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Abstract
An in-depth knowledge about variables affecting production is required in order to predict global production and take decisions 

in agriculture. Machine learning is a technique used in agricultural planning and precision agriculture. This work (i) studies the 
effectiveness of machine learning techniques for predicting orchards production; and (ii) variables affecting this production were 
also identified. Data from 964 orchards of lemon, mandarin, and orange in Corrientes, Argentina are analysed. Graphic and analytical 
descriptive statistics, correlation coefficients, principal component analysis and Biplot were performed. Production was predicted via 
M5-Prime, a model regression tree constructor which produces a classification based on piecewise linear functions. For all the species 
studied, the most informative variable was the trees’ age; in mandarin and orange orchards, age was followed by between and within 
row distances; irrigation also affected mandarin production. Also, the performance of M5-Prime in the prediction of production is 
adequate, as shown when measured with correlation coefficients (~0.8) and relative mean absolute error (~0.1). These results show that 
M5-Prime is an appropriate method to classify citrus orchards according to production and, in addition, it allows for identifying the 
most informative variables affecting production by tree.
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Introduction

Agriculture implies high levels of production 
risks and many variables must be considered to take 
decisions. In order to define management strategies 
and development programmes, an adequate knowledge 
about variables most directly affecting production is 
essential. Understanding the behaviour of variables 
is difficult due to the complexity of relationships and 
to the amount of factors involved. Citrus production 
becomes a special challenge due to the significant 
spatial and temporal variability present in orchards.

In citrus orchards, production is primarily defined 
by the amount and size of fruits. Production can 
be affected by both endogenous and exogenous 
factors. Endogenous factors are, for instance, genetic 

characteristics of species or varieties, and physiological 
issues. Among the exogenous factors, environmental 
and crop conditions, especially irrigation and 
fertilisation, are highlighted (Agustí, 2000, 2003). 
Production is also determined by trees’ age, and their 
reaching a commercial production volume (> 50 kg/
tree) at adult age (> 7 years after transplant) (Orduz-
Rodríguez et al., 2007).

Citrus trees’ development is possible between 10°C 
and 40°C and optimised between 24°C and 32°C. Fruit 
size and final set depend, among other factors, on the 
availability of carbohydrates for developing flowers. 
Thermal influence is very limited in the range of 22°C 
to 30°C. However, if leaf temperature rises above 32°C, 
the CO2 assimilation rate decreases. Thermal influence 
on growth and competition between vegetative and 
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reproductive developments, emphasise problems from 
a limitation in the CO2 fixation, such as the alternation 
of productivity between seasons, reducing fruits’ size, 
and final fruits set (Agustí, 2003).

Maximum and average temperatures, reference 
evapotranspiration, wind speed, and relative humidity, 
are the meteorological variables with the greatest 
influence on fresh dough and equatorial diameter of 
fruits. In citrus orchards growing at temperate climates, 
autumn rains improve the fruits’ final size and juice 
content, and reduce the concentration of sugars and free 
acids. Total annual rainfall between 900 mm and 1200 
mm is enough to ensure fruit development. On the other 
hand, drought periods (even if short) tend to reduce 
the fruit size. When lower values or dry seasons occur, 
complementary irrigation is needed (Agustí, 2000, 
2003). Irrigation absence mainly affects the fruit size, 
although the effect of this absence also depends on the 
phenological state (González-Altozano & Castel, 2003; 
García Petello & Castel, 2004; Gasque et al., 2010).

Many variables must be considered prior to making 
decisions about planting the framework. Tree vigour 
and growth habitat, as influenced by variety and 
rootstock, are important, and site quality in terms of 
climate, soil characteristics, and water availability must 
be considered. In general, higher density plantings 
that rapidly develop into a hedgerow appear to be 
advantageous, especially at the beginning of trees’ 
production life. However, vigorous combinations with 
more spreading growth habits should be planted with 
wider spacing (Tucker et al., 1994; Medina-Urrutia et 
al., 2004).

Machine Learning (ML) is a branch of artificial 
intelligence that provides methods with the ability 
to learn from or to make predictions on data. These 
methods build a model from example inputs in order to 
make predictions or to take decisions (Mitchell, 1997). 
ML does not make any assumptions about the right 
structure of the data model, allowing the construction 
of complex non-linear models. There are many different 
paradigms in ML: lazy methods such as K-Nearest 
Neighbours (KNN) (Altman, 1992) methods, based on 
tree construction, as, for instance, C4.5 (Quinlan, 1993) 
or Neural or Bayesian networks (Mitchell, 1997). All 
of them have been successfully used in many different 
domains. For instance, neural networks have been 
successfully used to predict maximum dry density and 
unconfined compressive strength of cement-stabilised 
soil (Das et al., 2011), or to detect structural damage 
(Alavi et al., 2016a,b). 

In particular, some of these methods have been 
applied for comprehensive agricultural planning in 
precision farming (PF) (Arango et al., 2015). PF 
techniques provide a complete knowledge about spatial 

variability and the different characteristics of a specific 
area, helping to define more efficient and rational 
crop management plans in relation to a more localised 
use of fertilisers and agrochemicals (Yu et al., 2010; 
Fernandez Quintanilla et al., 2011). 

Among the huge number of issues related to PF, 
pest prediction is a task where different ML techniques 
have been successfully applied. In particular, Bayesian 
techniques have been adopted (Tripathy et al., 2011; 
Pérez-Ariza et al., 2012). On the other hand, support 
vector machines are also extensively used (Wang & 
Ma, 2011). 

When the variable to predict is continuous, ML 
methods more commonly used are CART (Breiman, 
2001), M5 (Quinlan, 1992), M5-Prime (Wang & 
Witten, 1997), KNN (Altman, 1992), or support vector 
regression (SVR, see Basak et al., 2007). 

The model tree technique (see, for example, Frank et 
al., 1998, or Samadi et al., 2014) is based on combining 
decision trees with linear regression functions at the 
leaves. There are several techniques to predict numeric 
values instead of just a label. Standard regression 
imposes a linear relation on data; hence, it is not quite 
powerful. On the other hand, other paradigms not based 
on constructing a tree (such as Neural Networks, SVR 
or lazy classifiers) can be quite powerful, but their 
interpretability is low. 

Regarding model tree techniques, the strategy to 
construct the tree is similar for all of them (El Gibreeb 
& Aksoy, 2015). The main differences among the 
methods are the splitting criteria, the pruning rules, and 
the mechanism to estimate the leaf value. CART uses 
variance as the splitting criteria, while M5 uses standard 
deviation reduction (SDR). In addition, the estimated 
value for a leaf is constant in CART. In contrast, M5 
approximates the leaf values by linear regression 
models. In addition, it is able to improve predictions 
by introducing a smoothing procedure (Quinlan, 1992). 
Furthermore, trees generated with M5 are smaller than 
those generated with CART. Thus, M5 outperforms 
CART in accuracy and simplicity (Uysal & Altay, 
1999). M5-Prime is an improvement over M5 that can 
deal with missing values and enumerated attributes 
(Wang & Witten, 1997) and has been used, for instance, 
to predict streamflow (Onyari & Ilunga, 2013), to 
model sediment yield (Goyal, 2014), to estimate the 
maximum scour depth at breakwaters (Pourzangbar et 
al., 2017) and to predict the compressive strength of 
high performance concrete (Behnood et al., 2017). 

González-Sánchez et al. (2014) compared the 
predictive accuracy of ML and linear regression 
techniques for crop yield prediction in ten crop 
datasets. Multiple linear regression, M5-Prime model 
trees, Perceptron Multilayer Neural Networks, SVR, 
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and KNN methods, were ranked. M5-Prime and 
KNN techniques obtained the lowest errors and the 
highest average correlation factors. M5-Prime, which 
achieves the largest number of crop yield models 
with the lowest errors, was considered a very suitable 
tool for massive crop yield prediction in agricultural 
planning. In addition, it is more interpretable than 
KNN. Other approaches combine partial least square 
models and spectral imaging technology (Ye et al., 
2007).

As production-predictive tasks require the learned 
model to predict a numeric value associated with a 
variable rather than the class the example belongs 
to, model regression trees are proposed. Hence, this 
work checks the effectiveness of ML techniques in 
order to determine the affecting variables and classify 
citrus orchards according to production. In particular, 
the predictive mechanism established in this work to 
characterise the variables involved, and to identify the 
most important factors affecting citrus production, is 
based on the M5-Prime method.

Material and methods

The studies have been conducted during seasons 
2013 and 2014, with field information from 964 Citrus 
orchards in the province of Corrientes, Argentina, 
located at latitudes 57°W to 59°W, and longitudes 
27°S to 31°S. Orchard tree canopies belong to several 
varieties of three species: lemon (Citrus limon Burman), 
mandarin (Citrus reticulata Blanco), and sweet orange 
(Citrus sinensis Osbeck), over diverse rootstocks.

Every orchard was characterised by the following 
variables: global position (latitude and longitude 
degrees, minutes and seconds); annual minimum and 
maximum average temperatures (ºC), annual total 
rainfall (mm) and annual total frost-free days defined 
from the corresponding isolines at orchards’ location; 
environment, species, variety, age of trees, planting 
framework (between rows’ distance, m; within rows’ 
distance, m), presence or absence of irrigation (binary) 
and production by tree (kg/tree).

Lemon was present in 94 orchards (9.6%), placed 
at 28°S to 30°S and 57°W to 59°W, in Mesopotamic 
Park and savanna environments, with annual average 
temperatures between 18°C and 21°C, total annual 
rainfall between 1000 mm and 1200 mm, and 320 to 
340 frost free days in the year. Two varieties of lemon 
were found in the studied orchards: ˈEurekaˈ (71% 
of orchards) and ˈGenovaˈ (26% of orchards). In 
addition, 3% of orchard varieties could not be identified 
(Unknown). Only 26.5% of the orchards were under 

irrigation, with similar percentages in all varieties. The 
characteristics of these orchards are presented in Table 
1.

Mandarin was present in 364 orchards (37.6%), 
placed at 28°S to 30°S and 57°W to 59°W, with annual 
average temperatures between 18°C and 21°C, total 
annual rainfall between 1000 mm and 1200 mm and 320 
to 360 frost free days in the year, in mesopotamic park 
and savanna environments (however, ˈClemenulesˈ, 
ˈMurcottˈ, ˈCriollaˈ, ˈNovaˈ, ˈDancyˈ and ˈOkitsuˈ 
varieties appeared in all locations; W Murcott is 
present only at 59°W, 29°S in mesopotamic park 
environment and the others only at 57°W, 30°S in 
savanna environment). Twelve varieties of mandarin 
were found in the studied orchards: ˈMurcottˈ (24% of 
orchards), ˈEllendaleˈ (20%), ˈOkitsuˈ (15%), ˈNovaˈ 
(12%), ˈDancyˈ (8%), ˈClemenulesˈ (6%), ˈCriollaˈ 
(5%), ˈEncoreˈ (3%), ˈOrtaniqueˈ (2%), ˈMalvacioˈ 
(1%), ˈMontenegrinaˈ (1%) and ˈW Murcottˈ (1%). 
In 1% of orchards, the variety could not be identified 
(Unknown). Irrigation was present in 45% of orchards, 
with higher percentages in ˈMontenegrinaˈ, ˈW 
Murcottˈ, ˈClemenulesˈ, ˈNovaˈ and ˈMurcottˈ. Table 1 
presents a description of these orchards.

Orange was present in 509 orchards (52.8%), placed 
at 28°S to 30°S and 57°W to 59°W, in mesopotamic 
park and savanna environments, with annual average 
temperatures between 18°C and 22°C, total annual 
rainfall between 1000 mm and 1400 mm, and 320 to 360 
frost free days in the year. Fourteen varieties of orange 
were found in the studied orchards: Valencia late (50% 
of orchards), Salustiana (8%), Valencia seedless (7%), 
Washington navel (7%), Delta seedless (5%), Valencia 
frost (4%), Criolla (3%), Lane late (2%), Navel late 
(2%), Navelina (2%), Robertson navel (1%), Newhall 
(0.2%), Hamlin (0.2%) and Westin (0.2%). In 7% of the 
orchards, the variety could not be identified (Unknown). 
Irrigation was present in 42.4% of the orchards, with 
higher percentages in Salustiana, Midknight, Navelina, 
Robertson Navel, and Newhall. Description of these 
orchards is presented in Table 1.

Statistical analysis

Graphic and analytical descriptive statistical tools 
were used, and Pearson correlation coefficients (R) 
calculated, in order to define and characterise the 
relationships between all variables and production 
by tree. Principal component analysis (PCA) and 
Biplot graphics were performed to reduce dimension 
in a way that allows for examining data in a less 
dimensional space. PCA builds artificial axes 
(principal components) with maximum variability, 
enabling scatter plots of observations and/or variables 
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with optimum properties for the interpretation of the 
underlying variability and co-variability. In Biplots, 
observations and variables can be visualised in 
the same space, and possible associations between 
variables and observations can be identified (Di 
Rienzo et al., 2015). These analyses were performed 
with InfoStat 2015 (Di Rienzo et al., 2015).

Learning approach

Based on endogenous (species, varieties, age of 
trees) and exogenous factors (global position, annual 
minimum and maximum average temperatures, total 
rainfall and total frost-free days, environment, planting 
framework and irrigation) (Agustí, 2003), citrus 
production was predicted via regression trees, which 
have been demonstrated as suitable methods to crop 
yield prediction.

M5-Prime is a learner which constructs regression 
trees producing a classification, based on piece-wise 
linear functions (Wang & Witten, 1997). To do that, 
the space is partitioned into a set of regions. Further, 
the predicted value is fitted within each region using 
a linear model. The way this method works is the 
following: Assuming a training set with examples, each 
one defined by its value on a set of attributes (discrete 
or continuous) and a continuous target, the method 
constructs a model that relates the target values of the 
training examples to the values of the variables defining 
the example. This model can then be easily applied to 
predict the target variable: in the first phase, the decision 
tree (see, for example, the ones in Fig.s 2, 4, and 6) 
is used to classify the example into one of the groups; 
then, the linear equation associated with the particular 
group the example has been classified into, is used to 
predict the target variable (see Tables 2, 4, and 6 for 
examples of these equations). 

M5-Prime selects the split that maximises the 
expected error reduction. Once the tree is constructed, 
a multivariate linear model is computed for the 
examples at each tree node with standard regression 
techniques and using only attributes that are 
referenced by tests or linear models somewhere in the 
sub-tree under this node. The main characteristics of 
this method are:
1. Regression tree construction:

a) Splitting criterion: Maximise SDR

T  being the set of examples (orchards in this case) 
that reaches the node and T1, T2, … the subsets resulting 
from the node split according to the chosen attribute.

b) Stopping criterion: Standard deviation below a 
given threshold (small enough) in all nodes.

c) Pruning: Heuristic estimation of absolute error of 
linear regression models.

with n being the number of examples that reach the 
node and υ the number of parameters that represent 
the class value at that node. Pruning greedily removes 
terms from linear regression models to minimise the 
estimated error.

d) Smoothing is used to compensate discontinuities 
between the adjacent linear models at the leaves of 
the pruned tree. The smoothing process uses first the 
leaf model to compute the predicted value, and then 
it filters that value along the path back to the root, 
combining it with the value predicted by the linear 

Table 1. Characterisation of lemon, mandarin and sweet 
orange orchards: latitude degree (LATD), longitude de-
gree (LONGD), annual average temperature (TAV), total 
rainfall (TR), frost-free days (FFD), trees’ age (AGE) and 
trees’ production (PROD), during seasons 2013 and 2014

Description Minimum Maximum

Lemon

LATD (S) 28º 30º 

LONGD (W) 57º 59º 

TAV (ºC) 18º 21º

TR (mm) 1000 1200

FFD 320 340

AGE (years)       6      19
PROD (kg) 5.63 768.88

Mandarin

LATD (S) 28º 30º 
LONGD (W) 57º 59º 
TAV (ºC) 18º 21º
TR (mm) 1000 1200
FFD 320 360
AGE (years)       1      62
PROD (kg) 1.11 2222.22

Sweet orange

LATD (S) 27º 31º 
LONGD (W) 57º 59º 
TAV (ºC) 18º 22º
TR (mm)       1000     1400
FFD         320 360
AGE (years)          2       50
PROD (kg)  0.27 200
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model for that node. The modified prediction p’ is 
computed by

with n being the number of examples at the smoothed 
node, k a constant, q and r are respectively the predictions 
passed to the studied node from below and the value 
predicted by the model at the studied node. Basically, 
this process propagates the effect of incorporating the 
ancestor models into the leaves.
2. The value at each leaf is estimated using a linear 
regression function.
3. At each node, it uses only a subset of the attributes 
occurring in the sub-tree.

The experiments were conducted using the RWeka 
Package, using the M5-Prime function with the standard 
configuration, i.e., with pruning, smoothing, and with 
4 being the minimum number of examples per node. 
Bootstrap resampling was used, that involves taking 
random samples from the dataset (with re-selection) to 
evaluate the model. In aggregate, the results reduce the 
effects of random selection. The experiments performed 
here were repeated 100 times. The models were trained 
with the original variables described at the beginning 
of the section. In addition, no feature reduction or 
extraction was applied since M5-Prime automatically 
selects the most relevant variables when building the 
decision trees. 

The accuracy of this method was studied in terms of 
root mean square error (RMSE), correlation coefficient 
(R) and the relative mean absolute error (MAE). RMSE 

measures the difference between the real and the 
estimated value and MAE compares the average of the 
differences between the real and the estimated values 
to the average of the estimated values (Han & Kamber, 
2006).

Results and discussion

Lemon

The R coefficients calculated indicate that 
production by tree is significantly associated in a 
positive way with trees’ age (R=0.64; p<0.0001) and 
longitude (R=0.48; p<0.0001); and in a negative way 
with rainfall (R=-0.77; p<0.0001).

In Fig. 1, PCA Biplot associations between variables 
and observations can be identified. Angles between 
variable vectors and principal components indicate 
that the principal axis (containing 88.5% of variability) 
separates the different orchards by production by tree. 
On the right are more productive orchards, mostly 
belonging to Genova and Unknown varieties, with 
higher ages, latitudes, rainfall values and no irrigation. 
On the left are less productive orchards, primarily 
belonging to ˈEurekaˈ variety, with higher longitudes, 
frost-free days, and within and between rows distance. 
Although orchards’ locations present small variations, 
PCA results indicate variability in production associated 
to latitude and longitude. 

Fig. 2 shows the regression tree obtained by M5-
Prime algorithm and Table 2 presents the linear 

Figure 1. Principal Component Analysis Biplot of trees' production (PROD), trees' age (AGE), irri-
gation (IRR), latitude and longitude degrrres (LATD, LONGD), plantig framework (distance between 
rows, BEET and within row, WITH), annual minimum and maximum average temperatures (TAVMIN, 
TAVMAX), minimum and maximum total rainfall (RMIN, RMAX) and minimum and maximum frost-
free days (FFDMIN, FFMAX) by variety (EUREKA, GENOVA, UKNOWN) in lemon orchards, dur-
ing seasons 2013 and 2014.
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regression equation associated to each leaf. According 
to that, the best variable to classify lemon production 
is the trees’ age. Thus, orchards could be classified into 
three groups: L1, with trees’ age of 9 years or below, the 
lowest production and high variability; L2, with trees’ 
age between 9 and 21 years, an intermediate production 
and the highest variation; and L3, with trees’ age over 21 
years, the most homogeneous group with the maximum 
production by tree. Table 3 presents descriptive statistics 
of production by group.

Results obtained by all techniques related age with 
production by tree. However, in Biplot, other variables 
showed smaller angles with production, indicating 
stronger association. On the other hand, M5-Prime 
allows for grouping orchards according to production 
by tree and highlights age as the best classification 
variable.

In addition, M5-Prime defines groups primarily based 
on trees’ age. Minimum and maximum temperatures, 
despite being below optimum values (Agustí, 2003), 
did not differ between orchards. According to Orduz-
Rodríguez et al. (2007), orchards with trees’ age below 
9 years (L1), can be defined as pre-productive ones, 
with production of just over the minimum of 50 kg/

tree. Orchards with trees between 9 and 21 years old 
(L2) (that are in a productive stage) almost doubled the 
production by tree.

Differences between L1 and L2 were mainly based 
on differences of weights associated to within rows 
(see Table 2), probably due to the effects of slightly 
strong planting in trees at the beginning of production 
life (trees’ ages between 6 and 19 years), agreeing with 
Tucker et al. (1994) and Medina-Urrutia et al. (2004) 
(average distances L1: 6.33 m × 4.31 m; L2: 6.63 m × 
4.05 m).

Orchards with tree age of over 21 years (L3), with 
the weakest planting framework, showed the largest 
production by tree. In this group, the main factor 
affecting production was irrigation. This can be 
deduced from the value of the corresponding coefficient 
in regression tree and from the fact that 76% of orchards 
in this group are irrigated. On the other hand, L1 and L2 
orchards (< 25%) indicated that this practice is necessary 
and improves yield, according to Agustí (2000, 2003), 
González-Altozano & Castel (2003), García Petello & 
Castel (2004), and Gasque et al. (2010).

Differences in regression coefficients with L3 were 
mostly based on the inclusion of the ˈEurekaˈ variety 
and latitude degree coefficients. In addition, the 
weight of irrigation, distance within rows and constant 
coefficients also influence these differences. Note that 
latitude and variety (specifically ˈEurekaˈ) are not 
relevant variables for trees with age over 21 years. 

Mandarin

According to R coefficients, production by tree 
is significantly associated, in a positive way, with 
distance between rows (R=0.12; p<0.0274) and within 
rows (R=0.16; p<0.0023). However, coefficient values 
indicate a weak association.

Figure 2. Regression tree of lemon orchard production classifica-
tion by M5 algorithm (AGE: trees’ age)

Table 3. Size (n) and descriptive statistics of production 
by tree (Av: average, CV: coefficient of variation, Min: 
minimum, Max: maximum, Med: median, Q1: first quar-
tile, Q3: third quartile) by group in lemon orchards, during 
seasons 2013 and 2014

Statistics L1 L2 L3
n 36 41 17
Av 65.44 123.61 418.49
CV 80.77 85.61 54.62
Min 10.00  5.63 30.77
Max 210.00 500.00 769.88
Med 49.86 100.00 405.56
Q1 28.57 58.82 210.00
Q3 80.00 182.19 591.55

Table 2. Linear regression equation associated to each 
leave of regression tree build by M5 algorithm in lemon 
orchards (IRR: irrigation, VAR: variety, WITH: within 
row distance, LATD: latitude degree, AGE: trees’ age)

Variable L1 L2 L3
IRR 0.0273 0.0273 0.2546
VAR=Eureka -0.0163 -0.0153
WITH -0.0120 0.0008 0.0138
LATD -0.0071 -0.0067
AGE 0.0033 0.0032 0.0043
Constant 0.3130 0.2794 0.0187
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Fig. 3 presents PCA Biplot, and associations between 
variables and observations could be identified. PCA and 
two coordinates Biplot showed that a principal axis 
(containing 64.9% of variability) separated the different 
orchards by location, climatic conditions and varieties, 
but it was not associated with production by tree. The 
second axis (conserving 15.6% of variability), separated 
orchards by productivity. On top were more productive 
orchards without irrigation, with older trees and higher 
planting frameworks.

Results obtained from M5-Prime indicate that tree 
age was the most informative variable to classify 
mandarin production, followed by irrigation, between 
and within rows distances as shown in Fig. 4 and Table 

4. Although orchards’ locations present small variations, 
PCA results indicate variability in production associated 
to latitude and longitude. 

M5-Prime classified mandarin orchards into eight 
groups. For instance, M1, with tree age of 11.5 years 
or below, comprised the largest number of orchards, 
with one of the smallest productions by tree and high 
variation. The most relevant variable for the other seven 
groups associated to orchards older than 11.5 years, was 
irrigation. Descriptive statistics of production by group 
are presented in Table 5.

In mandarin orchards, not all techniques related 
age with production by tree. Age and production were 
non-significantly associated according to R coefficient 

Figure 3. Principal Component Analysis Biplot of production tree (PROD), trees’ age (AGE), irrigation 
(IRR), latitude and longitude degrees (LATD, LONGD), planting framework (between rows, BEET, with-
in row, WITH), annual minimum and maximum average temperatures (TAVMIN, TAVMAX), minimum 
and maximum total rainfall (RMIN, RMAX) and minimum and maximum frost-free days (FFDMIN, 
FFDMAX) by variety in mandarin orchards, during seasons 2013 and 2014

Table 4. Linear regression equation associated to each leave of regression tree build by M5 algorithm in mandarin 
orchards (LATD: latitude degree, LONGD: longitude degree, VAR: variety, AGE: trees’ age, BEET: distance between 
rows, WITH: within row distance, IRR: irrigation)

M1 M2 M3 M4 M5 M6 M7 M8

LATD -0.0050 -0.0074 -0.0074 -0.0074 -0.0503 -0.0503 -0.0503 0.0372
LONGD -0.0057 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042
VAR=Ellendale 0.0480
VAR=Okitsu 0.0797 0.0797 0.0797 0.0327
VAR=Murcott -0.0388 -0.3261 -0.3314 -0.2733
AGE 0.0229
BEET 0.0213 0.0328 0.0524 0.0510 -0.1912 -0.1912 0.2373 0.0024
WITH 0.0031 0.0103 0.0564 0.1006 0.1853 0.1557 0.1273 0.0222
IRR 0.0505 0.0201 0.0201 0.0201 0.0269 0.0269 0.0269 0.0269
Constant 0.4066 0.3280 -0.0595 -0.2581 2.7860 2.8520 3.1283 -1.2502
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(R=0.08; p=0.1314). However, the fact that simple 
correlation coefficients associate a variable with another 
without considering other variables must be taken into 
account.

PCA and Biplot indicated a high association of 
production by tree with age, irrigation, within and 
between rows, and matching with the variables selected 
by M5-Prime.

Orchards were classified into eight groups by M5-
Prime, seven of them associated to the orchards over 
11.5-year-old M1 group. Orchards with trees’ age under 
11.5 years could be considered at the beginning of the 
commercial production (according to Orduz-Rodríguez 
et al., 2007, criterion). Finally, 75% of orchards were 
over 7 years.

For the orchards whose trees’ ages were greater than 
11.5 years, irrigation was an important characteristic. 

Groups M2, M3, and M4 present irrigation, but their 
productions were below higher, indicating that annual 
rainfall between 1000 and 1200 mm could be enough 
for citrus growth and production (Agustí, 2000, 2003). 
M2 group was associated to orchards with distance 
within rows of below 4.75 m. M3 and M4 with distances 
within rows of over 4.75m also differed on the distance 
between rows. Orchards in M4 presented the maximum 
production by tree followed by M2. From the viewpoint 
of the framework, these results were contrary to Tucker 
et al. (1994) and Medina-Urrutia et al. (2004).

Age was again an important variable for the groups 
with no irrigation, being 13.5 years the split point for 
age. For the groups associated to ages below 13.5 years 
(M5, M6 and M7), the distance between rows was 
relevant. The most productive orchards belonging to M5 
and M6 groups presented ages of below 13.5 years and 

Figure 4. Regression tree of mandarin orchards classification by M5 algorithm (AGE: trees’ age, IRR: 
irrigation, WITH: distance within rows, BEET: distance between rows, MURCOTT: variety ˈMurcottˈ or 
not).

Table 5. Size (n) and descriptive statistics of production (Av: average, CV: coefficient of variation, Min: 
minimum, Max: maximum, Med: median, Q1: first quartile, Q3: third quartile) by group in mandarin 
orchards, during seasons 2013 and 2014

Statistics M1 M2 M3 M4 M5 M6 M7 M8
n 149 103 13 14 6 5 6 63
Av 92.66 104.72 59.18 249.52 1272.38 313.02 122.08 135.25
CV 90.34 80.71 108.60 126.48 57.00 89.55 41.49 186.56
Min 1.11 6.67 7.00 37.50 280.00 105.00 32.79 3.32
Max 553.56 415.38 240.00 1251.35 2222.22 791.25 187.13 2000.00
Med 75.65 80.00 40.00 166.58 1133.33 210.00 131.47 87.33
Q1 40.43 40.00 20.00 52.91 865.38 135.33 110.17 47.96
Q3 120.00 157.50 80.00 240.00 2000.00 323.53 139.45 125.62
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distance between rows of below 6.5 m. These results 
strongly agree with the results of Tucker et al. (1994) 
and Medina-Urrutia et al. (2004) of higher density 
advantages at the beginning of the trees’ production 
life. Note that the variety was also relevant for those 
orchards with trees’ age between 11.5 and 13.5 years 
and with distances between rows of below 6.5 m.

Sweet orange

Production by tree was significantly associated, in 
a positive way, with age (R=0.14; p=0.0013), and in 

a negative way with minimum and maximum rainfall 
(R=-0.10; p=0.02; R=-0.10; p=0.02, respectively); 
however, coefficients values indicate weak 
association.

Orange PCA Biplot is shown in Fig. 5, where the 
associations between variables and observations can 
be identified. PCA and two coordinates Biplot show 
that a principal axis (containing 54.1% of variability) 
separates the different orchards by location, climatic 
conditions and varieties, but is not associated with 
production by tree. The second axis (conserving 20.4% 
of variability) separates orchards by productivity. On 

Figure 5. Principal Component Analysis Biplot of production tree (PROD), trees’ age (AGE), irrigation 
(IRR), latitude and longitude degrees (LATD, LONGD), planting framework (between rows, BEET, within 
row, WITH), annual minimum and maximum average temperatures (TAVMIN, TAVMAX), minimum and 
maximum total rainfall (RMIN, RMAX) and minimum and maximum frost-free days (FFDMIN, FFD-
MAX) by variety in orange orchards, during seasons 2013 and 2014.

Table 6. Linear regression equation associated to each leave of regression tree build by M5 algo-
rithm in sweet orange orchards (AGE: trees’ age, BEET: distance between rows, IRR: irrigation, 
LATD: latitude degree, VAR: variety, WITH: within row distance)

Variable O1 O2 O3 O4 O5
AGE -0.2446 0.0054 0.0023
BEET -1.5401 -0.0905 -0.0776 -0.0025 -0.0020
IRR 0.5003 -0.0475 -0.0522 0.0465 0.0351
LATD -0.0216 -0.0216 -0.0216 0.0398 -0.0036
VAR=Delta seedless 0.0831
VAR=Robertson navel -0.0071 -0.0095
VAR= Valencia late 0.6882 0.0601 0.0601 -0.0005 -0.0016
VAR=Valencia seedless -0.0038 -0.0052
VAR=Washington navel 0.0491 0.0161 -0.0033 -0.0045
WITH 0.0802 -0.0326 -0.0202
Constant 10.9084 1.3352 1.1707 -1.0694 0.2476
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top are more productive orchards with irrigation, older 
trees, and higher between-rows distance.

According to Fig. 6 and Table 6, M5-Prime model 
indicates that age was again the most relevant variable 
for predicting sweet orange production. Between and 
within-rows distances were also relevant variables for 
this species.

M5-Prime classifies orchards into five groups. O1, 
O2, and O3 are groups with tree age below 8.5 years, 
with the lowest values of production, and the other 
groups are over this age. Descriptive statistics of 
production by groups are presented in Table 7.

Not all techniques related age with production by 
tree. The R coefficients between production and age and 
rainfall were significant, but low values indicate a weak 
association. PCA and Biplot indicate a high association 
of production by tree with irrigation and longitude. 
Production was related in a negative way with rain, 

within and between rows. Nevertheless, age appears as 
a variable, weakly related with production. Only within 
and between rows’ distance matched with the variables 
selected by M5-Prime.

Groups O1, O2, and O3, with tree age of 8.5 years 
or below (that can be considered by Orduz-Rodríguez 
et al. (2007)´s criterion as initiating the commercial 
production), exhibit the lowest productions. Group O1, 
associated to orchards with distance within rows of 
below 3.375m, presented the higher production in this 
set indicating the advantages of stronger density planting 
in younger orchards, agreeing with Tucker et al. (1994) 
and Medina Urrutia et al. (2004). Groups O2 and O3 
differed on the distance between rows (for O2 was less 
or equal than 6.75 m and over this value for O3). These 
results disagree with the criterion that strongly planting 
framework is associated with more productive orchards, 
perhaps due to the higher influence of distance within 
rows over distance between rows (Tucker et al., 1994; 
Medina-Urrutia et al., 2004). Finally, the production 
for oldest trees (>8.5 years), considered commercial 
production orchards, depended on the distance between 
rows, being the split point of 6.25 m.

Table 8 shows the performance metrics associated to 
M5-Prime. The highest R was reached when M5-Prime 
predicts Sweet Orange production (0.828), followed 
by lemon prediction (0.813). Finally, the worst R is 
obtained for predicting mandarin production. All these 
values were good enough, compared to the values 
obtained in González-Sánchez et al. (2014), for yield 
prediction. Regarding RMSE, the highest error was 
obtained when the production was predicted for sweet 
orange (0.297), whereas the lemon prediction was 
the most accurate (0.072). MAE lowest values were 

Figure 6. Regression tree of orange orchards classification by M5 algorithm 
(AGE: trees’ age, WITH: distance within rows, BEET: distance between rows)

Table 7. Size (n) and descriptive statistics of production 
(Av: average, CV: coefficient of variation, Min: minimum, 
Max: maximum, Med: median, Q1: first quartile, Q3: third 
quartile) by group in sweet orange orchards, during sea-
sons 2013 and 2014

Statistics O1 O2 O3 O4 O5
n 34 55 11 252 157
Av 103.38 37.19 99.44 127.00 139.43
CV 178.98 184.06 95.24 135.06 64.81
Min 5.00 0.27 16.00 2.62 8.00
Max 1000.00 123.3 300.00 2000.00 441.18
Med 55.96 30.00 56.9 92.93 136.36
Q1 32.16 7.00 34.00 56.19 70.00
Q3 95.59 56.00 201.12 153.33 194.24
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obtained when production was predicted for mandarin 
(0.081), obtaining values around 0.10 for lemon and 
sweet orange production. These values were similar 
to those obtained in González-Sánchez et al. (2014). 
Both RMSE and MAE were computed as the average, 
obtained over the 100 repetitions of the bootstrapping 
process. 

Thus, M5-Prime is demonstrated as appropriate to 
classify citrus orchards and allows for defining more 
informative, i.e., more relevant, variables affecting 
tree production. For all the studied species, the most 
informative variable is tree age; in mandarin and orange 
orchards, age is followed by between and within rows 
distances; irrigation also affects mandarin production.

Conclusions 

In this work, the factors affecting sweet orange, 
lemon, and mandarin production were studied using 
different techniques. In particular, statistical methods 
such as correlation coefficient, principal component 
analysis, and Biplot were employed, to identify such 
factors. In addition, in order to provide a more complete 
and interpretable point of view, a machine learning 
technique (known as M5-Prime) was applied. 

M5-Prime is demonstrated appropriate to classify 
citrus orchards and allows for defining more informative, 
E., more relevant, variables affecting tree production. 
For all the studied species, the most informative 
variable is tree age; in mandarin and orange orchards, 
age is followed by between and within rows distances; 
irrigation also affects mandarin production.

In all species studied, in younger orchards, higher 
productions are associated with stronger planting 
densities, mainly distance within rows.

	 Future studies would involve a more thorough 
investigation in the possibility of using ML techniques 
for the prediction of citrus yield, and comparing 
the effectiveness and efficiency of several different 
paradigms and learning methods, such as regression 
trees, SVR, neural networks… as well as combinations 
of them with techniques such as bagging, boosting or 
random forests. 

New, complementary variables will also be 
incorporated, such as those obtained from hyperspectral 
satellite imagery, which have been already used 
successfully in Precision Farming problems (Arango 
et al., 2015). Finally, the possibility of extracting 
qualitative information from the data (for instance, with 
methods such as the self-organising maps proposed in 
Kohonen (1982) will be explored in this case.
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