eISSN: 2171-9292 # Short communication. Characterization of the relic Almuñécar grapevine cultivar A. Jiménez-Cantizano^{1,*}, M. Lara², M. E. Ocete³ and R. Ocete³ ¹ Departamento de Ingeniería Química y Tecnología de Alimentos. Área de Producción Vegetal. Universidad de Cádiz. Facultad de Ciencias. Campus Universitario de Puerto Real. Avd. República Saharaui s/n. 11510 Puerto Real (Cádiz), Spain ² IFAPA Centro Rancho de la Merced. Carretera de Trebujena, Km 3,200, 11471 Jerez de la Frontera (Cádiz), Spain ³ Laboratorio de Entomología Aplicada. Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain #### **Abstract** A prospection of Andalusian Mediterranean vineyards was carried out in search of the traditional Almuñécar grapevine, used to produce raisins of quality. An ampelographical description and a genetic characterization, using 20 nuclear microsatellite *loci*, showed that this cultivar constitutes a clone of Muscat of Alexandria. In reference to biotic stress, this cultivar has a high sensibility to powdery and downy mildews and medium sensibility to the grapevine pathogen *Botrytis cinerea*. At the present time, it constitutes a relic cultivar due to different sanitary and economical causes analyzed in the text. Additional key words: ampelography; Muscat of Alexandria; nuclear microsatellite; raisin. #### Resumen #### Comunicación corta. Caracterización del relicto cultivar de vid Almuñécar Se ha realizado una prospección del viñedo de la vertiente mediterránea de Andalucía para buscar la variedad tradicional Almuñécar, usada para la producción de pasas de calidad. La descripción ampelográfica y la caracterización genética, empleando 20 *loci* de microsatélites nucleares, han indicado que este vidueño constituye un clon de la variedad Moscatel de Alejandría. Respecto al estrés biótico, esta variedad se muestra muy sensible al oídio y mildiu, así como a *Botrytis cinerea*. En la actualidad, la variedad puede considerarse como relicta, debido a causas económicas y fitosanitarias referidas en el texto. Palabras clave adicionales: ampelografía; Moscatel de Alejandría; microsatélites nucleares; pasa. During the Arab domination of the Iberian Peninsula (from 8th to 15th century AC), vineyards were established in the southern Mediterranean coast to produce table grapes, raisins and alcohol (Gámez, 2004). Majority of this area was placed along the actual provinces of Málaga and Granada (Andalusia, Spain). From that age, the most usual cultivar was Muscat of Alexandria, named earlier Apiana by Plinius (1st century AC). Raisin production (*zebid almonacabi*, in old Spanish Arab documentation) was an important economic support for Almuñécar (Granada) and Málaga (Mármol, 1991; Marín *et al.*, 1992). When this village was conquered by Castillian troops in 1489, there were 17 aranzadas (about 76 ha) of vineyard (Calero, 1984). In the age of the Enlightenment, De Torres (1785) published a book where several practices to optimize the management of the Muscat vineyards in Almuñécar municipality, focused on raisin production, are indicated. García de la Leña (1792) has a reference on the use of that cultivar in Málaga province to produce also a wine mixtured with Pero Ximen must. Clemente y Rubio (1807) indicated the great biodiversity of the Granada coast vineyards, where the main cultivars were "Jaen negro de Granada, Albillo de Granada, Pedro Ximenez Zumbon, Tinto o Tintillo de Luxar, Romé negro, Montúo castellano, Pecho de perdiz, Zurumí, Doradillo or Jaen, Montúo perruno, Pedro Ximenez, Calona negra, Corazón de Cabrito, Casco de tinaja, Ataubí, Jaldona, Teta de negra, Moscatel menudo blanco, Moscatel menudo morado, Moscatel gordo blanco, Vigiriega de Motril, Jamí, Mollar de Granada, Ciutí or Lanxaron". He said about the named Pasa Larga in Almuñécar or Uva de Pasa in Motril, known as Almuñécar in other Andalusian areas: "This kind of raisin is payed double that the others, it is the most famous in Málaga it is dried under a sunny exposure. A great part of Almuñécar economy is based on this product". In 1930, majority of vineyards to produce raisins were situated between Almuñécar and Salobreña towns, from Taramay state to Cambrón gully. Grapes were dried in the open air in special pools made of masonry or on roofs covered, in both cases, by the plant Genista umbellata (L' Her) (Vigo et al., 2009). The existence of synomyns (different names for the same variety) and homonyms (different varieties with the same name) is one of the major problems in the management of germplasm collections. The identification of grape cultivars has traditionally been based on ampelography, which is the analysis and comparison of morphological characters of leaves, shoot tips, fruit clusters and berries (IPGRI-UPOV-OIV, 1997; Galet, 2000). Some genetically related cultivars are morphologically very similar and difficult to differentiate by visual comparison (Aradhya et al., 2003). On the other hand, intravarietal clones can differ considerably in phenotype even though they have virtually identical DNA profiles (Vignani et al., 1996; Riaz et al., 2002). Microsatellite sites are excellent markers for grapevine characterization (Sefc et al., 2001). In general, all plants belonging to the same cultivar (i.e., from a monoclonal origin) show identical genotypes in all microsatellite loci (Ibáñez et al., 2009). The aim of the present paper was to characterize and recuperate the historical relic cultivar Almuñécar for its *ex situ* conservation in the germplasm bank of the IFAPA Centro Rancho de la Merced (Jerez de la Frontera, Cádiz, Spain). A prospection to find Almuñécar grapevine was carried out from 1996 to 2002 in vineyards located from Estepona (Málaga, Spain) to Motril (Granada, Spain). Five vines with typical ampelographical characteristics of the Almuñécar cultivar, according to the ampelographical description given by Clemente y Rubio (1807), were found around the town of Almuñécar (Granada, Spain). The accessions collected were kept in the collection of the IFAPA Centro Rancho de la Merced germplasm bank (Jerez de la Frontera, Cádiz, Spain). The plant material for the characterization was obtained from the IFAPA Centro Rancho de la Merced germplasm bank and the plot located at Almuñécar. Ampelographic data were collected between 2003 and 2007 in the plot located at Almuñécar and 2008 and 2009 in the IFAPA Rancho de la Merced germplasm bank. At the first time, IPGRI, UPOV, OIV (1997) code was used and later descriptors were adapted to OIV code (2009). One hundred and eight descriptors were used, including descriptors relative to young shoots, young leaves, mature leaves, woody shoots, flower, inflorescence, bunches, berries and seeds. Ten readings per each descriptor were taken on five plants. Berry measurements were made at harvest using 50 berries, from 10 bunches. Data on the phenological stages (Baillod & Baggiolini, 1993) were collected during seven years (2003-2009) in Almuñécar. The index maximum width/maximum length of 50 berries of Almuñécar cultivar was compared with 50 berries of Muscat of Alexandria using one way ANOVA (Massart *et al.*, 1997). The sensibility to diseases (*Plasmopara viticola*, *Erysiphe necator* and *Botrytis cinerea*) was observed in the field each year between 2003 and 2009 on the five vines located in Almuñécar using OIV descriptor (OIV, 2009). To evaluate the sensibility to both mildews under standard laboratory conditions, tests using foliar discs, with 20 repetitions of each sample, were also carried out. In the case of the powdery mildew, the method used was the indicated by OIV (2009) and for downy mildew the procedure of Staudt & Kassemeyer (1995) and Rumbolz *et al.* (2002). Foliar discs of Palomino fino cultivar and the 41B rootstock were used as reference in the test. DNA was extracted from young leaves using DNeasy Plant Mini Kit (Qiagen). A genotypic characterization was performed for 20 nuclear microsatellite *loci* located in the 19 linkage groups of grapevine genome: VMC1b11, VMC4F3-1 (Vitis Microsatellite Consortium); VVMD5, VVMD7, VVMD21, VVMD24, VVMD25, VVMD27, VVMD28, VVMD32 (Bowers *et al.*, 1996, 1999); VVS2 (Thomas & Scott, 1993); VVIB01, VVIH54, VVIN16, VVIN73, VVIP31, VVIP60, VVIQ52, VVIV37, VVIV67 (Merdinoglu *et al.*, 2005). Two multiplex PCR tests were set up to amplify the 20 microsatellite *loci* (Vargas *et al.*, 2007) and amplified with an Applied Biosystems 9700 thermocycler. Amplified products were separated in capillary electrophoresis using an automated sequencer (ABI Prism 3130, Applied Biosystems). Fluorescently labelled fragments were detected and sized using GeneMapper v. 3.7 software (Applied Biosystems) and fragment lengths were determined with the help of internal size standards (GeneScan-500 LIZTM, Applied Biosystems). Identification of redundant genotypes was determined by comparing microsatellite genotypes with data contained in the microsatellite grapevine databases IFAPA Centro Rancho de la Merced (in preparation) and the *Vitis* Germplasm Bank at the Finca El Encín (IMIDRA, Alcalá de Henares, Spain) (Ibañez *et al.*, 2009; Vargas *et al.*, 2009). Genotype comparisons were carried out using Microsatellite toolkit v. 9.0 software package (Park, 2001). The first result to remark is that Almuñécar was a widely cultivated cultivar before phylloxera infestation and at the present time is a very minoritary cultivar along the Mediterranean coast of Andalusia. In the Axarquía area situated in the Málaga province the main synonymies were: Moscatel Real and Larga. In Granada coast (Spain): Almuñécar, Moscatelón, Moscatelona, Pasa larga, Uva de pasa and Uva de yema. Ampelographical data for the cultivar Almuñécar are shown in Table 1. In Muscat of Alexandria the averages of the maximum width and length of the berries were 20.64 ± 0.33 mm and 26.86 ± 0.42 mm, respectively. In the case Almuñécar cultivar, 16.48 ± 0.16 mm and 29.1 ± 0.28 . The width/length indexes were 0.77 ± 0.01 and 0.57 ± 0.01 , respectively. The comparison of the analysis of de variance using Anova test indicated there were statistically significative differences between both cultivars (F = 294.57; $\alpha = 0.05$). The calendar in shoot developmental stages was: Bud burst, March 15-22; flowering time, May 15-24; veraison, July 15-26; maturation, September 5-15; leaf fall, November 19-27. Field and laboratory observations indicated that Almuñécar cultivar had a high susceptibility to powdery and downy mildews (Table 1). On the other hand, symptoms caused by *Botrytis cinerea* are very frequent on bunches mainly in October, when the first important dews took place in Almuñécar area. Table 2 shows the allele profiles obtained for Almuñécar cultivar. The five accessions analyzed presented the same genotype at 20 microsatellite *loci* analyzed. The genotype obtained for Almuñécar cultivar was compared with the genotypes database of the germplasm bank at IFAPA Centro Rancho de la Merced (Jiménez-Cantizano, unpublished data). Cultivars Almuñécar and Muscat of Alexandria showed the same genotype combination for the 20 microsatellite *loci*: however, these cultivars had significant morphologic differences in the berries (Figure 1). This could be explained by the occurrence of somatic variants of the same cultivars in several grapevine growing areas (Bowers *et al.*, 1996). Varieties are described that differ only in minor characters, such as berry pigmentation or the presence of capillaries in the leaves caused by mutations (sports), as in Garnacha (Cabezas *et al.*, 2003), Cariñena, Xarel-lo (Ibáñez *et al.*, 2003), or Moscatello (De Mattia *et al.*, 2007). Microsatellite analysis cannot resolve these minimal differences that occur between clonal types or sports. Muscat of Alexandria genotype was compared with the genotype obtained for Ibáñez *et al.* (2009) and Vargas *et al.* (2009), at the same 20 microsatellite *loci*, from plant accessions kept at "El Encín" germplasm collection. We obtained very similar result of microsatellite profile of Muscat of Alexandria. In 12 of the 20 microsatellite *loci* the data for identical alleles differed by 1 bp. The differences showed of the allele sizes obtained by the two different laboratories are the result of the rounding methods (This *et al.*, 2004). **Figure 1.** Morphologic differences in berries of cultivar Almuñécar (A) and Muscat of Alexandria (B). **Table 1.** Mean values for the OIV (2009) ampelografic descriptors observed in Almuñécar cultivar during seven years (2003-2009) | OIV Code | Descriptor | Expression | Notes | |----------|---------------------------------------------------------------------------------------|------------|-----------------------| | 001 | Young shoot: aperture of tip | 5 | fully open | | 002 | Young shoot: distribution of anthocyanin coloration on prostrate hairs of tip | 2 | piping | | 003 | Young shoot: intensity of anthocyanin coloration on prostrate hairs of tip | 5 | medium | | 004 | Young shoot: density of prostrate hairs on tip | 5 | medium | | 005 | Young shoot: density of erect hairs on tip | 1 | none or very low | | 006 | Shoot: attitude (before tying) | 1 | erect | | 007 | Shoot: colour of dorsal side of internodes | 2 | green and red | | 008 | Shoot: colour of ventral side of internodes | 2 | green and red | | 009 | Shoot: colour of dorsal side of nodes | 3 | red | | 010 | Shoot: colour of ventral side of nodes | 3 | red | | 011 | Shoot: density of erect hairs on nodes | 1 | none or very low | | 012 | Shoot: density of erect hairs on internodes | 1 | none or very low | | 013 | Shoot: density of prostrate hairs on nodes | 1 | none or very low | | 014 | Shoot: density of prostrate hairs on internodes | 3 | low | | 015-2 | Shoot: intensity of anthocyanin coloration on bud scales | 5 | medium | | 016 | Shoot: number of consecutive tendrils | 1 | 2 or less | | 017 | Shoot: length of tendrils | 3 | short | | 051 | Young leaf: colour of the upper side of blade (4 th leaf) | 4 | copper-reddish | | 053 | Young leaf: density of prostrate hairs between main veins on lower side of blade | 3 | low | | 054 | Young leaf: density of erect hairs between main veins on lower side of blade | 1 | none or very low | | 055 | Young leaf: density of prostrate hairs on main veins on lower side of blade | 3 | low | | 056 | Young leaf: density of erect hairs on main veins on lower side of blade (4 th leaf) | 1 | none or very low | | 065 | Mature leaf: size of blade | 5 | medium | | 067 | Mature leaf: shape of blade | 3 | pentagonal | | 068 | Mature leaf: number of lobes | 3 | five | | 069 | Mature leaf: colour of the upper side of blade | 5 | medium green | | 070 | Mature leaf: area of anthocyanin coloration of main veins on upper side of blade | 3 | up to the 1 bifurcate | | 071 | Mature leaf: area of anthocyanin coloration of main veins on lower side of blade | 2 | only at the petiolar | | 072 | Mature leaf: goffering of blade | 3 | weak | | 073 | Mature leaf: undulation of blade between main and lateral veins | 1 | absent | | 074 | Mature leaf: profile of blade in cross section | 5 | twisted | | 075 | Mature leaf: blistering of upper side of blade | 3 | weak | | 076 | Mature leaf: shape of teeth | 4 | concave-convex | | 077 | Mature leaf: size of teeth in relation to blade size | 3 | small | | 078 | Mature leaf: length of teeth compared with their width | 7 | long | | 079 | Mature leaf: degree of opening / overlapping of petiole sinus | 5 | closed | | 080 | Mature leaf: shape of base of petiole sinus | 3 | V-shaped | | 081-1 | Mature leaf: teeth in the petiole sinus | 1 | none | | 081-2 | Mature leaf: petiole sinus base limited by veins | 1 | not delimited | | 082 | Mature leaf: degree of opening / overlapping of upper lateral sinus | 1 | open | | 083-1 | Mature leaf: shape of base of upper lateral sinuses | 3 | V-shaped | | 083-2 | Mature leaf: teeth in the upper lateral sinuses | 1 | none | | 084 | Mature leaf: density of prostrate hairs between the main veins on lower side of blade | 3 | low | | 085 | Mature leaf: density of erect hairs between the main veins on lower side of blade | 1 | none or very low | | 086 | Mature leaf: density of prostrate hairs on main veins on lower side of blade | 3 | low | | 087 | Mature leaf: density of erect hairs on main veins on lower side of blade | 1 | none or very low | **Table 1 (cont.**). Mean values for the OIV (2009) ampelografic descriptors observed in Almuñécar cultivar during seven years (2003-2009) | OIV Code | Descriptor | Expression | Notes | |----------|-------------------------------------------------------------------|------------|-------------------| | 088 | Mature leaf: prostrate hairs on main veins on upper side of blade | 1 | absent | | 089 | Mature leaf: erect hairs on main veins on upper side of blade | 1 | absent | | 090 | Mature leaf: density of prostrate hairs on petiole | 3 | low | | 091 | Mature leaf: density of erect hairs on petiole | 1 | none or very low | | 093 | Mature leaf: length of petiole compared to length of middle vein | 3 | slightly shorter | | 094 | Mature leaf: depth of upper lateral sinuses | 5 | medium | | 101 | Woody shoot: cross section | 2 | elliptical | | 102 | Woody shoot: structure of surface | 3 | striate | | 103 | Woody shoot: main colour | 2 | brownish | | 104 | Woody shoot: lenticels | 1 | absent | | 105 | Woody shoot: erect hairs on nodes | 1 | absent | | 106 | Woody shoot: erect hairs on internodes | 1 | absent | | 151 | Flower: sexual organs | 3 | | | 152 | Inflorescence: insertion of 1st inflorescence | 2 | 3 and 4 node | | 153 | Inflorescence: number of inflorescences per shoot | 2 | 1,1 to 2 | | 155 | Shoot: fertility of basal buds (buds 1-3) | 5 | medium | | 202 | Bunch: length (peduncle excluded) | 7 | long | | 203 | Bunch: width | 5 | medium | | 204 | Bunch: density | 3 | loose | | 206 | Bunch: length of peduncle of primary bunch | 3 | short | | 207 | Bunch: lignification of peduncle | 1 | at the base only | | 208 | Bunch: shape | 1 | cylindrical | | 209 | Bunch: number of wings of the primary bunch | 2 | 1-2 wings | | 220 | Berry: length | 9 | very long | | 221 | Berry: width | 5 | medium | | 222 | Berry: uniformity of size | 1 | not uniform | | 223 | Berry: shape | 4 | narrow ellipsoid | | 225 | Berry: colour of skin | 1 | green yellow | | 226 | Berry: uniformity of colour of skin | 1 | not uniform | | 227 | Berry: bloom | 5 | medium | | 228 | Berry: thickness of skin | 7 | thick | | 229 | Berry: hilum | 2 | visible | | 231 | Berry: intensity of the anthocyanin coloration of flesh | 1 | none or very weal | | 232 | Berry: juiciness of flesh | 2 | medium juicy | | 233 | Berry: must yield | 7 | high | | 235 | Berry: firmness of flesh | 2 | slightly firm | | 236 | Berry: particularity of flavour | 2 | muscat | | 238 | Berry: length of pedicel | 3 | short | | 240 | Berry: ease of detachment from pedicel | 3 | difficult | | 241 | Berry: formation of seeds | 1 | complete | | 242 | Berry: length of seeds | 7 | long | | 243 | Berry: weight of seeds | 5 | medium | | 244 | Berry: transversal ridges on dorsal side of seeds | 1 | absent | | 301 | Time of bud burst | 5 | medium | | 302 | Time of full bloom | 5 | medium | | Table 1 (cont.) . Mean values for the OIV | (2009) ampelografic descriptors observed in Almuñécar cultivar during seven years | |--------------------------------------------------|-----------------------------------------------------------------------------------| | (2003-2009) | | | OIV Code | Descriptor | Expression | Notes | |----------|--------------------------------------------------------------|------------|--------| | 303 | Time of beginning of berry ripening (veraison) | 5 | medium | | 304 | Time of physiological stage of full maturity of the berry | 5 | medium | | 305 | Time of beginning of wood maturity | 5 | medium | | 306 | Time of autumn colouring of leaves | 1 | yellow | | 351 | Vigour of shoot growth | 5 | medium | | 352 | Growth of axillary shoots | 5 | medium | | 353 | Length of internodes | 3 | short | | 354 | Diameter of internodes | 5 | medium | | 452 | Leaf: degree of resistance to Plasmopara | 5 | medium | | 452-1 | Leaf: degree of resistance to Plasmopara (leaf disc test) | 7 | high | | 453 | Cluster: degree of resistance to Plasmopara | 5 | medium | | 455 | Leaf: degree of resistance to Oidium | 5 | medium | | 455-1 | Leaf: degree of resistance to Oidium (leaf disc test) | 7 | high | | 456 | Cluster: degree of resistance to Oidium | 7 | high | | 458 | Leaf: degree of resistance to Botrytis | 5 | medium | | 458-1 | Leaf: degree of resistance to Botrytis (laboratory analysis) | 5 | medium | | 459 | Cluster: degree of resistance to Botrytis | 5 | medium | **Table 2.** Genetic profile of Almuñécar cultivar at 20 microsatellite loci. Allele sizes in base pairs | Microsatellite loci | Allel | e sizes | |---------------------|-------|---------| | VV1B01 | 291 | 295 | | VMC1b11 | 166 | 184 | | VMC4F3-1 | 182 | 206 | | VVMD5 | 226 | 228 | | VVMD7 | 246 | 248 | | VVMD21 | 255 | 265 | | VVMD24 | 213 | 213 | | VVMD25 | 246 | 246 | | VVMD27 | 180 | 194 | | VVMD28 | 246 | 270 | | VVMD32 | 262 | 270 | | VVIH54 | 166 | 166 | | VVIN16 | 149 | 151 | | VVIN73 | 264 | 264 | | VVIP31 | 188 | 192 | | VVIP60 | 318 | 322 | | VVIQ52 | 83 | 83 | | VVS2 | 131 | 149 | | VVIV37 | 163 | 175 | | VVIV67 | 375 | 389 | Due to phylloxera, infestation, detected between 1880 and 1883 and droughts, several vineyards were abandoned in Almuñécar (Granada). In 1909 about 3,000 people living in the surrounding Almuñécar emigrated to Ledesma (Jujuy province, Argentine). The decline of raisin trading and the introduction of subtropical cultivars in the area and the high susceptibility of the Almuñécar cultivar to powdery and downy mildews reduced more its presence near extinction at present time. This research has allowed the recovery of this ancient cultivar, that constitute a clone of Muscat of Alexandria, and its preservation in Rancho de la Merced germplasm bank (Jerez de la Frontera, Spain), where it constitutes a material to be used in further studies or for the establishmet of new plantations. Accurate identification of accessions is a basic requirement for the rational management and use of germplam. ## Acknowlegments This study was sponsored by the University of Sevilla. Authors want to thank José Martín Jiménez for field sampling, Nicole Ortega for the critical review of the manuscript and Ma Carmen Calero by historical reviews of the cultivar Muscat in Almuñécar. ### References - Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker AM, Meredith CP, Simon CJ, 2003. Genetic structure and differentiation in cultivated grape *Vitis vinifera* L. Genetic Resour (Camb) 81: 179-192. - Baillod M, Baggiolini M, 1993. Les stades de la vigne. Rev Suisse Vitic Arboric Hortic 1: 7-9. - Bowers JE, Dangl GS, Vignani R, Meredith CP, 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (*Vitis vinifera* L.). Genome 39: 628-633. - Bowers JE, Dangl GS, Meredith CP, 1999. Development and characterization of additional microsatellite markers for grape. Am J Enol Viticult 50: 243-246. - Cabezas JA, Cervera MT, Arroyo-García R, Ibáñez J, Rodríguez-Torres I, Borrego J, Cabello F, Martínez-Zapater JM, 2003. Garnacha and Garnacha Tintorera: genetic relationships and the origin of teinturier varieties cultivated in Spain. Am J Enol Viticult 54(4): 237-245. - Calero MC, 1984. El manuscrito de Almuñécar-Libro de Apeos del Archivo de la Diputación Provincial de Granada. Almuñecar, Arqueología e Historia, II. - Clemente Rubio S de R, 1807. Ensayo sobre las variedades de vid que vegetan en Andalucía. Imp. Villalpando, Madrid. - De Mattia F, Imazio S, Grassi F, Lovicu G, Tardaguila J, Failla O, Maitt CH, Scienza A, Labra M, 2007. Genetic characterization of Sardinia grapevine cultivars by SSR makers analysis. J Int Sci Vigne Vin 41(4): 175-184. - De Torres P, 1785. Division honesta. Apéndice Reconvención critica rustico-económ. Imprenta Real, Granada. - Galet P, 2000. Dictionnarie encyclopédique des cépages. Hachette, 936 pp. - Gámez J, 2004. Almáchar, pasado y presente de una comunidad rural de la Axarquía. Centro de Ediciones de la Diputación Provincial de Málaga, Málaga. - García de la Leña C, 1792. Disertación en recomendación y defensa del famoso vino malagueño Pero Ximen y modo de formarlo. Imp. Luis Carreras, Málaga. - Ibañez J, de Andrés MT, Molino A, Borrego J, 2003. Genetic study of key Spanish grapevine varieties using microsatellite analysis. Am J Enol Viticult 54(1): 22-30. - Ibáñez J, Vargas MA, Palancar M, Borrego J, de Andrés MT, 2009. Genetic relationships among table-grape varieties. Am J Enol Viticult 60(1): 35-47. - IPGRI, UPOV, OIV, 1997. Descripteurs de la vigne (*Vitis* spp.). IPGRI, Rome/ UPOV, Genève/ OIV, Paris. - Marín N, Puentedura M, Ramón JA, 1992. El cultivo de la vid y la producción vinícola en el valle de Molvízar. Desde la época romana hasta la actualidad. Publicaciones eventuales (8). Grupo de Investigación Poblamiento y Territorio durante la Época Romana. Universidad de Granada. - Mármol L, 1991. Historia de la rebelión y castigo de los moriscos del reino de Granada. Arguval, Málaga (Spain). - Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke C, 1997. Handbook of chemometrics and qualimeters. Elsevier, Amsterdam. - Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S, 2005. Development and characterization of a large set of microsatellite markers in grapevine (*Vitis vinifera* L.) suitable for multiplex PCR. Mol Breeding 15: 349-366. - OIV, 2009. OIV descriptor list for grape varieties and *Vitis* species, 2nd edition. Paris, 179 pp. - Park SDE, 2001. Trypanotolerance in West African cattle and the population genetic effects of selection. PhD Tesis, University of Dublin. - Riaz S, Garrison KE, Boursiquot JM, Meredith CP, 2002. Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Am Soc Hortic Sci 127: 508-514. - Rumbolz J, Wirtz S, Kassemeyer HH, Guggenheim R, Schäfer E, Büche C, 2002. Sporulation of *Plasmopara viticola*: differentiation and light regulation. Plant Biol 4: 413-422. - Sefc KM, Lefort F, Grando MS, Scott KD, Steinkellner H, Thomas MR, 2001. Microsatellite markers for grapevine: A state of the art. In: Molecular biology and biotechnology of grapevine (Roubelakis-Angelakis KA, ed.). Kluwer Academic, Netherlands, pp 433-463. - Staudt G, Kassemeyer HH, 1995. Evaluation of downy mildew (*Plasmopara viticola*) resistance in various accessions of wild *Vitis* species. Vitis 34: 225-228. - This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F *et al.*, 2004. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109: 1448-1458. - Thomas MR, Scott NS, 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs). Theor Appl Genet 86: 985-990. - Vargas AM, Velez MD, De Andres MT, Laucou V, Lacombe T, Boursiquot JM, Borrego J, Ibanez J, 2007. Corinto bianco: a seedless mutant of Pedro Ximenes. Am J Enol Viticult 58: 540-543. - Vignani R, Bowers JE, Meredith CP, 1996. Microsatellite DNA polymorphism analysis of clones of *Vitis vinifera* "Sangiovese". Sci Hortic 65: 163-169. - Vigo R, Ramón E, Lara E, Escañuela R, Ocete ME, Pérez MA, Mateos J, Ocete R, 2009. La viticultura de la franja costera del poniente granadino. Plagas y enfermedades. Actas XXX Jornadas de Viticultura y Enología Tierra de Barros, Almendralejo, Spain. pp. 237-255.