of cadmium in Wuhu should be controlled preferentially. The heavy metal pollution of W1, W5 and 
W6 sewage treatment plants is relatively high, they should be key prevention targets.

Additional keywords: contamination evaluation; source identification
Abbreviations used: Igeo (geoaccumulation index); PI (single-factor pollution index); PN (Nemerow’s synthetic pollution index); Er 

i  
(monomial potential ecological risk coefficient); RI (potential ecological risk index); PCA (principal component analysis);
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Introduction
Sewage sludge is generated during the process of 

treating municipal wastewater, and it is rapidly increasing 
(Dong et al., 2013). In China, approximately 56% of 

sludge is associated with disposed building materials, 
incineration waste, fertilizer, sanitary landfills, and the 
other sources; therefore, nearly half of the sludge has 
not been treated safely. Approximately one-third of the 
sludge is disposed of by “temporary means”, and more 
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than 10% of the sludge is disposed of by unknown 
means (He et al., 2016).

Sludge that is not treated in a timely manner continues 
to accumulate and occupy a large amount of land, and it can 
contain various heavy metals, organic pollutants and other 
toxic substances, which can cause secondary pollution 
(Lister & Line, 2001). Urban industrial sewage, domestic 
sewage, commercial water mixed emissions, and surface 
runoff inevitably lead to heavy metal accumulation in urban 
sludge, and these metals are not easily biodegraded once 
they reach into the soil environment and pose a threat to hu-
man health once they enter into the food chain (Dou et al., 
2013; Grotto et al., 2015). Heavy metals in sewage sludge 
can eventually be taken up by humans, accumulating in fat-
ty tissues and influencing the nervous system, immune sys-
tem, endocrine system and hematopoietic function (Zhao 
et al., 2014; Xu et al., 2016). However, sludge can also 
be disposed in the form of soil conditioners or fertilizers, 
and improper disposal leads to a loss of organic matter and 
nutrient elements, thus representing a waste of resources. 
Sludge is rich in organic matter and nutrients, by improving 
soil physical and chemical properties and increasing soil 
organic matter, nitrogen and phosphorus, has positive and 
long-term effects on soil remediation or improvement (Sin-
gh & Agrawal, 2008; Kendir et al., 2014; Liu et al., 2015). 
To evaluate the environmental risk and sources of heavy 
metals in sewage sludge, the geo-accumulation index (Igeo), 
single-factor pollution index (PI), Nemerow pollution in-
dex (PN), monomial potential ecological risk coefficient 
(   ) and potential ecological risk index (RI), together a 
multivariate statistical analysis have been widely applied 
(Abrahim & Parker, 2008; Shafie et al., 2013; Kowalska et 
al., 2016; Birch, 2017; Yang et al., 2017; Zhu et al., 2018). 

To use sewage sludge in an environmentally safe 
manner in Wuhu City, a risk assessment should be 
implemented. The aims of this research were to assess the 
contamination status of five heavy metals (Hg, Pb, Cd, Cr, 
and As) from different angles via Igeo, PI, PN,     and RI 
and to identify the potential sources of the heavy metals 
via Pearson’s correlation coefficient analysis and a princi-
pal component analysis (PCA).

Material and methods
Study area

The city of Wuhu is located in southeastern Anhui 
Province in southeastern China, and ranks 10th out of 26 
cities in the Yangtze River Delta City Group. The eight 
sewage treatment plants are located in: W1) Zhujiaqiao, 

in the Jinghu District; W2) Tianmenshan, in the Jiujiang 
District; W3) Binjiang, in the Yijiang District; W4) 
Chengnan, in the Sanshan District; W5) Wuhu Mingyuan, 
in the Nanling County; W6) Nanling County, in the Wuhu 
County; W7) Fanchang County, in the Fanchang County; 
and W8) Wuwei Modern, in the Wuwei County. The main 
sources of sewage were industrial and domestic effluents. 
The properties of these eight wastewater treatment plants 
are shown in Table 1.

Determination of the total heavy 
metal concentration

Dry sludge was collected from the terminals of the 
sewage treatment plants in the second and fourth quarters 
of 2014. Each month, 3~5 500-g samples were collected 
from each of the sewage treatment plants. The collected 
samples were dried at room temperature, ground, and 
then separated into 0.149-mm particles through a sieve. 
The samples were weighed and digested with HNO3-HCl-
H2O2 and then used to determine the content of Cd, Cr 
and Pb (USEPA, 1996). Cd was analyzed using an atomic 
absorption spectrophotometer (AA-6300 Atomic Absorp-
tion Spectrometer, Shimadzu International Trading Co., 
Ltd., Shanghai, China). Pb and Cr were calculated using 
inductively coupled plasma mass spectrometry (ICP-OES 
700 Inductively Coupled Plasma Mass Spectrometer, 
Agilent Technologies Inc., Tokyo, Japan). The sludge 
samples were also digested with HNO3:HCl (10 mL, 1:1 
v/v) at 95 °C for 2 h to determine the content of As and 
Hg (Lacerda et al., 2004) using the atomic fluorescence 
method (AFS-830 Dual-Channel Atomic Fluorescence 
Spectrometer, Beijing Titan Instruments Co., Ltd., Bei-
jing, China).

.
Geoaccumulation index (Igeo)

The Igeo was introduced by Müller (1969) to assess the 
contamination of heavy metals in soils and sediments, and 
it is defined as follows:

where Cn is the content of heavy metal n in samples, mg/
kg; Bn is the background content of the metal n using the 
Nanjing background concentration of heavy metal in the 
soils (Hg = 0.12 mg/kg, Pb = 24.80 mg/kg, Cd = 0.19 mg/
kg, Cr = 59.00 mg/kg and As = 10.60 mg/kg); and 1.5 is a 
constant factor applied to address the lithospheric effects. 
The classification of the Igeo is shown in Table 2

Er 
i  

Er 
i  

Igeo = log2[cn (1.5 × Bn)⁄ ] 
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Assessment of heavy metal pollution

The PI was used to evaluate the comprehensive level 
of heavy metals for each study site (Tomlinson et al., 
1980), and it is defined as follows:

where Ci is the concentration of the heavy metal i, mg/
kg; and Si is the standard of the heavy metal i according 
to CJT 309-2009 (Ministry of Housing and Urban-Rural 
Development, 2009). Nemerow’s synthetic pollution in-
dex (PN) was applied to assess heavy metal contamina-
tion caused by all the heavy metals at each study site. PN 
is defined as follows:

where Pave is the average value of the single-factor pollution 
index of the heavy metal i; and Pmax is the maximum value 
of the single-factor pollution index of the heavy metal i. 
The classification of PI and PN is shown in Table 3.

Assessment of potential ecological risk

The RI was proposed by Hakanson (1980) and is 
widely utilized to assess potential ecological risk, 
including heavy metal pollution risk. The index is 
defined as follows:

where Cf
i  is the pollution factor of the metal i; csi   is 

the concentration of heavy metal in samples; Cni   is the 
standard of the heavy metal i according to Chinese Soil 
Environmental Standard (pH 6.5-7.5) GB15618-1995 
(Ministry of Ecology and Environment, 1995) and the 
corresponding standard values Cni   for Hg, Pb, Cd, Cr, and 
As are 0.5, 300, 0.6, 300 and 25 mg/kg, respectively; Er

i  is 
the monomial potential ecological risk coefficient; and                                            Tr

i   
is the metal toxic response factor (Hg = 40, Pb= 5, Cd= 

PI = Ci Si⁄  

 

PN = √(Pmax2 + Pave2 ) 2⁄  

 

 

Cfi = csi Cni⁄  

Eri == TriCfi 

RI =∑ Eri
n

i=1
 

 

 

Table 1. Some properties of eight wastewater treatment plants in this study

Wastewater 
treatment plants

Wastewater treatment 
capacity (m3/day)

Daily sludge 
production (m3/day)

Primary 
treatment

Secondary 
treatment[1]

Tertiary 
treatment 

W1 450,000 90 Centrifugal dewatering A2/O Incineration 
or landfill

W2 60,000 25 Belt pressure dewatering Carrousel 
oxidation ditch

Incineration 
or landfill

W3 30,000 15 Centrifugal dewatering Multimode A2/O Incineration 
or landfill

W4 100,000 20 Centrifugal dewatering A2/O Incineration 
or landfill

W5 30,000 1 Plate-frame pressure filtration A2/O Incineration 
or landfill

W6 20,000 8 Belt pressure dewatering A2/O Incineration 
or landfill

W7 30,000 9 Belt pressure dewatering Orbal 
oxidation ditch

Incineration 
or landfill

W8 40,000 20 Centrifugal dewatering Carrousel 
oxidation ditch Landscaping

[1] A2/O: Anaerobic-Anoxic-Oxic

Table 2. Classifications for geoaccumulation index (Igeo)
Igeo value Class Class quality

≤0 0 Practically unpolluted

0-1 1 Unpolluted to moderately polluted

1-2 2 Moderately polluted
2-3 3 Moderately to heavily polluted
3-4 4 Heavily polluted
4-5 5 Heavily to extremely polluted
>5 6 Extremely polluted
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Table 3. Classification for single-factor pollution index (PI) and Nemerow’s synthetic pollution index (PN)

PI value Contamination level PN value Contamination level
PI≤1.0 No contamination PN ≤ 0.7 Safety

1.0< PI ≤2.0 Low level of contamination 0.7< PN ≤1.0 Warning line of pollution
2.0< PI ≤3.0 Moderate level of contamination 1.0< PN ≤2.0 Slight pollution
3.0< PI ≤5.0 Strong level of contamination 2.0< PN ≤3.0 Moderate pollution

PI >5.0 Very strong level of contamination PN >3.0 Heavy pollution

Table 4. Classification for monomial potential ecological risk coefficient (Er 
i  ) and 

potential ecological risk index (RI)

Er 
i   value RI value Ecological risk value

Er 
i  ≤40 RI≤150 Low

40<Er 
i  ≤80 150<RI≤3 Moderate

80<Er 
i  ≤160 300<RI≤6 Considerable

160<Er 
i  ≤320 High

Er 
i  >320 RI>600 Very high

Table 5. Heavy metal concentrations in sewage sludge from different sewage treatment plants (mg/kg)
Sample sites Hg Pb Cd Cr As

W1 0.12±0.022 266.00±8.82 15.30±1.75 143.50±7.50 25.05±0.32
W2 0.33±0.045 73.30±2.14 0.04±0.01 102.40±4.44 24.60±0.77
W3 0.28±0.08 28.80±0.78 0.72±0.06 68.70±1.02 22.10±1.16
W4 0.27±0.04 58.65±2.21 1.35±0.11 65.85±4.81 5.17±0.19
W5 0.15±0.02 42.30±1.17 5.11±0.42 535.00±121.45 36.40±1.99
W6 0.15±0.02 25.55±3.39 4.80±0.40 84.00±1.95 35.15±4.31
W7 0.23±0.05 23.40±2.30 0.03±0.00 68.25±1.26 12.90±1.00
W8 0.60±0.08 48.20±2.17 0.47±0.03 81.50±6.08 16.00±0.54

Mean 0.27 70.78 3.48 143.65 22.17
SD 0.16 80.75 5.19 160.19 10.68

CV (%) 57.73 114.08 149.53 111.51 48.16
Class B[1] 15 1000 15 1000 75
Class A 3 300 3 500 30

[1] CJT 309-2009 (Ministry of Housing and Urban-Rural Development, 2009)

Table 6. Geoaccumulation index (Igeo) for heavy metals in sewage sludge of eight sampling sites
Sample sites Hg Pb Cd Cr As Mean

W1 -0.58 2.84 5.75 0.70 0.66 1.87
W2 0.87 0.98 -2.83 0.21 0.63 -0.03
W3 0.64 -0.37 1.34 -0.37 0.48 0.34
W4 0.58 0.66 2.24 -0.43 -1.62 0.29
W5 -0.26 0.19 4.16 2.60 1.19 1.58
W6 -0.26 -0.54 4.07 -0.08 1.14 0.87
W7 -0.47 -0.67 -3.25 -0.37 -0.30 -1.01
W8 1.74 0.37 0.72 -0.12 0.01 0.54

Mean 0.28 0.43 1.53 0.27 0.27 0.56
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30, Cr = 2 and As = 10). The classification of  Er
i    and RI 

is displayed in Table 4.

Statistical analysis

The relationships among five heavy metals were de-
termined using the Pearson’s correlation analysis. A prin-
cipal component analysis (PCA) was used to reduce the 
dimensionality, and the highly correlated heavy metal ele-
ments were extracted into independent factors (Li et al., 
2013; Lu et al., 2010).

Results and discussion
The concentration of heavy metals 
in sewage sludge

The measured concentrations of heavy metals are 
presented in Table 5. According to the mean concentra-
tion values, the corresponding order of heavy metals in 
sewage sludge samples was Cr > Pb > As > Cd > Hg. The 
variation coefficients of heavy metals were ranked in de-
creasing order as follows: Cd > Pb > Cr > Hg > As. Heavy 
metal content in the study area varied greatly among 
sewage treatment plants, which occurs probably because 
the sewage sludge samples were collected from different 
sites (Yang et al., 2014). The maximum concentrations 
of the heavy metals of the eight sewage treatment plants 
did not exceed the permissible content limits in the dis-
charge standards (Class B) of CJT 309-2009, except for 
Cd at W1. Cd exceeded the permissible content limits at 
this site probably because the W1 sewage treatment plant 
collects water from an industrial area. The above results 
are consistent with other Chinese studies (e.g., Zhao et 
al., 2019), which showed that the electronics industry is a 
pollution source for Cd.

Three assessment methods of heavy metals 
contamination 

Geoaccumulation index values for heavy metals 
in sewage sludge

The Igeo values for five heavy metals are presented in 
Table 6. The mean Igeo values for five heavy metals were 
in the following decreasing order: Cd > Pb > Cr = As > 
Hg. The pollution order of stations was W1 > W5 > W6 > 
W8 > W3 > W4 > W2 > W7. 

The Igeo values were less than zero for Hg at sites W1, 
W5, W6 and W7; Pb at sites W3, W6 and W7; Cd at sites 
W2 and W7; Cr at sites W3, W4, W6, W7 and W8; and As 
at sites W4 and W7; these findings indicate that these sites 
were not polluted by these metals. The Igeo values were 
between 0 and 1 for Hg at sites W2, W3, W4 and W8; Pb 
at sites W2, W4, W5 and W8; Cd at site W8; Cr at sites 
W1 and W2; and As at sites W1, W2, W3 and W8; these 
findings indicate that the pollution level of these metals 
at these stations ranged from unpolluted to moderately 
polluted. The Igeo values were between 1 and 2 for Hg at 
site W8, Cd at site W3 and As at sites W5 and W6; and 
these findings indicate that the pollution levels of these 
metals at these stations were moderate. The Igeo values 
were between 2 and 3 for Pb at site W1, Cd at site W4 and 
Cr at site W5; these findings indicate that these metals at 
these stations were polluted at moderate to heavy levels. 
The Igeo values were higher than 3 for Cd at sites W1, W5 
and W6, what indicates that the pollution level of Cd at 
these stations was heavy. 

Assessment of heavy metal pollution

The PI values of heavy metals are presented in Table 
7. According to the mean PI values, heavy metals were 
sorted in the following decreasing order: Cd > As > Cr > 
Pb > Hg. According to these results, the sewage sludge 

Table 7. Single-factor pollution index (PI) and Nemerow’s synthetic pollution index (PN) for 
heavy metals in sewage sludge of eight sampling sites

Sample sites
PI

PN
Hg Pb Cd Cr As

W1 0.04 0.89 5.10 0.29 0.84 3.62
W2 0.11 0.24 0.01 0.20 0.82 0.59
W3 0.09 0.10 0.24 0.14 0.74 0.53
W4 0.09 0.20 0.45 0.13 0.17 0.33
W5 0.05 0.14 1.70 1.07 1.21 1.28
W6 0.05 0.09 1.60 0.17 1.17 1.16
W7 0.04 0.08 0.01 0.14 0.43 0.31
W8 0.20 0.16 0.16 0.16 0.53 0.40

Mean 0.08 0.24 1.16 0.29 0.74 0.88
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in the study area exhibited low pollution levels for most 
heavy metals except for Cd at sites W1, W5 and W6 and 
As at sites 5 and 6. According to the mean PN values, the 
heavy metals were sorted in the following decreasing or-
der: W1 > W5 > W6 > W2 > W3 > W8 > W4 > W7. The 
PN values for sites W2, W3, W4, W7 and W8 were lower 
than 0.7, and the maximum concentrations of the heavy 
metals of five sampling sites did not exceed the permis-
sible content limits in the discharge standards (Class B) 
of CJT 309-2009. This finding suggests that the sewage 
sludge in these sites was safe in terms of heavy metal dis-
charged into the environment and could be directly used 
in agriculture. The PN values for sites W5 and W6 were 
between 1 and 2, and the value at W1 was higher than 3, 
indicating that sewage sludge at these sites had risk levels 
of heavy metals; therefore, heavy metal pollution should 
be considered when using sewage sludge from these sites 
for land treatments.

The potential ecological risk

The RI and Er
i   values for each studied site are shown in 

Table 8. The mean Er
i   value of five heavy metals decrea-

sed in the following order: Cd > Hg > As > Pb > Cr. The 
Er
i   values for Hg, Pb, Cr and As in all sampling sites were 

lower than 40 except for Hg at site W1, suggesting that 
these sites did not pose a potential ecological risk. The Er

i   
values for Cd at sites W5 and W6 were between 160 and 
320, and the value for Cd at site W8 was higher than 320, 

suggesting that sewage sludge at these sites had high RI 
for Cd. W5 and W6 exhibited high risk, and W1 very high 
risk. The mean RI values for sites W2, W3, W4, W5, W7, 
and W8 were < 150, indicating that these sites had low RI. 
The RI values for sites W5 and W6 ranged from 150 to 
300, indicating that these sites had moderate RI. For site 
W1, the RI values were > 600, indicating that this site had 
very high risk.

According to the results of Igeo, PI, PN, RI and  Er
i    results 

show that the highest risk levels of heavy metal contamina-
tion in W1, W5 and W6 wastewater treatment plants, pos-
sibly may because W1 and W5 wastewater treatment plant 
is located near industrial area, and W6 sewage treatment 
plant is located in suburban areas, which is near steel woll, 
cement, textile and pharmaceutical manufacturing indus-
tries (Lin et al., 2002). Such heavy metal contamination 
emitted from industries is also consistent with other regions 
in China, In Shanxi Province, Cd pollution might be caused 
by the rich coal resources, and the large number of coal in-
dustries (Duan et al., 2017). In Guangzhou City, Cu and Cr 
pollution may be related to the industrial wastewater such 
as electroplating, chemical and machinery manufacturing 
industries (Li et al., 2015).

Correlation coefficient

Table 9 displays the correlation coefficients as a linear 
correlation matrix. The results of the correlation analysis 

Table 8. Monomial potential ecological risk coefficient (Er 
i  ) and potential ecological risk index 

(RI) for heavy metals in sewage sludge of eight sampling sites

Sample sites
Er 

i  
RI

Hg Pb Cd Cr As
W1 9.60 4.43 765.00 0.96 10.02 790.01
W2 26.40 1.22 2.00 0.68 9.84 40.14
W3 22.40 0.48 36.00 0.46 8.84 68.18
W4 21.60 0.98 67.50 0.44 2.07 92.58
W5 12.00 0.71 255.50 3.57 14.56 286.33
W6 12.00 0.43 240.00 0.56 14.06 267.05
W7 18.40 0.39 1.50 0.46 5.16 25.91
W8 48.00 0.80 23.50 0.54 6.40 79.25

Mean 21.30 1.18 173.88 0.96 8.87 206.18

Table 9. Pearson’s correlation matrix for the metal concentrations in sewage sludge
Hg Pb Cd Cr As

Hg 1
Pb -0.279* 1
Cd -0.550** 0.862** 1
Cr -0.341** 0.005 0.249* 1
As -0.440** 0.062 0.394** 0.555** 1
**,*: correlation is significant at the 0.01 level or 0.05 (2-tailed), respectively.
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suggested a low correlation occurred between Hg and 
Pb (r = -0.279), Cd and Cr (r = 0.249) at 0.05 level and 
between Hg and Cr (r = -0.341), Hg and As (r = -0.440) 
and Cd and As (r = 0.394) at 0.01 level. Furthermore, 
high correlation was observed between Hg and Cd (r = 
-0.550), Pb and Cd (r = 0.862) and Cr and As (r = 0.555) 
at 0.01 level.

 The positive correlations among metals may reflect 
the fact that these metals had similar pollution levels, the 
same behavior during transport, and common sources or 
at least one major source (Suresh et al., 2011). The nega-
tive correlation between Hg and Pb, Cd, Cr and As indi-
cated that the adsorption capacity of Hg may be restrained 
because of the competitive adsorption of the other coexis-
ting heavy metals in sediments (Zhang & Zheng, 2007).

Factor analysist

PCA was a performed to identify the probable sources 
between the heavy metals when they were interrelated 
(Mirzaei Aminiyan et al., 2018). Table 10 depicts the fac-
tor loadings as well as the eigenvalues, percentile of va-
riance, and cumulative percentages of the total loadings. 
According to Table 10, two principal components with 
eigenvalues of 2.15 and 1.39 were obtained, and they ac-
counted for 78.61% of the total variance. The first princi-
pal component was dominated by Pb (0.96) and Cd (0.93) 
and accounted for 50.90% of the total variance. These ob-
servations show that Cd and Pb probably originated from 
a similar source. Previous studies (Kabata-Pendias & 
Mukherjee, 2007; Wei et al., 2009; Al-Khashman, 2013; 
Zhang et al., 2013) have reported that vehicle emissions, 
diesel fuel, and fossil fuel combustion are the primary 
sources of Cd and Pb pollution. Cd and its compounds are 
also known to originate from different manufactured pro-
ducts, such as paints, batteries, and electrical appliances 
(Mico et al., 2006).Thus, the component loading of PC1 

can be defined as traffic emissions and the manufacturing 
industry. The second principal component was dominated 
by As (0.86) and Cr (0.85), and it accounted for 27.70% 
of the total variance. Based on the correlation analysis, a 
highly positive correlation was observed between As and 
Cr, suggesting that they may share a common source. A 
previous study reported that the main fertilizer products 
in China contain Cr, As and other harmful metals (Feng 
et al., 2009). Anhui is a major agricultural province, and 
the input of chemical pesticides and chemical fertilizers 
per unit area of cultivated land in Wuhu is well above the 
average level of Anhui Province of China as a whole. In 
addition, several studies (Yongming et al., 2006; Sharma 
et al., 2008; Duan & Tan, 2013) have reported that indus-
trial and agricultural activities are major sources of As and 
Cr. In the study area, many industrial activities are obser-
ved, including cement and asphalt plants, a paperboard 
factory, a shipyard, sand mining operations, and electrical 
industries. Thus, the component loading of PC2 can be 
considered to be agriculture activities.

In summary, the maximum concentrations of the heavy 
metals in the eight sewage treatment plants did not exceed 
the permissible content limits in the discharge standards 
(Class B) of CJT 309-2009, except for Cd at W1. Based 
on the total concentration results and the Igeo, PI, PN, RI 
and Er

i   results described above, heavy metal pollution 
reached the highest contamination levels in the ecosystem 
for W1, W5 and W6 sewage sludge samples in the city of 
Wuhu. Pb at site W1, Cd at sites W5 and W6 and As at 
sites W5 and W6 were identified as the main contributors 
to metal pollution. Thus, measures should be taken to con-
trol these metals at these sampling sites. Cd exhibited the 
highest contamination level in the eight wastewater treat-
ment plants, and the strongest ecological risk posed by Cd 
was primarily attributed to the fact that the toxicity coeffi-
cients of Cd were far higher than those of the other metals, 
although its concentration in the study area was relatively 
lower than those of the other metals. The correlation and 

Table 10. Eigenvalues, variables and rotation of principal component analysis (PCA) for heavy metals in sewage sludge

Component
Initial eigenvalues Rotation sums of squared loadings Rotated component matrix

Total of variance 
(%)

Cumulative
(%) Total of variance 

(%)
Cumulative

(%) Variables Total
PC1

Component
PC2

1 2.545 50.902 50.902 2.026 40.524 40.524 Hg - -0.596

0.470

2 1.385 27.706 78.608 1.904 38.084 78.608 Pb 0.960 -0.076

3 0.580 11.596 90.204 Cd 0.931 0.302

4 0.431 8.628 98.832 Cr - 0.847

0.022

5 0.058 1.168 100.000 As 0.125 0.857

PC1, PC2: first and second principal component factor, respectively
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PCA suggest that Pb and Cd mainly derived from traffic 
emissions and the manufacturing industry and that As and 
Cr originated from agriculture discharge.
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