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Abstract
Aim of study: The accuracy of international and intertemporal comparisons of total factor productivity (TFP) growth requires the use of 

indicators that satisfy transitive and multiplicative properties, such as the Färe-Primont index (FPI). This paper compares the evolution of 
TFP in global agriculture.

Area of study: Worldwide. 
Material and methods: The evolution of TFP in global agriculture was measured by the traditional Malmquist index (MI) and by the FPI, 

with alternative measurements of input capital.
Main results: We found a significantly lower TFP growth with the FPI. New estimates of TFP growth for 1961-2015 show that output 

oriented scale-mix efficiency drives TFP growth, with an important technological change between 1996 and 2000 and another in 2014. 
Regional comparisons reveal heterogeneous trends in efficiency, linked to institutional reforms and agricultural R&D.

Research highlights: More realistic figures and global comparisons of agricultural productivity provide a better understanding to imple-
ment better policies. Available measures of capital stock do not yield significant differences in TFP estimations, but the precise identification 
and estimation of the heterogeneous drivers and burdens is fundamental for boosting agricultural productivity and its benefits on global 
food security.
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stock
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Introduction
The availability of good indicators of the evolution of 

total factor productivity (TFP) is essential for analyzing 
the growth of an economy and the evolution of its supply 
and competitiveness. In a recent study, Le Clech & Fillat 
(2017a) showed that some of the most important deter-
minants of agricultural supply dynamics are those related 
to sectoral productivity, such as efficiency and technolo-
gy improvements. Their findings reveal that both of these 
factors have an important positive and highly significant 
effect on the international agricultural supply of grain and 
oilseed. Therefore, they concluded that a useful economic 
policy to promote the development of this sector would be 
one focused on stimulating technical change and efficien-
cy improvements in this sector. 

This is particularly relevant in the agricultural sector 
because its productivity has important consequences on 
food security and prices. In addition, for some poor areas, 
productivity growth in agriculture is essential for boos-
ting rural incomes and reducing poverty. Furthermore, it 
is directly related to the use of natural resources and factor 
reallocation to other economic sectors. For these reasons, 
more realistic figures and adequate international compari-
sons may reveal the need to design better policies to im-
prove agricultural productivity in some regions where its 
growth is meager or zero, as is the case of Europe. 

On a global scale, the scarcity and quality of arable land 
is the main restriction to feeding an increasing population, 
so agricultural growth has to be driven by an increase 
in productivity and a sustainable intensification (IBRD/
WB, 2011). Since the beginning of the twenty-first cen-
tury, agricultural productivity growth has been in decline, 
mainly due to accelerated urbanization, improvements in 
diets and climate change (Popp et al., 2013).

Moreover, the production of more bioenergy and other 
bio-based commodities are using more agricultural land. 
Therefore, given the rigidity of arable land expansion, the 
growth of agricultural and food supply has to be achieved 
by increasing the productivity of the land already cultiva-
ted today. Besides food security, more advances are nee-
ded in linking agricultural productivity growth to environ-
mental impacts and in understanding its dynamic interplay 
with agricultural sustainability and resilience (Coomes et 
al., 2019). For these reasons, intensification and producti-
vity growth are fundamental pillars for the growth of agri-
cultural yield and food security. 

Many efforts have been made in recent years to improve 
the quality of TFP indicators and, over the last two decades, 

1	 For a thoughtful discussion of the DEA and SFA approaches in productivity measurement see the corresponding section in Orea & Zofío (2017).		
2	 Among the indexes based on prices can be highlighted the widely used Tornquist and Fisher indexes. The growth-accounting approach is used to estimate the world growth 
rates of TFP in works such as Fuglie (2012 a,b) and Avila & Evenson (2010).	

many studies measuring TFP and conducting international 
comparisons on agriculture have proliferated. As Coelli & 
Rao (2005) indicated, this boom is due to two main rea-
sons: the availability of new statistical information provi-
ded by the Food and Agriculture Organization (FAO) of 
the United Nations, and the emergence and diffusion of 
new techniques, such as data envelopment analysis (DEA) 
and the parametric technique of stochastic frontier analy-
sis (SFA)1. These frontier approaches have several advan-
tages for estimating TFP indexes over other techniques, 
such as the price-based index numbers or the growth-ac-
counting approach2. 

Until now, one of the most popular indexes for com-
puting TFP has been the Malmquist index (MI). Howe-
ver, except in special cases, it is a partial measure of the 
productivity change, which implies that its decomposition 
produces estimates of technical change and technical effi-
ciency that may be biased. The main reason for this is the 
existence of certain drawbacks and restrictions of the MI, 
mainly because it is not an exhaustive index, rather additi-
ve and multiplicative (O’Donnell, 2012). 

There are diverging views on how to name the index 
we use as a measure of productivity change. The MI as 
a measure of productivity change obtains systematically 
biased estimates. Some of these limitations are overcome 
by the proposal of Bjurek (1996), who makes the key con-
tribution of relating the MI to the Moorsteen-Bjurek index 
(MBI) by way of the ratio of output to input quantities. The 
family of MB indices becomes multiplicatively complete 
(O’Donnell, 2012). For more detailed information about 
this Moorsteen-Bjurek family of indexes we recommend 
Balk & Zofío (2018).

Within this family, O’Donnell (2014) proposed a par-
ticular variant, which consists in imposing a fixed base 
(input/output/technology) on the MBI. It becomes an ad-
ditive, multiplicative and transitive index, allowing multi-
lateral (instead of binary) comparisons. O’Donnell refers 
to this particular MBI as the “Färe-Primont index” (FPI) 
because the component output and input quantity indices 
were discussed in Färe & Primont (1995). However, other 
authors such as Diewert & Fox (2017) believed that the 
use of the ratio of a family of output indexes to a family 
of input indexes to obtain a family of productivity indexes 
is attributable to Bjurek (1996), so they refer to the in-
dex as the “Bjurek productivity index”. Without aiming 
to close this debate, we use the FPI nomenclature while 
acknowledging that other authors might refer to it as MBI.

The aforementioned reasons justify the interest in esti-
mating new indexes and comparing them with the traditional
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ones. It is worth conducting two analyses. First, we eva-
luate the differences between the FPI and the MI and their 
sensitivity due to a change in variables. We compare the 
effect of considering two alternative variables of capi-
tal stock, given that some authors, such as Butzer et al. 
(2010), stressed that data on tractors, as a proxy for agri-
cultural fixed capital, is poorer than the Capital Stock va-
riable. Second, we offer estimates of the new TFP index 
for the widest sample of countries during the period 1961-
2015, and of its components of technical change, efficien-
cy change, scale efficiency and output-oriented scale-mix 
efficiency changes, and examine its evolution.

Material and methods

Methodology

The methodology is based on the advances developed 
by O’Donnell (2008, 2010, 2011a, 2012, 2014) in order 
to measure the TFP, based on the DEA, and calculate the 
components of technical change and different measures of 
efficiency change3.  The DEA methodology has the advan-
tage of not requiring the restrictive assumptions regarding 
the structure of the technology, the degree of competition 
in inputs and outputs markets, the use of prices as market 
signals or the optimizing behavior of the firm. It only re-
quires an estimation of the production frontier which will 
allow us to calculate the TFP index as the basis of the de-
composition into the technological index and efficiency 
index. TFP is defined as the relationship between outputs 
and inputs, which can be represented as:

(1)

where 𝑄𝑄"# = 𝑄𝑄(𝑞𝑞"#) and 𝑋𝑋"# = 𝑋𝑋(𝑥𝑥"#) are the aggregate 
functions of output and inputs, respectively and are linea-
lly homogeneous, nonnegative and no decreasing func-
tions.

In order to estimate the production function, two 
approaches can be adopted, either output or input-orien-
ted measures. In the first case, the production function is 
constructed from the maximum output given certain fixed 
factors. In the second, the costs frontier is constructed with 
the lowest input endowment given an output quantity. In 
this paper, we consider the output approach due to the 
particularities of the agricultural sector, which requires 
animportant amount of “sunk capital”, such as machinery 
and land. As Coelli & Rao (2005) noted, in the agricultural 
sector it is reasonable to assume the goal of maximizing 

3	 We have used the program DPIN 3.0 for the calculations, the performance of which is explained in O’Donnell (2011b).

output rather than minimizing the production factors. So 
the distance function that represents the technology availa-
ble in period t and which is output oriented can be written 
as:

𝐷𝐷"(𝑥𝑥%&, 𝑞𝑞%&, 𝑡𝑡) = ,𝑞𝑞%&
, 𝛼𝛼./,𝛾𝛾 + 𝑥𝑥%&

, 𝛽𝛽.         (2)

where 𝑞𝑞"𝑞𝑞#$%, … , 𝑞𝑞($%)
,
 and 𝑥𝑥"#(𝑥𝑥%"#, … , 𝑥𝑥("#), indicate the out-

put and input vectors, for firm i and year t. The parameters 
α and β are nonnegative and the parameter γ captures the 
kind of scale returns which are assumed: γ = 0 represents 
constant returns to scale (CRS), γ ≥ 0 represents decrea-
sing returns to scale (DRS) and γ ≤ 0 increasing returns to 
scale (IRS).

By means of linear optimization, the parameters which 
minimize 𝐷𝐷"(𝑥𝑥%&, 𝑞𝑞%&, 𝑡𝑡)+,  can be estimated and the general 
solution is shown in equation (3): 

  
(3)

where Q is the observed matrix of outputs (J x Mt), X is 
the observed matrix of inputs (K x Mt) and Mt is a column 
vector indicating the number of observations used to esti-
mate the frontier in year t. 

The specific calculations applied to the case of FPI, for 
both output and input distance functions, are represented 
by equations (4) and (5), respectively:

𝐷𝐷"(𝑥𝑥", 𝑞𝑞", 𝑡𝑡"))* = min
/,0,1

{𝛾𝛾 + 𝑥𝑥"
5𝛽𝛽: 𝛾𝛾𝛾𝛾 + 𝑋𝑋5𝛽𝛽 ≥ 𝑄𝑄5𝛼𝛼; 𝑞𝑞"

5𝛼𝛼 = 1; 𝛼𝛼 ≥ 0; 𝛽𝛽 ≥ 0}    
 (4)

𝐷𝐷"(𝑥𝑥%, 𝑞𝑞%, 𝑡𝑡%)*+ = max
∅,1,2

{𝑞𝑞%
4𝜙𝜙 − 𝛿𝛿: 𝑄𝑄4𝜙𝜙 ≤ 𝛿𝛿𝛿𝛿 + 𝑋𝑋4𝜂𝜂; 𝑥𝑥%

4 𝜂𝜂 = 1;𝜙𝜙 ≥ 0; 𝜂𝜂 ≥ 0}    (5)

The linear optimization of equations (4) and (5) yields 
the parameters 𝛼𝛼0, 𝛽𝛽0, 𝛾𝛾0, 𝜙𝜙0, 𝛿𝛿0, 𝑦𝑦 𝜂𝜂0 , and      and t0 defines the ob-
servations that are used to estimate the representative fron-
tier.The aggregate functions used to compute the FPI are:

        

The FPI, as well as the MI, can be decomposed into 
two components: the technological component (TC) and 
the efficiency component (EC), as follows:

  
(8)

Moreover, the calculation of each index is obtained 
from:

  (9)

  (10)

TFP$% =
'()
*()

 

𝐷𝐷"(𝑥𝑥%&, 𝑞𝑞%&, 𝑡𝑡)+, = min
1,2,3

{𝛾𝛾 + 𝑥𝑥%&
7 𝛽𝛽: 𝛾𝛾𝛾𝛾 + 𝑋𝑋7𝛽𝛽 ≥ 𝑄𝑄7𝛼𝛼; 𝑞𝑞%&

7 𝛼𝛼 = 1; 𝛼𝛼 ≥ 0; 𝛽𝛽 ≥ 0} 

𝛼𝛼0, 𝛽𝛽0, 𝛾𝛾0, 𝜙𝜙0, 𝛿𝛿0, 𝑦𝑦 𝜂𝜂0 

with

with

𝑄𝑄(𝑞𝑞) = 𝑞𝑞′𝑝𝑝(∗    𝑝𝑝"∗ ≡ 𝜕𝜕𝐷𝐷"(𝑥𝑥", 𝑞𝑞", 𝑡𝑡")/𝜕𝜕𝑞𝑞" = 𝛼𝛼"/(𝛾𝛾" + 𝑥𝑥"2𝛽𝛽")   (6)

𝑋𝑋(𝑥𝑥) = 𝑥𝑥′𝑤𝑤(∗     𝑤𝑤"∗ ≡ 𝜕𝜕𝐷𝐷'(𝑥𝑥", 𝑞𝑞", 𝑡𝑡")/𝜕𝜕𝑥𝑥" = 𝜂𝜂"/(𝑞𝑞"1𝜙𝜙" − 𝛿𝛿")    (7)

 TFP$% = TC%	. EC$%    

 𝑇𝑇𝑇𝑇# = 𝑚𝑚𝑚𝑚𝑚𝑚(
𝑄𝑄(#

𝑋𝑋(#+     

𝐸𝐸𝐸𝐸#$ =
𝑇𝑇𝑇𝑇𝑇𝑇#$

𝑇𝑇𝑇𝑇$)      
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The technological component measures a shift of the 
production frontier during a period. It is calculated by 
identifying the economic unit i that shows the maximum 
level of TFP for a given period t. The efficiency change 
measures a movement of the economic unit towards (or 
away from) the production frontier, which means an im-
provement (or worsening) in the efficient use of the pro-
duction factors.

Some other measures of efficiency can be calculated. 
In this paper we are interested in analyzing two of them: 
the output-oriented “pure” scale efficiency (OSE), which 
measures the difference between TFP at a technically 
γ efficient point and the maximum TFP that is possible 
with fixed mixes of input and output (but allowing the le-
vels to vary), and the output-oriented scale-mix efficiency 
(OSME), that accounts for productivity shortfalls associa-
ted with diseconomies of both scale and scope. In other 
words, scale-mix efficiency is a measure of the improve-
ment in productivity obtained by moving from a techni-
cally efficient point to a point of maximum productivity.4  

For the OSE index it is necessary first to estimate the 
output-oriented technical efficiency (OTE) assuming va-
riable returns to scale (VRS) and CRS. These indexes are 
defined as follows:

 

where 𝑄𝑄"#$ = 𝑄𝑄#$ 𝐷𝐷'(𝑥𝑥#$, 𝑞𝑞#$,𝑡𝑡)⁄     is the maximum aggregate 
output that can be produced by i in period t while holding 
its input vector and its output mix fixed.

Data, variables and sample

Dimensionality is always present in non-parametric es-
timation, implying that working in smaller dimensions 
tends to provide better estimates of the frontier (Daraio & 
Simar, 2007). For this reason, our estimation is conducted 
with the most aggregated version of each variable. We use 
gross agricultural output for each country at constant 2004-
2006 average international prices, in thousands of dollars. 
As inputs we include: a) Labor: number of economically 
active adults in agriculture; b) Land: total agricultural land 

4	 There are no output-oriented mix efficiency (OME) measures in this decomposition because the aggregator functions are proportional to the output and input distance functions 
(See O’Donnell, 2012 and 2014). For a more detailed discussion about these indexes, see O’Donnell (2018).
5	 Food and Agriculture Organization of the United Nations. FAOSTAT (2012). Capital Stock (Dataset). http://data.fao.org/ref/f297ce49-6f72-4ffd-bbcb-2b300bd0bc4d.html?ver-
sion=1.0 [Latest update: 07 Mar 2014. Accessed 22 Aug 2019]. 

in hectares of "rainfed cropland equivalents" c) Feed: 
total metabolizable energy (ME) in animal feed from all 
sources, in 1000 Mcal; d) Fertilizer: amount of metric tons 
of N, P2O5, K2O fertilizer consumption; e) Livestock: to-
tal livestock capital on farms expressed in "cattle equiva-
lents" based on relative size and feeding requirements; and 
f) Machinery: total stock of farm machinery in "40-CV 
tractor equivalents" (CV=metric horse power), aggrega-
ting the number of 2-wheel tractors, 4-wheel tractors, and 
combine-harvesters and threshers. All data are drawn from 
the most recent update of the international agricultural 
productivity database from the Economic Research Ser-
vice, United States Department of Agriculture (ERS-US-
DA) (https://www.ers.usda.gov/data-products/internatio-
nal-agricultural-productivity/).

We consider the variable Capital Stock as an alternative 
to Livestock+Machinery. It is the sum of the individual 
physical assets and includes Land Development + Lives-
tock (fixed assets and inventory) + Machinery & Equip-
ment + Plantation Crops + Structures for Livestock. All 
data from the net capital stock dataset in agriculture from 
FAOSTATS.5 

The complete data provided by ERS-USDA enable es-
timates to be made for almost 200 countries. However, it 
is well known that nonparametric DEA is vulnerable to 
potential outliers and measurement error (Simar & Wil-
son, 2013). And even when there are new techniques to 
detect outliers for the DEA technique, the decision on how 
many units to exclude is still arbitrary (Boyd et al., 2016). 
The trade-off between working with the widest sample and 
minimizing the bias for outliers prompted us to select all 
countries with at least 0.15% of total world gross agricul-
tural output in 2015 and this sample accounts for 95% of 
it. In this way, we obtain a highly representative sample 
that includes the key future players in agricultural produc-
tion.

According to the two alternative proxies for agricul-
tural capital, we obtain two samples. The first is used to 
compare the estimates of both the MI and FPI, both with 
the Capital Stock and Machinery+Livestock variables.

The reason is that the FAOSTATS Capital Stock data-
base groups certain countries together, such as those of the 
former USSR, for the whole period. This yields a sample 
(Sample 1) with 64 countries/regions from 1975 to 2007.

Table S1 [suppl] lists the included countries. The se-
cond sample (Sample 2) is from the ERS-USDA dataset 
and is used to study the agricultural TFP dynamics from 
1961 to 2015. It is longer and also identifies individual countries

 

𝑂𝑂𝑂𝑂𝑂𝑂$% =
𝑄𝑄$%

𝑄𝑄($%
)      

𝑂𝑂𝑂𝑂𝑂𝑂$% =
𝑂𝑂𝑂𝑂𝑂𝑂$%()*

𝑂𝑂𝑂𝑂𝑂𝑂$%+)*
,      ≤ 1	 (12)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂%& =
𝑄𝑄)%& 𝑋𝑋%&⁄

𝑇𝑇𝑇𝑇&
.    

≤ 1	                  (11)

≤ 1	     (13)

http://data.fao.org/ref/f297ce49-6f72-4ffd-bbcb-2b300bd0bc4d.html?version=1.0
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https://www.ers.usda.gov/data-products/international-agricultural-productivity/
https://www.ers.usda.gov/data-products/international-agricultural-productivity/
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from the former USSR. Applying the same “95%” rule, we   
obtain a sample of 73 countries/regions, which are listed in 
Table S2 [suppl].

Results

Malmquist and Färe-Primont comparison

Our first goal is to compare the MI and FPI estimates 
using two alternative variables of capital stock. Hence, we 
have two models for each index: Model 1, involving the 
Output, Labor, Land, Feed, Fertilizer and Capital Stock 
variables, and Model 2, involving the Output, Labor, 
Land, Feed, Fertilizer, Livestock and Machinery varia-
bles. All estimations were conducted assuming VRS and 
no technical regress.

Table 1 shows the estimates (weighted annual 
mean change) and their annual geometric mean rate 
of growth of the TFP: 1.42% for the MI model 1 and 
1.34% for the MI model 2, while the FPI yields are 
1.26% and 1.17% for models 1 and 2, respectively, 
which are much lower rates.

The cumulative change of TFP in 2007 is 1.595 and 
1.550 for the MI, models 1 and 2 respectively, while 
the FPI change is 1.512 and 1.468 for models 1 and 2 
(Fig. 1). This result indicates that, for both models, the 
MI is higher than the FPI and could be interpreted as 
an overestimation of the growth of TFP in agriculture. 

 

To test whether the differences between the four esti-
mates are statistically significant, we have conducted two 
paired sample tests on the weighted annual mean chan-
ge series reported in Table 1 and on the cumulative series 
shown in Figure 1. One is the classical t-test and the other is 
the Wilcoxon signed-rank test. The general null hypothesis 
H0 for the t-test is that the mean of the difference is equal 
to 0, and for the Wilcoxon test the median of the difference 
is equal to 0. A rejection of the null hypothesis means that 
both indicators are significantly different, and its acceptan-
ce means that the accuracy  of  both indexes is similar. Table 
2 presents the results for the eight null hypotheses tested 
and it is important to note that both tests obtain the same 
results in terms of the acceptance of the null hypothesis. 

The first and second H0 relate MI model 1 with MI mo-
del 2, and FPI model 1 with FPI model 2 respectively. In 
both cases, the H0 of equality is strongly accepted, indica-
ting that the effect of a change in one of the input-varia-
bles, such as capital, does not produce any significant bias 
for either MI or FPI. However, when the cumulative series 
are evaluated (H0 5 and 6) only the FPI obtains similar re-
sults and the MI is sensitive to the proxy for capital.

H0 3, 4, 7 and 8 relate MI to its FPI counterpart. The 
rejection of H0 3 and 7 indicates that the estimations of the 
MI and FPI are different when the capital stock in model 
is considered. H0 is not rejected, indicating that MI and 
FPI yield statistically the same aggregate results when the 
traditional Machinery and Livestock capital variable is 
considered. Given that this has been the most common
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Table 1. Malmquist and Färe-Primont TFP indexes. Weighted annual mean change 1975-2007.
Years MI Model 1 MI Model 2 FPI Model 1 FPI Model 2
1975 1.0000 1.0000 1.0000 1.0000
1976 1.0002 1.0093 1.0092 1.0042
1977 0.9935 0.9878 0.9982 0.9951
1978 1.0265 1.0206 1.0205 1.0172
1979 0.9962 0.9921 1.0019 0.9973
1980 1.0018 0.9960 1.0017 0.9980
1981 1.0300 1.0257 1.0278 1.0293
1982 1.0206 1.0219 1.0187 1.0201
1983 0.9972 0.9966 0.9957 0.9863
1984 1.0385 1.0296 1.0356 1.0326
1985 1.0142 1.0173 1.0152 1.0182
1986 1.0028 1.0010 0.9984 0.9954
1987 1.0047 1.0023 1.0003 0.9956
1988 1.0156 1.0060 1.0125 1.0062
1989 1.0295 1.0276 1.0311 1.0317
1990 1.0233 1.0183 1.0190 1.0231
1991 1.0165 1.0117 1.0112 1.0139
1992 1.0172 1.0178 1.0164 1.0247
1993 1.0016 1.0108 1.0045 1.0115
1994 1.0189 1.0242 1.0078 1.0088
1995 1.0160 1.0142 1.0114 1.0057
1996 1.0270 1.0202 1.0289 1.0267
1997 1.0171 1.0196 1.0153 1.0169
1998 1.0117 1.0148 1.0051 1.0066
1999 1.0258 1.0260 1.0212 1.0201
2000 1.0066 1.0115 1.0087 1.0136
2001 1.0035 1.0039 0.9997 1.0008
2002 1.0206 1.0169 1.0104 1.0050
2003 1.0167 1.0139 1.0134 1.0111
2004 1.0264 1.0293 1.0228 1.0184
2005 1.0146 1.0162 1.0132 1.0173
2006 1.0183 1.0180 1.0209 1.0149
2007 1.0187 1.0216 1.0212 1.0216

Cumulative 1.595 1.550 1.512 1.468
Geometric mean of growth 1.42% 1.34% 1.26% 1.17%
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6	 All these results are somewhat different from those obtained by Le Clech & Fillat (2017b), where a different sample and assumptions are used in order to compare them with 
other studies.
7	 The estimations are available on request. The supplementary material of this paper includes the summary data that form the basis of the tables and figures in this section (Table 
S3 [suppl])

practice in this kind of estimation, it would mean that the 
estimations in all existing aggregate studies carried out 
with MI could be still relatively valid even in spite of the 
potential overestimation of TFP that the MI presents. 

Finally, it is remarkable that our results do not find 
any significant difference caused by the use of alternative 
proxies for the agricultural capital (capital stock vs. Ma-
chinery and Livestock) in the FPI results. By accepting the 
hypothesis by Butzer et al. (2010) that the Capital Stock 
variable is a better measure of agricultural capital stock 
than tractors, we can consider that the Machinery and Li-
vestock composed variable reported by ERS-USDA is a 
good proxy for the agricultural capital stock variable.6 

Färe-Primont results 

In this section, we offer the estimates of the FPI for the 
longest possible period according to the available infor-
mation, which is for a sample of 73 countries that covers 
95% of world agricultural production for 2015 and for the

period 1961-2015. This sample (Sample 2) is detailed in 
Table S2 [suppl]. The estimations were conducted assu-
ming VRS and no technical regress.7 Table 3 summarizes 
the estimates with the weighted average annual growth for 
the whole period and three sub-periods and Fig. 2 repre-
sents their cumulative evolution. Our estimates indicate 
that the weighted (geometric mean) annual growth rate of 
the TFP from 1961-2015 is only 1.03%. Although this re-
flects relative  poor dynamics, it is interesting to observe 
some differences between periods.

Following Pingali (2012), we distinguish two main 
periods, the first Green Revolution (GR), between 1966 
and 1985, and the post-Green Revolution over the fo-
llowing two decades (1986-2005). In addition, we con-
sider a third period, which we could call the “High Tech 
Revolution” which is characterized by the irruption of 
the so-called internet of things (IoT) into the agricul-
tural industry. TFP gains during the first GR were the 
smallest of these three periods. In addition, the greatest 
driver for this period was the improvement of OSME with null 

Table 3. Weighted geometric mean annual growth. TFP, TC, OSME and OSE.
Period TFP TC OSME OSE

1966-1985 0.71% 0.00% 0.74% 0.17%
1986-2005 1.15% 0.68% 0.29% 0.48%
2006-2015 1.07% 0.49% 0.53% 0.27%

TFP: total factor productivity. TC: technological component. OSME: output-oriented scale-mix efficiency. 
OSE: output-oriented “pure” scale efficiency).

Table 2. Paired sample T-test and Wilcoxon signed-rank test. 1976-2007.
Null hypothesis T-Test Wilcoxon

Annual change series T (abs) p-value W 1.0042
1) µMI-Model 1 - µMI-Model 2 = 0 1.102 0.279 325 0.254
2) µFPI-Model 1 - µFPI-Model 2 = 0 1.244 0.223 339 0.164
3) µMI-Model 1 - µFPI-Model 1 = 0 2.207 0.035 379 0.032
4) µMI-Model 2 - µFPI-Model 2 = 0 1.633 0.112 316 0.186

Cummulative series T (abs) p-value W 1.0042
5) µMI-Model 1 - µMI-Model 2 = 0 10.657 0.000 522 0.000
6) µFPI-Model 1 - µFPI-Model 2 = 0 0.824 0.416 203 0.262
7) µMI-Model 1 - µFPI-Model 1 = 0 4.075 0.000 429 0.001
8) µMI-Model 2 - µFPI-Model 2 = 0 0.508 0.615 203 0.262
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impact of technology and a small growth in OSE. These 
facts are congruent with new findings that indicate that, 
in spite of the rapid success of GR on rice and wheat, it 
took much longer for GR to be extended to other crops 
(Gollin et al., 2018). According to these authors, the 
rate of adoption and the number of new crop varieties 
released increased in the 1980s and 1990s and the ac-
celeration seems to have continued to the present day. 
In other words, the effects of GR on a global level are 
evident only from the post-GR period. In addition, GR 
initially depended on the use of fertilizers, pesticides and 
irrigation to create conditions in which high-yielding 
modern varieties could thrive, which could explain the 
zero growth of TC and the relevance of OSME in our es-
timations for the first period since this kind of efficiency 
indicates possible improvements in productivity due to 
changes in input structure.

The agricultural economy experienced an important 
boom during the post-GR period, in which two stages 
can be identified. The first was led by efficiency impro-
vements, likely due to the opening up of the world eco-
nomy which occurred from the late 1980s and intensified 
during the 1990s. The second started in the mid-1990s 
and was led mainly by technological improvements. This 
technological wave may be explained basically by the di-
ffusion of the use of direct seeding and the new develop-
ments in GM. The upsurge observed from 1996 to 2000 
is remarkable. In this period, globalization and the inter-

national transfer of technology were essential factors in 
promoting the commercial spread of GM crops in deve-
loping countries (Pingali & Terri, 2005).

Comparing the first GR with the post-GR period, it 
is important to note the differences in scale efficiency 
that constituted one of the major drivers for the second 
period. This result confirms that GR technology was 
scale-neutral. As Patel (2013, p. 19) stated: “First, then, 
is the claim, found in Mosley (2002), Birner & Resnick 
(2010) and Hazell et al. (2010) that the Green Revolu-
tion technology was scale neutral, with divisible inputs, 
and therefore of benefit to both smallholders and larger 
farm owners”. On the other hand, the post-GR period 
was characterized by land concentration processes and 
the implementation of several genetic improvements 
in crops. These changes focused mostly on producing 
high-yielding varieties, which decrease in time to ma-
turity and produce an increase in cropping intensity, 
allowing an additional harvest per year in some regions. 

During the third period, TC remained unchanged 
until 2014, when a new leap occurred. It is probably 
due to a contagious effect of the diffusion of the “new 
digital-revolution” in agriculture, which provided new 
opportunities for the smarter use of agricultural resour-
ces. This included remote sensing and spatial mapping 
technologies, cell phones and other information and 
communication technologies that can contribute to the 
smarter application of water, fertilizers and other inputs. 

Figure 2. Cumulative TFP, TC, OTE, OSE and OSME indexes.
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Throughout the last period, both technology and OSME 
also played an important role. Scale efficiency played 
a less important role than during the previous period.

Some regional comparisons

By region, West Asia and North Africa (WANA) 
show average rates of 1.66%, above the world average, 
followed by Asia, Oceania, North America and Latin 
America, with rates of 1.17%, 1.24%, 1.14% and 1.11% 
respectively. Below the world average are Sub-Saharan 
Africa, the Former Soviet countries and Europe with ra-
tes of 0.94% 0.68% and 0.45% respectively. Fig. 3 shows 
this evolution.

According to their growth in efficiency (Fig. 4 and 
Table S3 [suppl]), the ranking is the same, from WANA’s 

efficiency growth of 1.09% to even small or negative ra-
tes for the Former Soviet countries and Europe, with a 
growth rate in efficiency of 0.11% and -0.11% respecti-
vely. In all regions, from the mid-1990s to 2001 there was 
a recession in efficiency and a subsequent recovery. 

West Asia and North Africa’s relatively high TFP 
growth is driven by technical efficiency. Nin  et al. (2017) 
attributed the boost to efficiency in the early 1990s to the 
one-time effect of the policy reforms. Later, new techno-
logies and investments, such as irrigation, improved agri-
cultural practices and the development of high-value crops 
drove TFP, undermined by a significant population pressu-
re on labor markets. Egypt dominated TFP growth, Iran 
and Morocco showed moderate growth, while Turkey’s 
had been declining from the 1990s due to efficiency los-
ses (Ozden, 2014; Abukari et al., 2016; Nin et al., 2017).
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Figure 3. Cumulative TFP indexes by regions.
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In Asia, TFP increased gradually throughout the period, 
with a boost in 1980 and a slight slump in the early 1990s. 
The index captures the incidence of countries with high 
productivity growth, such as China, and countries with 
low productivity growth but a significant weight, such as 
India. Throughout the 1970s and 1980s, India invested in 
new green technologies and infrastructures. However, ins-
tability due to climatic shocks affected the TFP trend. The 
boost in the 1980 reflects China’s high agricultural TFP 
growth; with improved water control, access to fertilizers 
and other inputs, investment in agricultural R&D and, 
since the 1990s, direct seeding and other capital intensive 
advances. The slight slump in the 1990s reflects the reduc-
tion in agricultural efficiency in India and the stagnation 
of productivity in Indonesia from 1992 to the recovery 
after the Asian financial crisis. Since 2002, the TFP of 
certain Chinese cereals has stagnated or declined due to 
inappropriate management practices related to fertilizers, 
soil and water, evolving institutional structures, unstable 
research spending or a boom in horticulture and livestock 
over other crops. Recent advances in TFP growth reflect 
the Chinese strategy for a sustainable intensification of 
production, diversification towards high-value agricultu-
re and progress in productivity in India, the return to an 
agriculture-first development strategy in Indonesia or the 
re-greening program in Vietnam (Ludena, 2010; IBRD/
WB, 2011; Jin et al., 2012; Fan et al., 2012; Fuglie, 2012c; 
Sing & Pal, 2012).

In Oceania, TFP grew strongly from the 1970s, driven 
by efficiency. This growth was reversed in the late 1990s. 
TFP growth has been larger in Australia than in New 
Zealand and in crops than in livestock. Although scale 
economies had been important, this trend reversed becau-
se of an increasing use of purchased inputs in cropping, 
the stagnation of public investment in agricultural research 
since the 1970s and the run of poor seasons, particularly 
for the period 2001-2007 (Mullen, 2012).

In North America there was an increasing trend in TFP 
growth, which was slightly slower in the 1980s. In 1994 
efficiency declined but recovered after 2003. Some authors 
have found a slowdown in the agricultural productivity of 
the United States in the 1980s and 1990s (Alston et al., 
2012; Ball et al. 2013) and in that of Canada (Veeman & 
Gray, 2012; Darku et al., 2016), attributed to the previous 
slowdown of total spending on agricultural R&D. In the 
late 1990s efficiency dropped and TPF growth was driven 
by technological change, probably related to the GR. The 
recovery of efficiency from 2003 is consistent with the re-
cent evidence of agricultural intensification in capital and 
the positive impact of public and private research activity, 
such as that conducted on crop seeds, biotechnology, crop 
protection chemicals, fertilizers, farm machinery, animal 
health, animal genetics and animal nutrition (Ball et al., 

2013; Wang et al., 2013). In Canada, scale economies 
from a few large livestock farms boosted TFP, along with 
technical change, which is the main driver in crops.

In Sub-Saharan Africa, TFP growth was not robust in 
the region until the 1980s but there have been success-
ful experiences. Ethiopia and Kenya have developed pro-
grams for sustainable soil and water conservation, early 
warning systems and increased value added adapted to 
producer’s priorities; Niger and Burkina Faso are imple-
menting projects of this type. In South Africa, an increase 
in the average farm size and the production of higher-va-
lue commodities, drove productivity but, since the late 
1980s, productivity growth has slowed down. Botswana 
suffers from marked differences between commercial and 
traditional farmers, while assistance to agriculture after 
independence in Ghana is a clear driver of TFP (IBRD/
WB, 2011; Fuglie, 2012c; Liebenberg & Pardey, 2012; 
Block, 2016). 

Latin America has experienced sustained TFP growth 
since the 1980s and, since, the 1960s in Argentina. Until 
the 1980s efficiency losses undermined TFP growth, al-
though since 2001 all countries have experienced a po-
sitive trend. In Argentina, scale and scope economies as 
well as technological change have driven TFP. In the early 
1990s, trade liberalization, the creation of Mercosur and 
currency convertibility favored imports of inputs, machi-
nery and irrigation equipment, with crops growing faster 
than livestock. After a collapse at the end of 2001, the 
highly favorable conditions in world markets encouraged 
a strong recovery from 2002 to 2007, although subse-
quent policies seem to be “against agriculture”. Brazil has 
sustained exceptionally high TFP growth rates since the 
1980s and the benefits from research since the mid-1990s. 
The TFP in Chile increased from 1961 to 2011, with slow-
downs in the 1980s and in 1996; in Paraguay it decreased 
until the 1990s and Uruguay shows slower growth (Lude-
na, 2010; Fuglie, 2012c; Lence, 2012; Lema, 2015).

In the Former Soviet countries, TFP and efficiency 
growth paths started with the green revolution and the ra-
dical reforms in the 1990s. This trend was fueled by the 
spillovers from Foreign Direct Investment in the Baltic 
States and the rich Central European countries, and in the 
poorest members since 2000. After 1998, the increased li-
quidity in Russia was invested in agriculture and the food 
industry and promoted productivity growth. In Kazakhs-
tan and Ukraine, reforms were implemented slowly, and 
productivity regressed in the poor Transcaucasian and 
Central Asian countries because of the shift toward indivi-
dual farming (Fuglie, 2012c; Swinnen et al., 2012).

Finally, TFP growth in Europe practically stagnated 
until 2007, with efficiency losses in most of the period. 
Innovation is the effective policy for countries at the tech-
nological frontier but technological changes are scarce. 
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Efficiency is the driver of TFP, which is negative in Ger-
many, Finland or Slovenia. The regional structural break 
in 1996 and the decline and recovery of efficiency is also 
documented in the UK (Piesse & Thirtle, 2012; Domanska 
et al., 2014; Baráth & Fertó, 2017).

To sum up, there have been important advances in TFP 
growth, with a structural change in the mid-1990s and he-
terogeneous trends in efficiency. Institutional reforms and 
agricultural R&D have been drivers of productivity. Re-
cent literature suggests technological and ecosystem-ba-
sed approaches to leverage agricultural TFP (Coomes et 
al., 2019).

Discussion

We have carried out new estimations of the TFP in 
the agricultural sector based on the most recent advan-
ces made by O’Donnell (2014) that allow multilateral 
and international comparisons. The comparison of the-
se two indexes shows that the MI seems to be sensitive 
to changes in variables while FPI provides more ro-
bust results. However, given the evidence obtained in 
the comparison between MI and FPI for model 2, their 
difference was not significant. Therefore, the estima-
tes presented by all past aggregated studies carried out 
with MI could be still relatively valid in spite of the 
potential overestimation of TFP. 

Regarding the difference in the proxies for ca-
pital stock variables and based on the FPI results, 
the evidence does not show any important differen-
ces between the results obtained from the two varia-
bles of agricultural capital stock (Capital Stock vs. 
Machinery+Livestock). In this respect, we can sta-
te that the Machinery+Livestock variables reported 
by ERS-USDA are good proxies for the agricultural 
capital stock variable.

For the general analysis of the global results, we 
have distinguished three main periods, the first Green 
Revolution (1966-1985), the post-Green Revolution 
(1986-2005) and a third period we have called the 
“High Tech Revolution” (2006-2015). Our findings 
show that the first GR was the period with the slowest 
growth, with null impact of technology and the impro-
vement of OSME as the main driver. This coincides 
with new findings that indicate that it took much lon-
ger for GR to be extended to other crops and across 
the world. Observing the TC leap in the mid-1990s, we 
can conclude that the rate of adoption and the number 
of new crop varieties released due to the GR increased 
at the end of the 1980s and throughout the 1990s until 
the present day. In other words, technological impacts 
of the GR on a global level are evident only from the 

post-GR period. In addition, the zero growth of TC 
and the relevance of OSME could be explained by the 
change in the input structure to create the conditions 
in which high-yielding modern varieties could thrive.

The post-GR period reveals an important boom for 
the agricultural economy, in which two stages can be 
identified. The first is led by efficiency improvements, 
likely driven by the world economic opening-up from 
the late 1980s and during the 1990s. The second be-
gan in the mid-1990s, led mainly by technological im-
provements and largely explained by the diffusion of 
the use of direct seeding and the new developments 
in GM. The remarkable technological change between 
1996 and 2000 reflects the effect of globalization and 
the international transfer of technology in promoting 
GM crops in developing countries. While scale was 
neutral during the first GR, scale efficiency was one of 
the major drivers during the post-GR. This second pe-
riod was characterized by a land concentration process 
and the implementation of several genetic improve-
ments in crops that allowed an additional harvest per 
year in some regions, which increased scale efficiency.

The third period was characterized by a stagnation 
of TC, which remained unchanged up to 2014, when 
a new upsurge occurred, probably facilitated by the 
initial diffusion in agriculture of the “new digital-re-
volution”, which provided new opportunities for the 
smarter use of agricultural resources. Throughout this 
period, both technical and scale efficiency also played 
an important role, although scale efficiency was more 
important in the previous period. These new IoT te-
chnologies are expected to have an important impact 
on agriculture industry. Some authors, such as Pingali 
(2012), have pointed out that the adaptation of pre-
cision agriculture techniques for developing country 
smallholder agriculture conditions could have sig-
nificant global public good benefits. However, it re-
mains to be seen whether this new technological leap 
will be as important as the one occurring between 
1990 and 2000.

The important advances in TFP have been heteroge-
neous by region, with higher TFP and efficiency growth 
in West Asia and North Africa, Asia, Oceania and North 
America; growth occurred later or stagnated in Sub-Sa-
haran Africa, Former Soviet countries and Europe. Effi-
ciency and productivity trends have been closely linked 
to scale economies in Oceania, North America and Latin 
America; the main drivers in West Asia and North Africa 
and India have been infrastructures and new technologies; 
reforms have been fundamental in West Asia and North 
Africa and the Former Soviet countries; finally, a boost 
in agricultural R&D has propelled TFP in China while 
an R&D slowdown has undermined it in North America.
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