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Abstract

The objective of the present work was to find the statistical model that best describes the pattern of fruit growth of sweet
orange ‘Valencia late’ in the departments of Concepcion (orchard 1) and General Paz (orchard 2), province of Corrientes,
Argentina. In order to fit the growth curves, models of sigmoid type: Logistic, Gompertz, Weibull, Morgan Mercer Flodin,
Richards, and reparameterizations of the Logistic and Gompertz models, were evaluated and compared. As criteria for
selecting the model, measures of nonlinearity and estimates of residual variance for the different models and reparamete-

rizations were compared. The model found to be most suitable to describe “Valencia late’ orange fruit growth was the fifth

parameterization of Logistic model: y S . In this model, Band yhad similar values on all fruit sizes in orchard

a+exp(B)y"
1, but different values for fruit sizes in orchard 2; a values varied for both orchards between fruit sizes. For this reason, a
family of curves will be necessary for different situations.
Additional key words: citrus fruits, logistic equation, measures of nonlinearity.

Resumen

Modelos estadisticos para describir el patron de crecimiento de frutos de naranjo dulce “Valencia late’

El objetivo del presente trabajo fue encontrar el modelo estadistico que mejor describa el patron de crecimiento de fru-
tos de naranjo dulce var. ‘Valencia late’ en los departamentos de Concepcidn (chacra 1) y General Paz (chacra 2), provin-
cia de Corrientes, Argentina. Para ajustar dichas curvas de crecimiento se evaluaron y compararon los modelos de tipo sig-
moideo: Logistico, Gompertz, Weibull, Morgan Mercer Flodin, Richards, y reparametrizaciones de los modelos Logistico
y Gompertz. Como criterios de seleccién del modelo, se compararon las magnitudes de las medidas de no linealidad y las
estimaciones de la varianza residual para los distintos modelos y reparametrizaciones evaluadas. La combinacién modelo-
datos-parametrizacién mas adecuada para describir el crecimiento de frutos de naranjo dulce ‘Valencia late’ fue la quinta

parametrizacion del modelo Logistico: yzé . En este modelo, By ypresentan valores similares para todos

a+exp(f)y”
los tamafios de fruto en la chacra 1, y diferentes valores por tamafio de fruto en la chacra 2; los valores de a difieren entre
tamafio de frutos en ambas chacras. Por esta razdn, es necesaria una familia de curvas para las diferentes situaciones.
Palabras clave adicionales: ecuacion logistica, frutos citricos, medidas de no linealidad.
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estimation).
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Introduction

To predict citric production volume, several fruits
characteristics must be known. One of them, with great
importance in the precision of predicted volumes, is the
size that fruits will have at the end of the fructification
period (Alvarez et al., 2001). The knowledge of fruit
growth curves, allows a description of development in
the season and zone under study an estimation of weight
at moment of the harvest. The curves that represent the
growth vary with the species. In the case of citric fruits,
the form will depend on their origin (parthenocarpy or
sexual), but in general the response is of a simple sig-
moid form (Agusti, 2000).

In the case of sweet orange fruits, the sigmoid curve
includes a stage that goes from the anthesis to matura-
tion, characterized by three differentiated periods. The
first period, of exponential growth, going from anthesis
to the end of physiological fruitset, is characterized by
fast growth caused by cellular division. The second
period, of linear growth, includes from the end of
physiological fruitset to shortly before the change of
colour, and its duration is variable according to the
variety (2 months in precocious varieties and 5-6
months in late varieties as ‘Valencia late’). The third
period is characterized by reduced growth rate with
changes associated to maturation (Agusti et al., 2003).

Sigmoid curves are frequently used in biology, agri-
culture and economy to describe growth. Such curves
begin at certain point and increase their rate of growth
in monotonic form until reaching an inflexion point,
after which the growth rate decreases and the function
approaches an asymptotic value (Ratkowsky, 1983). The
mathematical functions proposed to model these curves
are: Logistic, Gompertz, Richards (1959), Morgan-Mer-
cer-Flodin (MMF) (1975) and models derived from the
Weibull distribution, with different parameterizations
that confer particular characteristics, constituting fami-
lies of curves (Ratkowsky, 1983).

Among the authors who have studied the growth of
fruits we can mention Bramardi et al. (1997), who use
the measures of nonlinearity developed by Bates and
Watts (1980), and select a Logistic model under its third
reparameterization according to Ratkowsky (1983), to
describe pear growth for cvs. William’s and Packham’s
Triumph in the Alto Valle de Rio Negro and Neuquén,
Argentina. Alvarez and Boche (1999) obtained a gene-
ralization of simple sigmoid models to fit the diameter
growth of a Nectarine late variety in Neuquén, Argenti-
na and managed to fit a generalized logistic function

with five parameters. Casierra-Posada et al. (2004) fit-
ted polynomial models of third degree to variable fresh
and dry weight, polar diameter / suture diameter ratio,
and branches growth, based on the days after full flowe-
ring for peach cv. Conservero in Paipa, Colombia. The
coefficient of determination (R?) was used as the fitting
criterion, giving values greater than 0.97 in every case.

Garcia Petillo and Castel (2004) used the fruits size
(volume in cm?®) as a variable to compare different levels
of irrigation in plots of ‘Valencia’ orange in San José,
Uruguay, during five seasons. To generalize the effect of
treatments, fitted a logistic model to the growth curves
and evaluated the significance of the three parameters in
different treatments and years. All parameters of the
Logistic model result significant and significantly diffe-
rent for years and treatments.

Regression analysis is a statistical method that finds
a mathematical expression which relates two or more
variables and explains one of them through the rest
(Draper and Smith, 1981). The method of least squares
is most often used for linear model fitting, but when
nonlinear models are involved, the equations are nonli-
near and, in general, difficult to solve. This is why the
sum of squared residuals is minimized using iterative
procedures. A method frequently used in nonlinear
regression algorithms is the linearization of the nonline-
ar function, followed by the iterative method of Gauss-
Newton to estimate the parameters (Montgomery et al.,
2004).

In order to evaluate the fit of a nonlinear model, the
classic criteria used in linear regression (R?), signifi-
cation of parameters, residual distribution and magni-
tude of the residual variance estimation (o?) must be
considered, and in addition nonlinearity measures like
the presented by Bates and Watts in 1980, which allow
quantify the departure from linearity of a set of data-
model- parameterizations and the estimation of the
Box bias (Ratkowsky, 1983; Montgomery et al.,
2004).

Assuming a nonlinear model given by: Y = f(X, 6) + ¢,
intrinsic nonlinearity (IN), measures the curvature of
the E(Y) in the sample spaces as 6 is changed (expected
response surface or locus solution). In the linear model
the solution locus is linear. IN is defined for a specific
data set and model (Ratkowsky, 1989). Another measu-
re is the parameter-effect nonlinearity (PE), indicates
the regularity spacing from a point to the solution curve
when 6 constantly increments. For a linear model to
constant increment of parameter vector, the points f(X,
6) are equally spaced. This value is determined by the
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form in which the parameters appear in the model, that
is to say, it depends on the selected parameterization
(Ratkowsky, 1989).

A criterion to decide when a value of IN or PE is small
is to use the relation 1/¥'F, knowing that both approach a
Snedecor F distribution with numerator degrees of free-
dom equal to the number of parameters, and denominator
degrees of freedom equal to the number of the datum
points less the number of parameters (Ratkowsky, 1989).

The objective of the present work was to find the sta-
tistical model that best describes the pattern of orange
fruits *Valencia late” growth in the departments of Con-
cepcion and General Paz, province of Corrientes,
Argentina.

Material and methods
Experimental data

The data originated from commercial plots of sweet
orange [Citrus sinensis (L.) Osbeck] “Valencia late’ variety,
grown on lime of rangpur rootstock (Citrus limonia
Osbeck), in orchards located in the departments of Con-
cepciodn (28° 16°S and 58° 05°W) (orchard 1) and General
Paz (27°45’S and 57° 37°W) (orchard 2) in the province of
Corrientes, Argentina; during 2004/2005 season.

In both locations plots with good sanitary and pro-
ductive conditions were selected, and handled with
common regional cultural practices. These plots had 11
yr old trees at a 357 tree ha* density, planted at 4x7 m
spacing (orchard 1); and 26 yr old at a 312 tree ha* den-
sity, planted at 4x8 m spacing (orchard 2).

In both orchards, 30 trees were randomly selected
and 745 fruits distributed at the top were identified to
represent all the size ranges, and measured weekly until
harvest for equatorial diameter (mm) with digital cali-
pers from 60 days after full flowering (DAFF) (80% of
open flowers) in orchard 1 and from 50 DAFF in
orchard 2. The data are based on DAFF to make compa-
risons on the basis of phenology states and not on chro-
nological dates.

Because of the complexity of nonlinear regression
techniques, which make impossible or difficult the
analysis on the collected data samples, five fruits by
three size ranges (defined in function of the distribution
of sizes to harvest one of the orchards) were randomly
selected for each orchard: small fruit (1-5), medium (6-
10), and large ones (11-15). Following the methodology
used by Bramardi et al. (1998), Barrozo et al. (2000)

and Yeragani et al. (2003), working with small data sets
for the fit of nonlinear equations.

Analyzed models

In Tables 1 and 2, statistical models analyzed corres-
pond to the first parameterization and some of the repa-
rameterizations of the initial forms more frequently
mentioned (Draper and Smith, 1981; Ratkowsky, 1983,
1989; Montgomery et al., 2004).

In the different models and reparameterizations
(Tables 1 and 2), parameters (a, S, ¥, J) have interpreta-
tions in aspects of the growth curves. Alpha (a), is the
parameter related to the superior asymptote (SA). Beta
(B) is related to the intercept on the Y-axis (INT).
Gamma (), is related to the speed of growth of the curve
from an initial value (8 magnitude) to a final value (a
magnitude), indicates the growth rate (GR). Delta (J),
only present in the models of four parameters, provides
flexibility for the model to fit data (Ratkowsky, 1983).

Statistical analysis

The fitting of different models was made by means of
procedure PROC NLIN in SAS statistical package
(2000), with the computational method of Gauss-New-
ton. The initial values for the estimators were calculated
according to the methodology by Ratkowsky (1983).

Table 1. Models analyzed for curves of sigmoid growth type

Models Equation?
[7exp(/f*w)]
Gompertz (G1) y = o exp
- o
Logistic (L1 =
g ( ) y 1+ ex p (B-7x)

J
Morgan-Mercer-Flodin (MMF) y = By+ax”

7+ x°
Richards y = %
[1+ exp(ﬂ—rx)]g
Weibull y=o- ﬁexp—yx‘s

1y=equatorial diameter of fruit; x= DAFF; a, B, y; d= parameters.
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Table 2. Reparameterizations of models Logistic and Gompertz

Logistic _ 1 L2 _ 1 L3 _ o L4
Ty T Yo gy ey
1 o

) y L6)

= = (L5 e
y a+exp(,3)7x( 1+ﬂexp(—7><)(

Gompertz y =exp(a— By") (G2)

In order to verify the goodness of fit for different with the critical value 1/VF where F=F(p, v, a) with
models, classic criteria like R?, signification of parame- v=n-p, n=number of observations in time and p=number
ters (t test), residual distribution and magnitude of the of parameters (Ratkowsky, 1989). These values measu-
o?, were analyzed. Magnitudes of IN and PE for each re the degree of linearity in a model-parameterization,
model were compared and significances were evaluated and if non-significant, the response could be considered
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Figure 1. Fruit growth curves (equatorial diameter vs. days after full flowering DAFF) and adjustment of model a) L5 and b) G2
for both orchards and three fruit sizes (small, medium and large). Obs=observed values). Pred= predicted values.
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to behave like a linear model, with all the properties that
it implies. The values of bias estimators for the different
reparameterizations from the models selected were
compared. For calculation of the nonlinearity measures
and the bias estimators, a program developed by Bra-
mardi et al. (1997), which uses procedure IML of the
SAS (SAS Institute, 2000), was applied.

To examine the differences between parameters,
obtained with the selected parameterization of Logistic
model (L5), the likelihood ratio test proposed by Regaz-
zi and Silva (2004) was used, employing procedure
NLIN- SAS (SAS Institute, 2000). The test consists in
estimating residual sums of square for complete
(SQRcom) and restrict (SQRrest) models, followed by a
chi-square distribution which can be estimated in:

N In (SQRcom)
(SQRrrest)

and p,,, number of parameters estimated in complete and
restrict models respectively (Regazzi and Silva, 2004).

X2 =-— ywithv=p, . —p.. being p,

Results

In Figs. 1a and 1b, equatorial diameters (mm) as a
function of days after full flowering (DAFF) in orchards
1 and 2 are presented. In both orchards the curves are
similar, with superior asymptote depending on the final
fruit size. However, the initial values in orchard 1 (60
DAFF) have similar values for the different sizes of
fruit, in orchard 2 (50 DAFF) these values are different
for each fruit size.

In the fit of the models Logistic, Gompertz and their
respective reparameterizations, there were no problems
of convergence with the method of Gauss-Newton.
Models MMF and Richards did not converge for any
fruit. Weibull model converged only for one fruit in
orchard 1 and for 11 fruits of orchard 2, but the estimated
parameters were not significantly different from zero.
Therefore, models with four parameters (MMF, Richards
and Weibull) were not considered for further analysis.

With respect to classical methods of selecting
models, R? varied from 0.94 to 0.96 in Logistic models
and from 0.95 to 0.97 for Gompertz models. In the last
one, values were higher, however differences were not
significant. For both models all parameters were highly
significant, according with the t test (p<0.01). Distribu-
tions of Gompertz and Logistic residuals show homoce-
dasticity and normality, with cyclic tendency. Gompertz
and Logistic models have low values of o2 in both

orchards and all fruits, being in Gompertz model
slightly inferior (Table 3).

Table 3 also shows the measures IN and PE corres-
ponding to the Gompertz and Logistic models in its
initial parameterizations. In all models evaluated in their
initial parameterizations (Table 3), the IN is less than
the critical value 1/VF for an error type | (a =0.05). The
measurement IN was in all cases surpassed by PE (Table
3), therefore the other proposed reparameterizations for
each model were analyzed.

Table 4 shows the PE for different reparameteriza-
tions from Logistic models (L2, L3, L4, L5 and L6) and
Gompertz (G2). A reduction in the PE is observed with
L5 and G2 parameterization. In orchard 1, PE values of
the L5 parameterization are inferior to the critical value
(1NF =0.5906) in all fruits, and for orchard 2 PE values
are inferior to the critical value (1/vF= 0.5838) in thir-
teen of fifteen fruit. For G2 parameterization, the values
of PE are inferior to the critical value (1/VF= 0.5906) in
twelve of fifteen fruit in orchard 1, and for orchard 2 PE
values are inferior to the critical value (1A/F=0.5838) in
seven of fifteen fruit (Table 4).

The percentage of Box bias for the estimators of para-
meters of G2 and L5 models was insignificant in all cases
(it indicates the estimators are unbiased), and this did not
prove to be a useful tool in choosing between models.

According to criteria used to evaluate the fit of
models to describe the pattern of ‘Valencia late’ orange
fruit growth, the most adequate turns out to be the L5
model. Therefore, L5 parameterization was only consi-
dered in the likelihood ratio test for the parameters of
fitted models for different orchards and fruit sizes. In
both orchards, estimation of a for different fruit sizes
were significantly different (p<0.0001). Estimations of
B and y for different fruit sizes were not significantly
different for orchard 1 (p=0.2920, p=0.2986), and signi-
ficantly different in orchard 2 (p<0.0001, p= 0.0300).

Table 5 shows the estimation of parameters a, 8 and
yand aspects of the growth curves related, for L5 model
average growth curves by orchard and fruit size. SA
increases with fruit sizes and has similar values for both
orchards. INT and GR have similar values on different
fruit sizes in orchard 1, but in orchard 2 INT increases
and GR decreases with fruit size.

Discussion

The constructed growth curves with sampled fruits
are similar for both orchards, the shape is not a typical
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Table 3. Measures of intrinsic nonlinearity (IN), nonlinearity parameter effect (PE) and residual variance estimation (o,) corre-
sponding to the evaluated sigmoid models

) Orchard 1 Orchard 2
Fruit Parameters
Logistic (L1) Gompertz (G1) Logistic (L1) Gompertz (G1)
1 IN 0.0561 0.0415 0.0581 0.0465
PE 0.6133* 0.7457* 0.6554* 0.9462*
o’ 2.3467 1.5986 2.4430 2.0246
2 IN 0.0627 0.0470 0.0854 0.0582
PE 0.5316 0.6329* 0.5077 0.5024
o’ 3.0155 2.1343 3.7936 2.3285
3 IN 0.0729 0.0571 0.0754 0.0575
PE 0.6271* 0.7498* 0.9268* 1.1172*
o’ 3.3365 2.5382 3.1654 2.2553
4 IN 0.0719 0.0562 0.0706 0.0513
PE 0.5197 0.5816* 0.6553* 0.7435*
o’ 2.5019 1.8478 2.3783 1.5932
5 IN 0.0750 0.0585 0.0650 0.0508
PE 0.7136* 0.8453* 0.6245* 0.8419*
o 3.7331 2.7870 2.6148 2.0732
6 IN 0.0708 0.0550 0.0437 0.0393
PE 0.7671* 0.9215* 0.5057 0.7911*
o 3.8354 2.8286 1.4044 1.3941
7 IN 0.0718 0.0487 0.0837 0.0631
PE 0.4904 0.5467 0.7251* 0.7852*
o’ 4.8188 2.9738 4.2547 2.9830
8 IN 0.0553 0.0415 0.0553 0.0441
PE 0.6539* 0.8029* 0.7426* 1.0112*
o’ 2.7000 1.8778 1.9517 1.5223
9 IN 0.0648 0.0453 0.0474 0.0319
PE 0.4548 0.4998 0.3922 0.4292
o’ 3.7045 2.3336 1.5334 0.8993
10 IN 0.0806 0.0606 0.0353 0.0251
PE 0.6563* 0.7733* 0.3463 0.4053
o’ 6.1734 4.4612 0.7262 0.4554
11 IN 0.0670 0.0475 0.0652 0.0481
PE 0.6025* 0.6982* 0.6481* 0.7295*
o’ 4.7453 3.0661 3.5236 2.3591
12 IN 0.0780 0.0567 0.0490 0.0370
PE 0.6542* 0.7592* 0.6660* 0.8156*
o’ 6.7813 4.6365 1.9715 1.3374
13 IN 0.0602 0.0472 0.0466 0.0364
PE 0.5891 0.7618* 0.5844* 0.7623*
o’ 4.0135 3.1259 1.6705 1.2285
14 IN 0.0667 0.0504 0.0635 0.0499
PE 0.6131* 0.7102* 0.8044* 0.9566*
o’ 4.0662 2.8599 2.7372 1.9965
15 IN 0.0646 0.0446 0.0363 0.0312
PE 0.4215 0.4521 0.4240 0.5900*
o 4.6754 2.8789 0.8135 0.7134

Critical value for a=0.05, 1~F =0.5906 (Orchard 1) and 0.5838 (Orchard 2), according to degrees of freedom. * Significant values (a=0.05).
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Table 4. Measures of parameter effect nonlinearity (PE) for different reparameterizations from models Logistic and Gompertz

PE
Orchard Fruit
L2 L3 L4 L5 L6 G2
1 1 0.4992 0.5028 0.6078* 0.4652 0.5292 0.5522
2 0.5744 0.5791 0.5261 0.4200 0.4660 0.4693
3 0.6470* 0.6522* 0.6206* 0.4981 0.5277 0.5610
4 0.6092* 0.6144* 0.5138 0.4308 0.5161 0.4570
5 0.6480* 0.6530* 0.7067* 0.5608 0.6075* 0.6331*
6 0.6075* 0.6116* 0.7602* 0.5903 0.6648* 0.6908*
7 0.7576* 0.7638* 0.4845 0.3915 0.6356* 0.4249
8 0.4785 0.6356* 0.6483* 0.4936 0.5739 0.6014*
9 0.6364* 0.6356* 0.4495 0.3669 0.5280 0.3852
10 0.7663* 0.7725* 0.6492* 0.5177 0.5404 0.5722
11 0.6365* 0.6416* 0.5964* 0.4665 0.5005 0.5095
12 0.7600* 0.7661* 0.6472* 0.5102 0.6124* 0.5553
13 0.5581 0.5625 0.5835 0.4511 0.4977 0.5574
14 0.5791 0.5836 0.6070* 0.4841 0.5200 0.5320
15 0.6364* 0.6417* 0.4163 0.3434 0.5404 0.3671
2 1 0.6048* 0.6098* 0.6490* 0.4787 0.5477 0.6704*
2 0.8707* 0.8733* 0.5007 0.4209 0.7596* 0.4365
3 0.6773* 0.6825* 0.9186* 0.6832* 0.8063* 0.8223*
4 0.6754* 0.6812* 0.6484* 0.5062 0.5401 0.5381
5 0.6684* 0.6740* 0.6179* 0.4739 0.5017 0.5991*
6 0.3917 0.3948 0.5011 0.3778 0.4357 0.5860*
7 0.7180* 0.7241* 0.7175* 0.5772 0.6035* 0.5839*
8 0.4819 0.4850 0.7365* 0.5399 0.6597* 0.7545*
9 0.4732 0.4773 0.3877 0.3079 0.3861 0.3089
10 0.3214 0.3241 0.3428 0.2668 0.2897 0.2982
11 0.5630 0.5676 0.6417* 0.5025 0.5482 0.5422
12 0.4124 0.4128 0.6605* 0.4914 0.5976* 0.6193*
13 0.3942 0.3966 0.5794 0.4351 0.5155 0.5741
14 0.5142 0.5149 0.7976* 0.6075* 0.7176* 0.7325*
15 0.2919 0.2937 0.4203 0.3244 0.3726 0.4515

Critical value for a=0.05, 1/~F =0.5906 (Orchard 1) and 0.5838 (Orchard 2), according to degrees of freedom. * Significant values (a=0.05).

sigmoid as described by Agusti (2000), because they
lack a clear definition of inferior asymptote. This can be
attributed to the fact that the measurements began after
phase | or period of exponential growth (60 DAFF in
orchard 1 and 50 DAFF in orchard 2), the moment at
which just the existence of a fruit can be defined con-
vincingly and reaches a size such that allows measure-
ments of equatorial diameter (Agusti et al., 2003).

The lack of convergence of the method of Gauss-
Newton in models with four parameters can be due to
the fruit growth for the range observed of measurement
not following a strongly sigmoid behaviour; which
would imply overparameterized models to describe the
pattern of orange fruits growth. Similar results were

found by Bramardi et al. (1997) for pear fruits cvs.
William’s and Packham’s Triumph.

Classical methods of selecting models were not useful
to evaluate the goodness of fit. R? values were similar for
Gompertz and Logistic models, and analogous to values
obtained by Casierra-Posada et al. (2004), in the fitted of
polynomial models for growth curves for peach cv. Con-
servero. However, authors as Draper (1984), Healy
(1984), and Helland (1987), consider inadequate the use
of R? criterion to evaluate the fit of nonlinear models.
Results obtained with the t test for all parameters in both
models, were similar to results obtained by Garcia Peti-
llo and Castel (2004), which fitted logistic models to
growth curves in Valencia orange. Distributions of Gom-
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Table 5. Estimation of parameters a, 8 and yand their aspects of the growth curves, for L5 model average growth curves by

orchard and fruit size

Estimations of parameters

Aspects of the growth curves

Fruit
Orchard size
o B Yy SA* INT* GR*
1 1 0.0159 -2.6469 0.9846 63.0447 11.5246 0.0155
2 0.0144 -2.6469 0.9846 69.2780 11.7273 0.0155
3 0.0132 -2.6469 0.9846 75.5312 11.8947 0.0155
2 1 0.0157 -2.5463 0.9847 63.5923 10.6273 0.0154
2 0.0141 -2.8397 0.9856 70.7920 13.7785 0.0145
3 0.0125 -3.1814 0.9868 79.9189 18.5043 0.0133

* SA: superior asymptote (1/a). INT: intercept [1/(a + €f)]. GR: growth rate (-In ).

pertz and Logistic residuals show adequate homoscedas-
ticity and normality. The cyclic tendency found can be
associated with repeated measures on the same fruits in
time, aspect that must be consider when using selected
model for inferences (Montgomery et al., 2004).

In both orchards, estimations of a2 were higher in
Logistic than Gompertz model, therefore it is considered
that this criterion has less importance than the measures
of nonlinearity (IN and PE) when selecting a model.
Moreover in both models the values of dispersion are
very low (higher value of o2 was 6.7813). In addition,
estimation errors will not be relevant in the estimation of
sizes at harvest. The values of o are generated by the dis-
tances between the observed points and the fitted curves,
are related to the sampled fruits and vary from one sam-
ple to another (Montgomery et al., 2004).

The non significant IN for initial parameterization of
Gompertz and Logistic models, indicates that the degree
of curvature of the solution curve is despicable and
allows considering that is not far off linear model form.
The presence of a nonlinear PE, greater than IN, sug-
gests the PE dominates the nonlinearity of the models,
which represents an advantage because PE can be atte-
nuated by an appropriate reparameterization (Rat-
kowsky, 1989).

According to PE values (Table 4), the best reparame-
terization for Logistic models was L5 and for Gompertz
models was G2. In both orchards PE of the L5 parame-
terization, were significantly inferior to the critical
value of Ratkowsky (1989) in 93.3% of the fruits and
G2 parameterization in 63.3% of the fruits. Considering
from the point of view of its nonlinear behaviour, which
must be prioritize when the final objective is the infe-
rence, L5 is the most satisfactory parameterization, and
should have better inferential properties.

The selection of logistic model in its fifth parame-
terization (L5), as the most adequate to describe the
pattern of ‘Valencia late’ orange fruit growth, agrees
with the results obtained by Bramardi et al. (1997),
who fit a logistic model in third parameterization (L3)
according to Ratkowsky (1983), to describe the
growth of pear fruits cvs. William’s and Packham’s
Triumph in the Alto Valle de Rio Negro and Neuquén,
Argentina; and Alvarez and Boche (1999) found that a
logistic function generalized with five parameters
turns out to be the model best adapted to describe
growth of Nectarin (cv. Sun Grand) fruits in Neuquén,
Argentina. Garcia Petillo et al. (2004), fit a logistic
model in their original parameterization to describe
the “Valencia’ orange fruit growth in San José, Uru-
guay.

The interpretation of the L5 parameters according to
Ratkowsky (1983) is as follows:

a: parameter related to the superior asymptote (SA),
in this parameterization is the inverse one (1/a).

. parameter that relates the superior and inferior
asymptotes, describes the Y-value corresponding
to X =0 (INT). In this parameterization responds
to the function: [1/(a + eP)].

y. parameter related to the rate of growth (GR) from
the initial values (B magnitude) until the final
values (a magnitude), in this parameterization it is
given by the function -In y.

Non significant differences of the parameters Sand y
for orchard 1 imply homogeneous the position of inter-
cept and growth rates in curves for different fruit sizes.
Significant differences regarding parameters Sand yfor
fruit sizes in orchard 2, indicates that the position of
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intercept and growth rates depends on fruit sizes. The
parameter a showed significant differences in both
orchards, showing the expected variation in the superior
asymptote for different curves by fruit sizes, these pro-
perties can be clearly visualized in the curves of Fig. la.
For this reason, a family of curves will be necessary for
different orchards and fruit sizes.

An extension of the present work could be to fit the
selected model for fruits classified according to their
harvest commercial size and to construct growth tables.
The behaviour of the estimated parameters of the selec-
ted model for each fruit, considering factors such as age
and season might be analyzed.
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