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ABSTRACT

This paper describes a three-level organizational model or decom-

position procedure named the Generalized Hierarchical Model (GHM) . The

GHM algorithm focuses upon a multiple criteria approach to hierarchical

decision-making via mathematical programming decomposition theory.

The GHM has been implemented on a CDC CYBER-175 computer and has been

tested extensively. The results of this research tend to confirm that

the GHM can offer a systematic approach to organizational design, multi-

period planning, and resource allocation in decentralized organizations,





1 . INTRODUCTION

Since the development of the Dantzig-Wolfe [6,7] decomposition

algorithm, a number of researchers have noted how closely the algorithm's

solution procedure parallels the decision-making process found within

a hierarchical organization. See [1,4,5,12] for a limited sample.

Over the years, other decomposition algorithms have been developed for

mathematical programming problems that possess a particular structure;

works by Lasdon [19] and Geoff rion [16,17] have provided an excellent

summary of these mathematical techniques. Because the solution pro-

cedures of these decomposition algorithms can mimick the information

exchanges that occur within hierarchical organizations, they have been

used to model organizational decision-making. Reviews of the economic

and behavioral aspects of these applications are given in Ruefli [25]

and Jennergren [18]

.

Recently, alternative formulations of decomposition models that

accommodate multiple criteria optimization have evolved. Unlike their

predecessors, these decomposition models were developed specif ically to

model the resource allocation process within a multilevel, decision-

making hierarchy. The highest level of the hierarchy is assigned the

task of generating goals for and/or allocating resources to the inter-

mediate decision-makers. The decisions at the intermediate level are

structured as goal programming problems that attempt to minimize devi-

ations from the goals generated at the highest level. These deviations

are minimized by selecting alternative proposals generated by subordinate

units at the lowest level of the organization's hierarchy.
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Tbe initial effort in this area was Ruefli's Generalized Goal

Decomposition (GGD) model [23,24]. He utilized the shadow prices (dual

solutions) of the intermediate level decisions and the principles of gen-

eralized linear programming to coordinate the process of goal generation

by the highest level decision-maker. Later Freeland [13] as well as

Freeland and Baker [14] developed a model which also used shadow prices

for coordinating decision-making in the hierarchy. However, the principles

of Benders' partitioning procedure [3] were incorporated into the highest

level decision in order to effect the process of goal generation. Freeland

[15] later discussed the relationship of his model to the GGD model. As

noted earlier the evolution of these algorithms represented a departure

from the practice of defining an organizational model based upon a given

decomposition procedure. That is, both the efforts of Freeland and Ruefli

were explicitly dedicated to the construction of organizational models.

Sweeney _et al_. [26] have characterized the models as "composition" ap-

proaches to organizational decision-making.

Although Ruefli [23, p. B510] noted the "insufficiency of [shadow]

prices alone to coordinate the activities of an organization," neither

the Freeland and Eaker nor Ruefli algorithm utilized deviations from

generated goals as a mechanism for coordinating decision making. Davis

[8] and Davis and Talavage [9] realized the possible advantages of util-

izing these deviations as a coordinative input. Their research led to

the formulation of two new models: the Centralized Goal Decomposition

(CGD) model, which relies upon goal deviations as a coordinative input

to the highest level decision-maker, and the Hybrid Goal Decomposition

(HGD) model which uses both deviations and simplex multipliers. Both

the CGD and HGD models are formulated for a three-level organization.

Further, an overall problem was defined for these algorithms, and this
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problem was identical to overall problem solved by Ruefli's GGD model.

Finally, the convergence for both CGD and KGD models was shown.

Because the GGD, CGD, and HGD algorithms solve the same overall

mathematical programming problem, their solutions' properties offer

a vehicle for testing the efficacy of their respective coordinative

mechanisms. After Davis and Talvage [9] applied these algorithms to

several test examples, they concluded the following:

1) The simplex multiplier as a sole coordinative input to the

highest level decision-maker was least effective. In fact,

in all test examples, the GGD algorithm failed to converge

without substantial modification.

2) The utilization of deviations as coordinative mechanims gen-

erated a solution which at convergence was nearly optimum.

3) The marginal advantage gained by using both simplex multipliers

and deviations was small and did not guarantee optimality.

4) In most cases, the simplex multiplier was a detrimental co-

ordinative input to the decisions at the lowest level. The

computational properties of the goal programming decision

associated with the intermediate level of the organization

were shown to inhibit the efficiency of simplex multipliers

as coordinative mechanisms.

Recently an article by Winkofsky et al. [31] presented a hierarchical

decision process model (DPM) which utilizes a binary (0-1) goal program-

ming model with preemptive priority factors (BGP) at each level of the

organization. Further their coordinative mechanisms were either goal

adjustment vectors (similar to Davis and Talavage's [9] deviations) or
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"broad changes in the current performance" [32, p. 274] levels for sub-

ordinate subsystems within the hierarchy. Their model is an extension

of the work done by Ruefli [23], Freeland and Baker [14], and Davis and

Talavage [9J. Although Winkofsky et al. focus upon the "composition"

approach described in Sweeny, et a_l . [27], they do not demonstrate how

their model's "derived organizational problem" is related to an "ideal

organizational problem." (See [27] for an elaboration of these terms.)

In other words, instead of viewing the DPM as a composition approach to

an ideal problem, Winkofsky _et _al_. provide an intriguing model designed

to act as a simulation laboratory for testing the impact of alternative

organizational policies and design issues on organizational decision-

making and resource allocation.

The Generalized Hierarchical Model (GHM) presented in this study

is an extension of these previous models, and it expands upon a two-level

version of the model presented in [10]. It attempts to eliminate the

negative properties of the previous algorithms while preserving their

positive attributes. Although similar to the Winkofsky et al . BGP

hierarchical model, the GHM retains the spirit of a true decomposition

algorithm. The GHM has been tested on simulated as well as real-world

administrative problems. The results of this testing indicate that the

GHM can offer a systematic approach to the problems of organizational

design, multiperiod planning, and resource allocation in decentralized

organizations

.

I 2 specifies the structure of the GHM, and § 3 presents several

theorems characterizing the solution and convergence properties of the

model. § 4 relates the results of several computational tests of the

GHM, and a final § provides concluding comments.
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2. DEFINITION OF THE GENERALIZED HIERARCHICAL MODEL

This § presents the GHM, and for ease of exposition it will be

divided into two subsections. §§ 2.1 will describe the organization

and decision structure of the model. In this §§ an explicit statement

for several key functions will be omitted; however, they will be detailed

in §§ 2.2. By varying the functional form of these functions, several

versions of the GHK (viz., linear, quadratic, etc.) are possible. I§

2.2 will outline the linear version of the GHM, its simplest form.

2.1 Organizational and Decision Structure of the GHM

The decision-makers within the organization will be called subsystems.

The model discussed in this paper employs three levels of hierarchical

decision-making. However, the GHM can be modified to accommodate a two-

level or n-level decision-making hierarchy. The subsystem at the highest

level of the organization will be referred to as the supremal subsystem

(see Figure 1). At the second level of the organization, there are M man-

aging subsystems or managers. Finally, on the lowest level of the organi-

zation are N infimal subsystems or operating units. Using the assumption

of M managing subsystems, there exists a series of integers, r ,r..,...,r ,

such that infimal subsystems r + 1 through r are subordinate to
K— J. K.

managing subsystem k. For consistency, assuming that there are N in-

fimal subsystems, r
n
must equal zero while r must equal N.

Each subsystem within the organization is assigned a specific deci-

sion. These decisions collectively describe the GHM and are given by
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;uations (1) through (14) in Table 1. Figure 2 details the assij

: the decisions including the model's informational flows or coor-

jchanisms. The individual decisions will now be detailed emphasi,

.iteraction between the subsystems on adjacent levels of the organ:

The first decision to be discussed is that of managing subsyst

, defined by equations (5.k) through (11. i). Managing subsystem k

wo sets of goals. The first goals are specified by a m, -column ve>

, (t), which represents a set of external goals. These goals are g£

rated by the supremal subsystem on interation t, and coordinate the

ictions of the managing subsystems. The second set of goals, g, , is

nZ-column vector of internal goals. These goals are constant through

Lhe optimization and can be regarded as a mechanise used by managing

subsystem k to coordinate the efforts of each of its subordinate, in-

fimal subsystems. The internal goals can also create a certain level

autonomy for each managing subsystem.

Corresponding to the external goal vector, G (t), are two m,-

column vectors, Y, (t) and Y, (t), representing positive and negative

deviations from G, (t), respectively. Similarly, there are two m*-

column vectors, y (t) and y, (t), corresponding to positive and negative

deviations from the internal goal vector, g, . Managing subsystem k has
K

at its disposal a set of n. -column vector proposals, X. (1) ,. . .
,X. (t).

generated during the previous interations by the i-th infimal subsystem

(i=r, i +l» • • . »r, ) . In creating a composite proposal for each of its

subordinate infimal subsystems, managing subsystem k can select any con-

vex combination of the i-th infimal's operating proposals, X.(D » • • • t\(

(i=r
k_ 1

+l,. . . ,r.) . To relate the infimals' proposals to the manager's

goals, G
k
(t) and g, , managing subsystem k has two sets of matrices,
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Figure 2. Detailed Structure for the Generalized
Model Giving the Decision Assignment
and Resulting Flows of Information
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equations CD through (14) in Table 1. Figure 2 details the assignment

of the decisions including the model's informational flows or coordinative

mechanisms. The individual decisions will now be detailed emphasizing the

interaction between the subsystems on adjacent levels of the organization.

The first decision to be discussed is that of managing subsystem

k, defined by equations (5.k) through (11. i). Managing subsystem k has

two sets of goals. The first goals are specified by a m, -column vector,

G, (t), which represents a set of external goals. These goals are gen-

erated by the suprercal subsystem on interation t, and coordinate the

actions of the managing subsystems. The second set of goals, g, , is a

mJ-column vector of internal goals. These goals are constant throughout

the optimization and can be regarded as a mechanism used by managing

subsystem k to coordinate the efforts of each of its subordinate, in-

fimal subsystems. The internal goals can also create a certain level of

autonomy for each managing subsystem.

Corresponding to the external goal vector, G (t), are two nt-

column vectors, Y (t) and Y, (t), representing positive and negative

deviations from C, (t), respectively. Similarly, there are two mJ-

column vectors, y, (t) and y (t) , corresponding to positive and negative

deviations from the internal goal vector, g, . Managing subsystem k has

at its disposal a set of n. -column vector proposals, X. (1) , . . .
,X.(t)

,

generated during the previous interations by the i-th infimal subsystem

(i=r. ,+l,% . . ,r, ) . In creating a composite proposal for each of its

subordinate infimal subsystems, managing subsystem k can select any con-

vex combination of the i-th infimal's operating proposals, X . (1) , . . .
,X . (t)

(i=r, .-1, . . . ,r, ) . To relate the infimals' proposals to the onager's

goals, G, (t) and g. , managing subsystem k has two sets of matrices,
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Specification of the GHN

Supremal Subsystem's Problem

(1) Min Z
Q
(t+l) = S^_

x
{c

G
G
k
(t+1) + B^tS*(t+l)] + W~[S"(t+D] )

s.t. k

(2.k) I G (t+1) + I S+(t+l) - I S~(t+1) - C, (t) + Y+(t) - Y~(t)m,k ^r ^ k

for k«l,...,M where I is the (ro. x m, ) - identity matrix

(4) G
k
(t+1) 1 °. E

k
(t+1) - 0> s

k
(t+1) i °

Managing Subsystem k*6 Problem (k - 1,...,M)

(s.k) Min yt) - r^
+1

rj_
x
c^cj) x^j) + b+p+(o] + \l\M]

+ w
k [yk

(t)1 +w
k [yk

(t)]

(6 - k) r
i"Vl+i

zU w" x±w - \< (t) +

V"k(°
* Gk(t)

(8.i) £* X
i CJ) - 1. \(j) 10 for i- r

k_x
+l r

fc

(9.k) Y+(t) > 0, Y~(t) >

The subsequent generation of the n, -component goal vector for
the infiraal subsystem i is based upon equations (5.k) through
(9.k) and is defined as

(10. i) Tfjt+l) - r
±
[X*(t), ^(t), Y+(t), t'(t), y*(t), y~(t)]

for i = r, ,+l,...,r, . where
k-1 k

(11. i) X*(t) - E* X
±
(j) X^j)

Infimal Subsystem i's Problem (i - 1,...,N)

(12.1) Min c
i
X
1
(t+l) + w [c (t+1)] + it [o (t+1)]

s.t.

(13. i) B,[X,(t+l)] - I o,(t+l) + I c"(t+l) - Y, (t+1)11
^-f -1

(14. i) D^ft+1) -F
1

(15.1) X
1
(t+1) >.0, o

1
(t+l) ^0, o~(t+l) 10



-10-

B. and B!, (i=r, ,+1, . . . ,r, ) . B_. is a (m, x n.)-matrix which linearly

relates each X^j), (j=l,...,t), to G (t). Similarly B'. is a (mJ x n.)-

matrix which linearly relates X.(j), (j=l,...,t), to g, . These relation-

ships are defined by equations (6.k) and (7.k), respectively.

Associated with each infimal subsystem's proposal is a n.-row

vector, c . , such that the cost of a particular proposal vector, X.(j),

is given by the inner product, c.X.(j). Also associated with the

deviation vectors, Y (t) and Y (t), there are two penalty cost func-

tions W [Y (t)] andW [Y (t)], respectively. Similarly, associated

with the vectors, >%(t) and y,(t), are the two penalty cost functions,

w, [y, (t)] and v [y (t)]. (A detailed specification of the functional

form for these penalty functions will be given in §§ 2.2.) Each of

these costs is included in equation (5.k).

Managing subsystem k's problem is one of generating a composite

proposal, X.(t), for infimal subsystem i, (i=r, -+1,. . . , r.) . These

composite proposals must satisfy equations (6.k) through (9.k) while

the objective function given by equation (5.k) is minimized. As

mentioned earlier, in generating each proposal, X.(t), the manager is

allowed to consider only convex combinations of a subordinate infimal

k
is previous proposals, X.(j), (j=l,...,t). Thus, X.(t) is defined as

(11. i) X*(t) = I* X.(j) X.(j) (i=r
k_ 1

+l,...,r
k
),

where E . >. .(j) = 1 and X.(j) >^ for j=l,...,t. Therefore,

managing subsystem k is concerned with generating an optimum set of

^(jTs.

Like previous organizational models, the GHM employs an iterative

solution procedure. Once the k-th managing subsystem's problem has
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been solved, that is the optimum set of X (j)'s and the deviations,

Y (t), Y (t), y. (t) and y. (t), have been generated, each management
k k k k

unit has two alternatives to reduce its objective function value.

First, each can ask the supremal subsystem for a new goal vector,

G (t+1), which will be more compatible with its subordinate infimals'
AC

proposals. Second, each manager can ask its subordinate infimal sub-

systems to generate new proposals which more closely conform to its

current goals, G (t) and g .

k k

The second alternative will be discussed first. Having generated the

optimal solution to its problem, the k-th managing subsystem generates a

n
. -column vector of goals, 7. (t+1), for each of its infimals (i=r +l,...,r )

using equation (10. i). (A detailed specification of T. is given in §§ 2.2.)

(10. i) Y
±
(t+1) = r.[X*(t), G

k
(t), Y+(t), Y~(t), y£(t), y~(t)]

The goal vector, y.(t+l), is in turn used by infimal subsystem i in the

selection of its next proposal vector, X.(t+1). This selection process

is accomplished through the solution of the i-th infimal subsystem's goal

programming problem given by equations (12. i) through (15. i). Associated

with the goal vector, y.(t+l), are two n.-column vectors,

c.(t+l) and a. (t+1), representing positive and negative deviations from

y. (t+1), respectively. To relate the proposal vector, X.(t+1), to the

goal vector, y.(t+l), each infimal subsystem has the linear function,

|3. [X. (t+1) ] . (Again, the formal specification of this linear function

will be detailed in §§ 2.2.) This relationship is defined by equation

(13. i). The i-th infimal subsystem must also satisfy certain technological

constraints given by the equation (14. i):
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(14. i) D. X.(t+1) 7 F
i

,

where D. is a (£. x n.)-matrix of technological coefficients, and F.

is a £. -column vector stipulating a set of fixed, right-hand-side values.

In the solution process, each infimal subsystem must consider

two costs. The first is the cost of the proposal, X. (t+1)
,
given by

the inner product, c.X.(t+l). The second is the penalty cost associated

with the deviations, a. (t+1) and a. (t+1), which are defined by the

penalty functions, u;. [a. (t+1)] and u). [a. (t+1)], respectively. (These

functions will be defined in §§ 2.2.) The sum of these costs gives

the objective function, equation (12. i). Once the infimal subsystem

has determined its proposal vector, X.(t+1), these proposals are for-

warded to its managing subsystem for consideration at the next iteration.

As indicated in Figure 2, X.(t) can also be passed to the i-th

infimal subsystem (i»r. .+1 r. ) by manager k. Later it will be

shown that X.(t) represents a feasible solution to the i-th infimal s

problem on iteration t+1. Hence, X.(t) can be used as an initial

feasible solution for the infimal' s problem on iteration t+1. (The cur-

rent GHM computer code does not pass X. to the i-th infimal. Only y. (t+1)

is used as the coordinative mechanism.)

While infimal subsystem i has been solving its problem, managing

subsystem k has also sent its deviations, Y. (t) and Y (t), from the

current goal vector, G, (t), to the supremal subsystem. Because the

supremal subsystem "knows" the goal values passed to managing subsystem

k on the last iteration, the supermal can determine the goals that each

managing subsystem could achieve with no deviations, given the k-th

manager's current operating proposals. This goal vector is defined as
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(16. k) G*(t) = G
k
(t) + Y+(t) - Y~(t),

and corresponds to the right-hand-side of equation (2.k). The supremal

subsystem is concerned with generating a new set of goals, G, (t+1)

(k=l,...,M), which will minimize the deviations from the k-th managing

subsystem's proposed operating levels, G, (t). These deviations are

given as the m, -column vectors, S (t+1) and S, (t+1), for k=l,...,M.

This new set of goals must satisfy the constraints given by equation (3)

:

< 3) E
k=i

p
k
G
k
(t+1) H'

where G. Is a nu-column vector containing the organization's overall

goals, and P. is a (m, x nO-matrix that linearly relates G, (t+1) to

Gn . Having generated the optimal set of goals, G, (t+1), (k=l,...,M),

the supremal subsystem sends the new goal vector, G, (t+1), to managing

subsystem k. The managing subsystem then increments t to t+1, and the

entire process is repeated.

Although several starting procedures are available, the simplest and

perhaps the most efficient is as follows. On iteration one infimal

subsystem i, (i=l,...,N), generates its minimum cost proposal considering

only constraint (14. i). The penalty costs for deviations arising from

equation (13. i) are neglected. Next, the k-th manager, (k=l,...,M),

takes the proposals X. (1) , (i=r, ..+1, . . . ,r, ) , and generates the resulting

deviations arising in equations (6.k) and (7.k) given that G, (1) equals

zero, and g, is as assigned. The resulting deviations, Y (1) and Y > (1)

are then forwarded to the supremal subsystem for consideration on iteration

two. Hence the supremal' s problem is not solved on iteration one because

G, (1), (k=l,...,M), was set to zero. It is interesting to note that
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this starting procedure closely resembles a zero-base budgeting system [21],

Also the GHM as well as other multiple criteria, decomposition algorithms

[9,14,15,23] can be viewed as a mathematical model of a Planning, Pro-

gramming, and Budgeting System (PPBS) ; see [24],

2.2. The Linear Version of the GHM

§§ 2.1 did not provide an explicit statement for several key func-

tions. These include:

1. The penalty costs in equations (1), (5.k), and (12. i);

2. The function, F
.

, in equation (10. i), which generates ^.(t+l)

for each infimal i; and

3. The function, &., in equation (13. i), which relates X.(t+1)

to y. (t+1).

Through the explicit statement of these functions, several versions

(viz . , linear, quadratic, etc.) of the GHM can be formulated. It should

be emphasized that the functional form chosen for these unspecified

functions should be consistent throughout the hierarchy. That is, the

penalty cost functions should be of the same polynomial order at each

decision-making level. The penalty weights should also be consistent.

The consistent weighting criterion placed upon the manager's and subor-

dinate infimals' deviation vectors implies that the echelon behaves as

a "cooperative" organization. That is, in the interaction between the

managers and their respective subordinates, each infimal' s objective

function has been structured so that it will seek to minimize its man-

ager's deviations and their associated costs. On the other hand, in

the interaction between the supremal and the managers, the managers can

retain some measure of autonomy through their internal goals. The supremal

attempts to adjust the external goals so that the resulting costs of the

the deviations are minimized over the ensemble of managing subsystems.
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Because the deviation vectors, a.(t-t-l) and c.(t+l), represent positive

and negative deviations from y. (t+1), respectively, the penalty function

in equation (12. i) also depends on the specific form of y.(t+l).

Finally, the specification of £. must also be consistent with the form

of v. (t+1), which is derived via T .

.

1 l

This paper will focus upon the linear version of the GHM, which

is its simplest form. The functions for the linear version are given

in Table 2 as equations (19. k) through (27. i).

The first step in defining the linear model is to specify the

penalty cost functions, K [Y (t)] and W [Y , (t)], as the inner products,

W Y (t) and W Y (t) , respectively. This corresponds to the utilization
K. K. K. K.

of an absolute error criterion for the penalty cost function, if the

nL-row vectors, W and W , are such that W equals W , for k=l,...,M.

A similar formulation for w [y (t)] and w [y (t)] gives w,y, (t) and

w y (t), respectively.

Next, the decision structure used by the managing subsystems to

generate the y.(t+l) goal vectors for their subordinates must be

specified. In deriving these vectors for iteration t+1, managing sub-

system k first assumes that G (t) will be held constant. Next, manager
K.

k assumes that only infimal subsystem i will be able to generate a

proposal, X.(t+1), which more closely satisfies the goal vectors,

G (t) and g . Using these assumptions, managing subsystem k subtracts

the contribution of its other subordinate infimal subsystems from

G
k
(t) and gk

giving

(17. i) Y.(t+1) =
G
k
(t)

p:
r
k-i

+
^

B
p

X (t), (i=r
k_ 1

+l, ...,r
k

)
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Table 2

Linear Specification of the GHM

(is. k) ^rYk (t)1
= w

k
Y
k
(t)

where W is a iil -vector for k = 1,...,M

(20. k) \t\(t)] = W
k

Y
k
(t)

where W. is a m, -vector for kV = 1 M

(21 .k) v£[y£(t)] w+ y+(t)

where w is a m^-vector for k 1 M

(22.k) w
k [yk

(t)] = w~ yk
(t)

where w is a mJ* -vector for k = 1,...,M

(23. i) Y
i
(t+1) =

B!
L. 1 J

x*(t) -

y+Ct)

+
Y
k
(t)

^k
(t)

(24. i)

for i = 1,. . . ,N

B.

6
i
[X.(t)] =

B!
i— x —

i

X
±
(t) for i = 1, . . .

,K

(25. i) wt[o\(t)] = [W* : w*] o*(t)
'k : "k J w

i'
for i = 1, . . . ,N

w~[o~(t)] = [W~
:
w~] o~(t) for i = 1....N

(27. i) n. = m, + m^ for i = 1,...,N
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Using equations (6.k) and (17. i), the definition of 7. (t+1) by equation

(23. i) follows. Thus given the goal, y.(t+l), each infimal subsystem

attempts to generate X. (t+1) such that the following conditions are

fulfilled:

"
B,

(is. i) e.[x
i
(t+i)] =

i

b!
>- i -j

X
i
(t+1) = YjCt+l)

This definition of £. is given in equation (24. i). In general, however,

infimal subsystem i will not be able to generate a proposal, X.(t+1),

which satisfies this equality. Accordingly, the n .-deviation vectors,

a. (t+1) and o.(t+l), are introduced. The linear versions of the

penalty cost functions w. [c. (t+1)] and id. [c. (t+1) ] are defined by

equations (25. i) and (26. i). For consistency, the penalty weights

associated with deviations for infimal subsystem i are identical to

those for corresponding deviations at the managing subsystem.

The strategy for generating y.(t+l) presented in this paper places

stringent demands upon the infimal subsystems. It requires that each

infimal single-handedly attempts to eliminate the deviations from its

manager's current solution. Alternative approaches which prorate the

manager's deviations among the subordinate infimal subsystems are pos-

sible and have been investigated. Prorating schemes could be based

upon proportional resource utilization and/or goal contribution as well

as the marginal cost associated with a given infimal 's elimination of

a unit of a goal deviation. Each of these alternatives has been computa-

tionally tested. Although it is perhaps managerially unenlightened,

the strategy described in equation (23. i) has proven to be the most

efficient at squeezing out what Williamson [31] as well as Schiff and

Lewin [26] have referred to as "organizational" slack.
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As noted earlier, the GHM can accommodate n levels of hierarchical

decision-making. For example, if one fixes the value of G (t) to a
K

constant vector, G, , then the interaction between managing subsystem

k and its subordinate infimal units is similar to that of a standard two-

level decomposition procedure. Also, a four-level version is possible

if one replaces a given infimal subsystem with a submanager and an asso-

ciated ensemble of infimal subsystems. Of course this substitution pro-

cess could be repeated to generate n levels of decision-making.

In contrast with previous organizational models the technique of

merging penalty functions with operating proposal costs in order to

effect the solution by the column generators is novel. This approach

allows the GHM to act as a pure decomposition procedure. This concept

is discussed in detail in Davis [10], In addition, one should note

the ommission of all cost vectors in the three level model creates a

simplified goal programming structure, similar to the Ruefli [23,24]

and Freeland [13, 15] models. This approach requires an a priori

specification of penalty weights that will subsequently remain constant

throughout optimization Thus the linear version of the GHM utilizes a

linearly additive utility formulation.

3. ANALYTICAL PROPERTIES OF THE GHM

The GHM has been designed to mimick the decision-making process

within a hierarchical organization, and thus it can be classified as

an organizational model. The fact that the GHM is concerned with

decision-making in an organization necessarily implies the existence

of a global or real-world problem for that organization. This issue

raises two concerns to which modelers must address themselves. The
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first is the compatability of the overall (i.e. undecomposed) problem

solved by a specific organizational model with the global problem

faced by the organization. The second is the efficacy of an organi-

zational model in solving its version of the overall problem.

In either concern, the specification of the model's overall

problem is of primal importance. Unless a modeler has a reasonable

understanding of this overall problem, a model's applicability to

the global or real-world problem cannot be evaluated. Unfortunately,

a discussion of the difficulties and problems encountered in defining

and enumerating global problems are beyond the scope of this paper.

Nevertheless, the need for a global problem specification remains.

This section will focus upon the definition of the overall problem

solved by the GHM and will access the ability of the GHM to solve this

problem.

The overall mathematical programming problem for the GHM is given

in equations (28) through (34) in Table 3. Theorem 1 states that the

GHM generates a feasible solution to this overall problem at each iteration.

THEOREM 1 : The Generalized Hierarchical Model given by equation (1)

through equation (15) generates a feasible solution to the overall

problem, equation (28) through equation (34), at every iteration .

Proof of Theorem 1 is given in Appendix 1.

The efficacy of the GHM in solving the overall problem will now

be discussed. Proof of Theorem 2 demonstrates convergence of the GHM.

THEOREM 2 : If a finite optimal solution exists to the overall problem

given by equations (28) through (3h), then the linear version of the
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GHM, given by equations (1) through (15) and (19) through (27),

converges to a finite limit .

Proof of the Theorem is given in Appendix 2. The proof is

accomplished by defining a composite objective function for the model.

At each iteration, this composite objective function is given by

equation (35).

(35) Z(t) = Z*
=]_

c.X*(t) +%ml
[c G

k
(t) +

k

« (t) + \\ (t) +« (t) + V\ (t) J

Note that this equation is obtained by inserting the iteration t solu-

tion values generated by the GHM into equation (28), the objective

function for the overall problem.

Theorem 1 has shown that the solution given by the GHM on each

iteration is a feasible solution to the overall problem. If we assume

that a finite optimum solution exists for the overall problem, say Z
,

then it can be concluded that:

(36) Z(t) >_ Z
Q

for t = 1,2, ...

Proof of Theorem 2 shows that the sequence, Z(l), Z(2),..., is monotonically

decreasing. That is:

(37) Z(t+1) 1 Z(t) for t = 1,2,...

Because each Z(t) is bounded from below by equation (36), a Cauchy

sequence results. It can thus be concluded that a cluster point exists,

or equivalently, for any e > 0, there exists t* such that:
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(38) |Z(t*) - Z(t*+k)| < e for k=l,2,...

In other words, the GHK converges.

Equations (37) and (38) are crucial for the proof of the GHM's

convergence. In the proof, several assumptions have been made in

order to demonstrate that the iterative objective function sequence

is such that:

(39) Z(l) > Z(2) > ... > Z(t*-1) > Z(t*) = Z(t*+k) for k = 1,2,...

These assumptions were made so that the proof of Theorem 2 would

analytically display the same convergence characteristics demonstrated

in computational testing of the GHM. In computational practice, the

linear version of the GHM demonstrates the convergence pattern seen

in equation (39), where t* is usually less than ten and is often less

than five. Thus, in application, the assymptotic convergence implied by

equation (38) is being satisfied in a more stringent respect. That is:

(40) |Z(t*) - Z(t*+k) |
= for t* finite and k = 1,2,...

Further in the proof of Theorem 2, it is shown that Corollary 1 follows.

C0R0LLAR.Y 1 . The following characteristics will exist at convergence

of the model on iteration t*: X.(t +1) = X.(t +1) for i=l,...,N. That

is, the optimal proposal generated by managing subsystem k, (k=l,...,M)
,

for infimal subsystem i, (i=r +l,...,r ), at iteration t +1 is identical
k—

1

k

to the optimal proposal generated by infimal subsystem i .

Recall infimal subsystem i's constraints:
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(13. i)

(14. i)

E.
l

B!
l

X.(t) - I o.(t) + I o.(t) = Y.(t) and
l r,.i n.i l

D.X.(t) -F.,
l l > l

where
b!

X.(t) = B.[X.(t)] (see equation 24. i)

Constraint (13. i) places no restriction on X.(t). Any X.(t) which

satisfies equation (14. i) also satisfies equation (13. i). The

purpose of equation (13. i) is to direct infimal subsystem i toward

the selection of X.(t), by minimizing deviations from the goal vector

y.(t). Most previous decomposition algorithms considered only equation

(14. i). This implies that use of a linear objective function by infimal

subsystem i requires that its X.(t) necessarily be an extreme point of

the polytope for equation (14. i) . This estabished the necessity that

managing subsystem k consider convex combinations of previous proposals

(extreme points),

(11. i) X*(t) = Z
Z

X.(j) A.(j)

(8.1) e:
=1

x
± (j)

= i, a.(j) > o

in order to generate interior points of the polytope for equation (14. i).

By using constraint (13. i), infimal subsystem i is free to generate

any point in its feasible polytope as an optimum decision. Each infimal

is no longer totally dependent upon its managing subsystem to generate

an interior point for an optimum proposal. Furthermore, Corollary 1

states that at convergence the optimal proposal generated by infimal

subsystem i corresponds to the one generated by its managing subsystem.
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Corollary 1 shows that the GHM possesses a desired behavioral

property often sought in organizational modeling (see [21]). In the

GHM each decision-maker generates its own limiting solution. Guidance

in selecting solutions flows from above. In contrast, each of the mul-

tiple criteria organizational models [9,13,23,24] discussed earlier re-

quires each managing subsystem to generate the limiting solution for its

subordinate infimal systems.

The remainder of this section will discuss the solution properties

of the model. As stated earlier, Theorem 2 guarantees at least assymptotic

convergence of the model to a limiting solution for the overall organi-

zational problem given in equations (28) through (34). Further, this

limiting solution is feasible and bounded. Computational testing has

indicated that the GHM converges to a limiting solution faster than the

previous models discussed in the introduction. In addition, n£ hueristic

starting procedures are required for this convergence.

A possible explanation for the improved convergence characteristics

of the model follows. All of the previous multiple criteria models use

simplex multipliers associated with managing subsystem k's problem as

a mechanism for coordinating the decisions at one or more levels of the

organization. Use of simplex multipliers can create convergence problems

for organizational models that utilize a goal programming format.

Recall that the manager's problem attempts to choose least costly

proposals and to force the goal deviation vectors to zero. The asso-

ciated goal programming formulation of this decision creates computa-

tional difficulties. First, the number of proposals, X.(j) (j=l,...t),

that managing subsystem k uses to generate the composite vectors X.(t)
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for i=r,
1
+l,...,r , at iteration t is usually less than the total

number of constraints. For example, the constraints (excluding non-

negativity conditions) in the k-th manager's problem originate from

three sources: external and internal goals plus a convex combination

proposal constraint for each subordinate infimal. In total there should

be m, + mJ + r, - r, .. constraints. Computational testing has indi-

cated that the number of X.(j)'s (j=l,...,t) actually selected in the

convex combination search seldom exceeds three for each infimal. Given

this operational maximum for all subordinate infimals, there should be

no more than 3x[r - r, . ] X.(j)'s (i=r, .4>l,,.. l r. and j=l t)

in solution as basic variables. If the total number of constraints ex-

ceeds 3x{r - r ] by a considerable margin, problems can occur.

Given these conditions, the process of forcing goal deviation vectors

to zero often causes the primal problem of the managing subsystem to

become degenerate. As a result, the associated dual to this problem

has multiple optimum solutions. Recall from the theory of linear pro-

gramming that when the primal problem achieves optimality, the simplex

multiplier and the dual solution are essentially the same (they can differ

in sign). Thus, if multiple dual solutions occur, then any decomposition

procedure or organizational model using simplex multipliers as coordinating

mechanisms can experience a breakdown in coordination. This results from

the fact that the managing subsystem does not have a unique specification

for its simplex multipliers.

Even if one could disregard these difficulties, use of the simplex

multiplier can create additional problems. For example, the value of a

simplex multiplier in a linear programming problem is dependent upon
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th e cost associated with a basic variable and not the basic variable's

solution value. Thus, if a particular component of the deviation vector

is a basic variable, its influence on the simplex multiplier is in-

dependent of its value in the current basic solution. Instead, it is

dependent upon the penalty cost assigned to it. Thus, a simplex multi-

plier can have the same value if a particular deviation were 10 or

3
10 . Therefore, usage of the simplex multiplier only establishes that

a particular deviation is a basic variable, but it offers no guidance

on how far goals must be adjusted. On the other hand, the utilization

of deviations conveys considerably more information on the success that

managing subsystem k has had in meeting goals, and indicates how far cer-

tain goals should be adjusted. This additional information tends to

result in faster convergence.

Although the GHM appears to be in some ways better than the previous

multiple criteria, organizational models, the optimality of its limiting

solution cannot be guaranteed. It is possible that the linear version of

the GHK can converge to a near but nonoptimal solution to the overall

problem given in equations (28) through (34). However, this ncnopti-

mality is not unique to the GKM. The potential for nonoptimal solutions

is brought about by several factors. First, Ruefli's three level GGD

model [23] and Freeland's correction to it [15] may not generate feas-

ible solutions to the overall problem. Neither applies a "convex com-

bination" proposal constraint in the manager's problem. That is, there

is no equivalent \. (j) in their models. This omission implies that each

manager can consider the "origin" or null X. vectors. Thus the Ruefli

and Freelanc models have difficulties if constraint (14. i) or its overall



-27-

problem counterpart (31. i) place nonzero minimum proposal levels on a

given infimal. This difficulty can be easily overcome by inserting the

type of convex combination constraints imposed by equations (6.k) through

(8.i).

Unfortunately more serious problems exist in these multiple criteria

organizational models. The previous discussion on degeneracy indicated

possible sources of ambiguity imbedded in the shadow price coordinative

mechanisms. This is further complicated by the fact that unlike the

Dantzig and Wolfe [6] model, no true master program exists for the de-

composition of the overall problem by these three level multiple criteria

algorithms. Instead, each uses a group of partial master programs , which

are coordinated through the supremal subsystem. In addition, no indi-

vidual decision-maker is concerned with the organization's overall ob-

jective function.

Our computational testing has shown that nonoptimal solutions are

possible in the linear versions of all three level multiple criteria

decomposition algorithms. We should stress that a quadratic version of

the GHM [2,11] overcomes this nonoptimality problem. However, this im-

provement is achieved at the expense of significantly higher computa-

tional difficulty and cost.

A. EXPERIENCE WITH COMPUTATIONAL TESTING

Although the first multiple criteria, organizational model was

introduced over ten years ago, implementations (successful or otherwise)

of the algorithms are rare. Ruefli has noted:

Perhaps the most discouraging aspect of the

subject [analytic models of resource allocation]
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we are discussing is the persistent lack of ap-

plications. Modeling efforts usually take place

at the theoretical level and little has been done
to link these efforts to actual problem situations
and actual (or even strongle representative) data.

[25, p. 361]

He continues:

Indeed, one of the very good reasons why
these models have not seen wider use is probably
because they are not very useful. However, until

selected efforts are made to apply these models
and the problems and successes are reported, we

must continue to operate in substantial ignorance

of real-world problems vis-a-vis the models. [25,

p. 362]

This § briefly describes the results of computational testing of

the GHM. The results of these applications tend to confirm that organi-

zational models based upon mathematical programming techniques can offer

a systematic and viable approach to systems and organizational design,

multiperiod planning, and resource allocation in real-world, decentralized

organizations

.

In recent months four separate problem formulations have been tested

utilizing the GHM. They include Ruefli's Department of Defense (DOD)

military plan [24], the Davis and Talvage Transhipment problem [9], the

Davis design structure formulation [10] , and the Whitford university

planning model [29,30]. The size of these problems varies. Fcr example,

a statement of the overall problem [see equations (28) through (34)] of

the Ruefli DOD formulation contained 42 variables and 38 constraints.

In contrast the Whitford university model's overall problem has over

7,200 variables and 2,800 constraints.

In order to eliminate data manipulation errors and to reduce

the man-hours required to formulate or solve a particular problem
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using the GHM, a FORTRAN computer code was written for a Control Data

Corporation CYBER-175 computer. This program utilized a separate set

of sparse matrix optimization subroutines [21].

This code offered the benefits of speed and computational ease.

For example, data preparation for the DOD problem required .75 hours

while the university problem required eighty hours. Compilation of

the GHM code required 3.5 CPU seconds. Convergence of the DOD problem

was attained in 3.4 CPU seconds, while the university model required

97.7 seconds. Both formulations converged in four iterations. Further

no starting hueristic procedures were necessary. As indicated earlier

use of goals and deviations from goals as coordinating mechanisms avoids

potential difficulties in organizational coordination caused by simplex

multipliers. Thus it appears that avoidance of simplex multipliers

obviates the need for good starting solutions cited in [5]. In contrast

to previous studies by Davis [8], Davis and Talavage [9], Christensen

and Obel [5], and those cited by Dirickx and Jennergren [12, pp. 86-97],

the GHM's results are promising. Indeed if one excludes the first

iteration (required for model initialization), the number of planning

and programming information exchanges or iterations is similar to those

actually experienced in most decentralized organizations. Unfortunately,

a detailed description of these applications is beyond the scope of this

paper. However, the interested reader is referred to Whitford [28,29]

and Whitford and Davis [30].

5. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to describe the Generalized

Hierarchical Model (GHM), a multilevel, multiple criteria decomposition
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procedure. The GHM is an outgrowth of several decomposition algorithms

developed during the last twenty years. However, its principal coordin-

ative mechanisms are not the traditional shadow prices but performance

targets or operating goals, and the resulting deviations from those

goals. These goal deviations provide guidance on how far goals must be

adjusted to achieve organizational objectives and priorities.

Although the GHM cannot guarantee that it will generate the optimum

solution to an organization's overall problem, its limiting solution

is nearly optimal. A FORTRAN computer code has been written to imple-

ment the GHM. Testing of the algorithm has demonstrated rapid computa-

tional speed and convergence. Not only do the informational exchanges

within the algorithm closely resemble those found in actual hierarchical

organizations, the number of iterations or information exchanges required

for convergence seldom exceed the typical number of planning and/or

budgeting reviews found in most organizations.

Although the GHM offers an interesting approach to organizational

modeling, much work remains. Currently research is in progress which

utilizes the GHM to investigate the model's applicability in several

organizational, decision-making settings. However, based upon our ini-

tial results, the GHM appears to provide a systematic approach to inves-

tigating issues related to organizational design, multiperiod planning,

and resource allocation in decentralized organizations and systems.
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Appendix 1

Proof of Theorem 1

THEOREM 1 : The Generalized Hierarchical Model given by equation (1)

through equation (15) generates a feasible solution to the overall

problem, equation (28) through equation (34), at every iteration .

Proof : The proof begins by observing that constraints (6.k) and (7.k)

for managing subsystem k are identical to constraints (29. k) and (30. k)

of the overall problem if one defines

X
i

= X
i
(t) = Z

j=l
X
i
(j) A

i
(j) f ° r i = r

k-l
+1 "--' r

k'

Zj
=1

*
±
(j) =1 for i = r^^l, ...,r

k
,

(41. i)

(
V j) - °

for j = 1, . . . ,t.

X . (i) > for i = r, , +1, . . . ,r, , and
x — k-1 k

In the overall problem, each X. must satisfy the following con-

straint:

(42. i) D.X. -F..
i i > i

Within the GHM's solution process the i-th infimal subsystem on itera-

tion j must consider a similar constraint in generating X.(j):

(14. i) D. X.(j) 7F. for j = 1 t.

Because X.(t) is a convex combination of X.(l) through X.(t), X (t)

must necessarily satisfy equation (31. i) of the overall problem.
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In addition, managing subsystem k has the external goal vector,

T T T T
G,(t). In the overall problem, the vector [G.. , G„ , . . . , G J (T indicates

transpose) must satisfy the constraint:

<32 > ^=i p
k

Gkf G
o-

In generating the goals, G, (t), (k = 1,...,M), the supremal subsystem

must also satisfy the constraint:

(3) tiW^V
Because the vectors, Y (t), Y (t), y, (t) and y, (t), are generated via

constraints (6.k) and (7.k), which are identical to constraints (29. k)

and (30. k), it is possible to conclude that values for

X,. (t) for i = 1,...,N and

(42)

i

G
k
(t)

Y*(t), Y~(t) V for k = 1,...,M
k vw ' k'

y^Ct), y~(t)

/

derived through the decomposition algorithm provide a feasible solution

to the overall problem. Q.E.D.
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Appendix 2

Proof of Theorem 2

THEOREM 2 : If a finite optimal solution exists to the overall problem

given by equations (28) through (34), then the linear version of the GHM,

given by (1) through (15) and (19) through (27), converges to a finite

limit.

Proof . To facilitate the proof of this theorem, several assumptions are

made. First, it will be assumed that a finite optimal solution exists

to the overall problem. Also, the following set of behavioral assump-

tions effecting decision-making at each level of the organization are

operative.

1) If at iteration t+1, G (t) is an alternate optimal solution
K.

to the supremal's decision, then G (t) will be returned to
K

the managing subsystem k as G (t+1).
K.

2) If at iteration t+1, X.(t) is an alternate optimal solution

*
to infimal is decision, then X. (t) will be returned to

l

managing subsystem k as X.(t+1).

•A,

3) If at iteration t, the set of proposals, X.(t-l), (i = r +l,...,r ),
X iC~X K.

represents an alternative optimum solution to managing subsystem

k's problem, then X?(t) = X.(t-l), (i = r +1 r ).
1 X K J. K

In every case, these behavioral assumptions are utilized only if alternate

optimal solutions exist to the subsystem's current decision. Computational

experience has shown that these assumptions hasten convergence of the model.

Furthermore, they serve as a mechanism to preventing cycling. The convergence

of the model will now be shown.
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The proof initially focuses upon the supremal subsystem's deci-

sion at iteration t+1. From each managing subsystem k, the supremal

subsystem has the feedback information, Y, (t) and Y~(t), (k=l,...,M).
K K

The supremal' s problem is:

(1) Min Z^
=1 [c

G
G
k
(t+1) + V+ sj(t+l) + W~ s£(t+l)]

k

s. t.

(2) G
k
(t+1) + S

k
(t+1) " S (t+1) = G

k
(t) + Y

k
(t) " V £)

for k=l, . . . ,M,

(3) Z^
=1

P
k

G
k
(t+1) 1G , and

(4.k) G (t+1) > o, s+(t+i)> o, sT(t+i)> o

for k=l, . . .
,M.

The solution

G
k
(t+1) = G

k
(t)

S
k
(t+1) = Y

k
(t)

I S
; ( t+1) = Y"(t)

is feasible for this problem, and therefore, the following condition

may be assumed:

4-1 [ccA (t+1) + W
k

S
k
U+1) + W

k
S
k
<t+1)] -

(44)
k

r
k=i t cGA (t) + << (t) +wkV t)] -

k
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Unless equation (44) holds as a strict inequality, then by assumption

1, G (t+1) = G (t), and equation (43) gives the supremal's solution. If
k k

G (t+1) does not equal G (t), then equation (44) guarantees that the
k k

overall performance or composite objective of the organization defined in

equation (35)

(35) Z(t) = S
J

S
J

c.X.a) X. (j ) + £ [c G
k
(t) +

J k

W
k

Y
k
(t) + W

k
Y
k
(t) + W

k yk
(t) + W

k yk
(t)]

will be improved on iteration t+1. To see this, assume that on iteration

t+1, managing subsystem k's problem is:

x

Min Z.
k

., E™ c.X.(j)X.(j) + wf Y*(t+1) +
i=r. ,+1 j=l i i^ J/ i J/ k k

k-1

(45. k)

W~ Y~(t+1) + w^ y£(t+l) + w~ y~(t+l)

r

(46. k) s.t. E * E^f BX(j)Uj) - Y+U+l) +
k-1 J

Y
k
(t+1) = G

k
(t+1),

(47.k) E^L +1 £J B'X^^X.Cj) - y+Ct+1) +
k-1 J

yk
(t+l) = gk

, and

(48. i) EJS X,(j) =1, X,(j) >

*j-l V
for i-r^+l,. ••>r

k
-

Let X. (j), (i=r +l,...,r. ) and (j=l,...,t), be the optimal set of
i k— 1 k

A.(j)'s on the last iteration. The solution
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(49. k)

^
i
(j) ^

±
Cj ) for j=l,...,t and I*r, .+1 , . . . , r.

X. (t+1) = for i=r. .+1 r.
l k-1 k

<

Y*(t+1) = S^(t+1)

Y
k
(t+1) = S

k
(t+1)

yk
(t+l) = yj(t)

\ >\(t+D = y^(t)

is a feasible solution to managing subsystem k's problem for iteration

t+1. Using the feasibility of S, (t+1) and S7(t+1) in manager k's solution,

equation (49. k), and the inequality of equation (35), equation (50)

follows

.

Z
k=i

{ ^=l C t+i
cA«)x±a)] + c G

k
ct+i) + < y+cwi) +

k-l k

W~ Y'(t+1) + v+ yk
(t+l) + w~ y~(t+l)} 1

(50) if ,{[I
C

, Z.
V

.. C.X. (j)X*(j)] + cr G. (t+1)
k=l L i=l i=r, ,+1 i i J/ i J J

G, k
k-l k

+ w
k

s
k
(t+i) +

+ +
W
k

S
k
(t+1) + w

k yk
(t) + w

k yk
(t)} <

Z
k=l

{ ^i=l i ,+1 *iV3>^>] + ^ G
k
(t) + K Y

k
(t) +

"k-l

v:k\ (t) + << (t
>
+v

k>"k
(t^

Using equations (35) and (50), it can be shown that
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(51) Z(t+1) < Z(t).

Furthermore, the solution for iteration t+1 is distinct from that for

iteration t if and only if

(52) Z(t+1) < Z(t)

Next, the interaction between managing subsystem k and its infimal

subsystems i, (i=r +l,...,r ), will be discussed. For iteration t,
K—

1

K

managing subsystem k has the optimal solution:

(53)

X
i
(t), (i=r

k_ 1
+l,...,r

k )

Y+(t), Y, (t), y+(t), y"(t)

In defining the GHM's behavioral interactions of manager k and its i-th

infimal, manager k "assumes" that the supremal subsystem will return

the goal G (t) as G (t+1). On this basis, manager k "asks" each of
K. K.

its subordinate infimal subsystems to generate the proposal vector that

will best meet the goal vector, G (t), assuming that the other infimal
k

subsystems' proposals will be held constant. Mathematically, the manager

subtracts the contribution of the other infimal subsystems from the right

hand side of constraints (6.k) and (7.k) giving:

(54. i)
J!
l -1

X*(t) - Y+Ct) + Y~(t) =

"j =r
i- i

+1

G
k
(t)

' E
i 1 *—3—\ X,(t)

b!

3H
k-1 L -j J

(i=r
k_ 1+

l, ,r
k
).

By definition, the left hand side of equation (54. i) is y .(t+1) . The

manager then passes the goal, y

.

(t+1), along with its proposed action

for infimal i, X.(t), to the i-th infimal subsystem.
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Infimal subsystem i then has the following problem:

(55. i) Min cJLCt+1) + [w£|w£] o*(t+l) + [^~|w~] o~(t+l),

(56. i) s.t.

(57.1)

(58.1)

B
l

X.(t+1) - cr*(t+l) + c~(t+l) =

B!
1

*
x
±
(t) Sill

y£<t)

D
i
X
i
(t+l) -F

i
, and

Z (t+1) >_ 0, o
±
(t+l) >_ 0, o

i
(t+l) 1 0.

The solution

(59.1)

X
±
(t+1) =

a*(t+l) =

a (t+1) =

X*(t)

Y
k
(t)

J+to

y'(t)

is a feasible solution to infimal subsystem i's problem. Therefore,

it follows that:

(60. i) c.x.(t+i) + [w*'w*]ot(t+l) + [wr'w7]cT(t+i) <ii k» k i k* k J
i —

c.X*(t) + [w£wj]
Y+(t)

yk
(t)

1 k« k J
llll

yk
(t)

If equation (60. i) holds as an equality, then (59.1) gives at least

an alternate optimal solution to infimal subsystem i's decision. Thus

by assumption 2,
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(61. i) X.(t+1) = X*(t).
1 l

Using equations (35), (45), and (59. i) , it follows that if X
±
(t+1) # X

±
(t)

,

then Z(t+1) < Z(t). Furthermore if Z(t) = Z(t+1), then the assumptions

guarantee that:

(62)

X.(t+1) = X.(t) for i = 1.....N and

G
k
(t+1) = G

k
(t) for k = 1.....M.

The optimal solution for managing subsystem k, is thus given by

/
X.(t+1) = X.(t) for i = r. ,+l t ...,r, and
x l k-1 k

Y+(t+l) = Y+(t)

(63) <* \(t+l) = Y~(t)

y^(t+l) = y^(t) ior k = 1,.. . ,M

yk
(t+l) = yk

(t)

This implies that the supremal subsystem's and the infimal subsystems'

decisions on iteration t+2 are identical to those of iteration t+1.

Therefore, the algorithm has converged.

The previous discussion indicates that the seratium solutions will

take on the following characteristics:

(64) Z(l) > Z(2) > > Z(t*) = Z(t*+1) = ... = Z(t +t) = ... (for x >_ 0)

.

The only step that remains is to show the existence of t . Recall that

a finite optimum solution to the overall problem, Z„, is assumed
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to exist. Further by Theorem 1, the solution of the model at every

iteration is a feasible solution to the overall problem. Therefore,

it follows that:

(65) Z(t) >_ Z
Q

for all t.

Since the monotonically decreasing series seen in equation (64) is

bounded from below by equation (65), the existence of t follows such

that for any e > C,

(66)
I

Z(t +t) - Z(t ) |
< Efor t >0.

Q.E.D,

The following corollary was derived in the proof of Theorem 2 and

will be given without further proof.

COROLLARY 1. The following characteristics will exist at convergence

of the model on iteration t*: X.(t +1) = X.(t +1) for i = 1,...,N.

That is, the optimal proposal generated by managing subsystem k (k=l,...,M)

the infimal subsystem i (i=r +l,...,r ) at iteration t*+l is identical

to the optimal proposal generated by infimal subsystem i.

Equations (59. i) and (63) verify Corollary 1. Further, equation

(63) demonstrates that at convergence solutions within the hierarchy

of the GHK will be identical for iterations (t +t) (t>0).
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