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Abstract

High frequency data are often used to construct proxies for the daily volatility

in discrete time volatility models. This paper introduces a calculus for such proxies,

making it possible to compare and optimize them. The two distinguishing features

of the approach are (1) a simple continuous time extension of discrete time volatility

models and (2) an abstract definition of volatility proxy. The theory is applied to

eighteen years worth of S&P 500 index data. It is used to construct a proxy that

outperforms realized volatility.

Keywords: volatility proxy, realized volatility, continuous time embedding, intraday

periodicity.
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1 Introduction

The volatility process is central to financial asset return modelling. Volatility is unobservable,

so one often has to rely on proxies when specifying, estimating and evaluating volatility

models.

The most common proxy for the square of volatility is the squared close-to-close return.

Realized volatility, which is based on intraday data, is nowadays considered a benchmark

proxy. A theoretical motivation for constructing realized volatility is that for a large class

of semimartingales quadratic variation is an unbiased estimator of conditional return vari-

ance (ex post), see, for example, Barndorff-Nielsen and Shephard (2002), and Andersen,

Bollerslev, Diebold, and Labys (2003a). See also Peters and de Vilder (2006), where realized

volatility is used to test the hypothesis of a semimartingale. By using realized volatility to

evaluate forecasts, Andersen and Bollerslev (1998) show that GARCH models perform better

than expected. High frequency data create additional opportunities. Indeed, some intraday

based proxies have superior forecasting power compared to daily returns, see, for example,

Ghysels, Santa-Clara, and Valkanov (2006), and Engle and Gallo (2006). In general, the

search for a good proxy has suffered from the absence of a straightforward way of comparing

proxies. The goal of this paper is to compare and optimize proxies for daily volatility.

Discrete time models, such as GARCH and stochastic volatility models, often have a

product structure

rn = vnZn, (1)

where rn is the close-to-close return, vn the daily volatility, and the Zn are iid innovations.

We shall provide proxies for the factors vn, based on intraday data, and show that it is

possible to rank and to optimize proxies without knowing the scaling factors vn themselves.

The first step is to introduce a continuous time extension of the discrete time model (1).

The continuous time model also has a product structure. We assume that for each business

day the intraday log return process is a randomly scaled, independent copy of a stochastic

process Ψ on the unit interval. The iid innovations (Zn) in (1) are replaced by independent

copies of Ψ. The continuous time model is consistent with both the persistence of volatility

captured by discrete time volatility models, and with intraday periodicity. There are several

papers on the embedding of discrete time models into stationary continuous time models, see,

for instance, Drost and Werker (1996), Meddahi and Renault (2004), and Ghysels, Harvey,

and Renault (1996). For other approaches, related to embeddability, see, for example, Nelson

(1990), Nelson and Foster (1994), and Klüppelberg, Lindner, and Maller (2004).

We proceed by defining a large class of volatility proxies. In formal terms one obtains
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a proxy by applying a positively homogeneous functional to the intraday return process.

Realized volatility, high minus low, and absolute returns, all are special cases of such proxies.

We show that proxies may be compared by estimating the variance of their logarithm. In the

associated ordering, good proxies are highly correlated with daily volatility. It is possible to

improve proxies by a technique similar to the determination of the minimal variance portfolio

in a portfolio selection problem, as introduced by Markowitz (1952). Optimal proxies for

the scaling factors exist. On a data set of intraday S&P 500 index futures market data

from January 1988 to mid 2006, the additional use of high-lows on intraday intervals yields

proxies substantially better than realized volatility. For the S&P data, the empirical ranking

of proxies is stable over time.

The remainder of the paper is organized as follows. Section 2 introduces the continuous

time model, and relates it to models of daily volatility. Section 3 defines proxies, shows how

to compare them, and how they may be improved. It also contains an existence theorem for

optimal proxies. Section 4 is devoted to empirical analyses. We construct a good proxy for

the S&P 500 data. Section 5 contains our conclusions. Appendix A describes the data used.

2 Model

This section proposes a continuous time model of asset returns. The model embeds many

discrete time, end-of-day models, such as GARCH and stochastic volatility models. The

business day is our unit of time.

2.1 Empirical Considerations

Figures 1 and 2 show some properties of the S&P 500 price process at different time scales.

Our S&P 500 futures data consist of 4575 days starting on 1988-01-04 and ending on 2006-

05-31. The S&P 500 futures are traded from 8:30 A.M. to 3:15 P.M. Central Standard Time.

See Appendix A for more details.

Financial price processes typically exhibit periods of small variation and periods of large

variation. These are referred to as low and high volatility periods, respectively. Let us, for

the moment, use realized volatility as a measure of the price fluctuations over the trading day.

Realized volatility is an estimator of actual volatility, where actual volatility is defined as

the square root of the daily increment in quadratic variation.1 We use five-minute returns to

define realized quadratic variation (RQVn). This divides the day into 81 five-minute intervals,

1We use the term volatility in the context of quantities that scale like the returns, and not, for example,
like the square of the returns as quadratic variation does.
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Figure 1: (a) Daily log realized volatility. Difference (dots). Exponentially weighted moving av-
erage (solid line). (b) Periodicity. Lower line: autocorrelations of absolute five-minute returns,
standardized by daily RVn. Lags vary from 5 minutes up to 20 days. Upper line: non standard-
ized absolute five-minute returns. Based on 370575 five-minute returns. (c) Average per-interval
proportion of RQV. For each of the 81 intraday intervals, the average is taken over 4575 days.
(d) Cumulative intraday proportion of RQV. Bold line: average of sample (4575 days). Numbered
lines: nine consecutive days starting at 1997-02-12.

and we define daily realized volatility by RVn =
√
RQVn. For a particular day n, given the

partition above, RQVn is the sum of the 81 squared five-minute returns.

In Figure 1(a) the dots in the top half are the differences of the logs of realized volatility

on consecutive days: log(RVn)− log(RVn−1). From this figure one may observe that realized

volatility varies substantially from day to day. The standard deviation of the logarithmic

difference is 0.29. This roughly means that realized volatility changes by about one third of

its size a day. A more stable way of describing the fluctuations is to plot an exponentially

weighted moving average (EWMA), given by the recursion EWMAn = β ·EWMAn−1 +(1−
β)log(RVn−1) with smoothing parameter β = 0.95; this is the solid line in figure 1(a). It

shows that realized volatility may be high for several years, and that the size of fluctuations

4



in periods of high volatility may differ by approximately a factor of four from the size in

periods of low volatility.

Figure 1(b) shows two autocorrelation functions. The upper curve is the autocorrelation

of the absolute five-minute returns. The lags vary from five minutes to twenty days. There

is a clear periodicity of one day.2 The lower curve depicts the autocorrelation of five-minute

absolute returns standardized by the realized volatility RVn of the day. This removes the

persistence in the daily realized volatility.

Figure 1(c) shows that the hour of the day matters. For each five-minute interval the

figure displays the average proportion of daily realized quadratic variation attributable to

this interval, resulting in a standardized variation curve. For each interval, this average is

taken over 4575 days. There is a distinct U -shape: on average a relatively large proportion

of quadratic variation is realized in the period after opening and towards the end of the day.

The peak at 9:00 A.M. might be explained by the regularly scheduled releases of important

macroeconomic figures, such as Consumer Confidence, Chicago Purchasing Manager, and

Leading Indicators. Intraday periodicities and volatility patterns have been widely reported,

across markets and across time. For references, see McMillan and Speight (2004); for in-

formation about scheduled news release times, see Andersen, Bollerslev, Diebold, and Vega

(2003b).

Although these patterns exist on average, the shape of a particular day generally differs

considerably from this average and may take many forms. Figure 1(d) depicts the per-day

departure from the U -shape in Figure 1(c) for the nine consecutive days in the middle of

our sample. The bold line shows the average intraday increase in the cumulative proportion

of daily realized quadratic variation (RQV) for the full data set; at the start of the day it

is zero, and at the end of the day it is one. It is the integral of Figure 1(c). We observe

a smooth S-shaped curve, which is steep in the morning and towards the end of the day.

The numbered curves represent the RQV proportion processes for the nine consecutive days

mentioned above. Individual shapes over the day vary substantially: on the fifth day 70% of

the day’s variation occurs after 2:00 P.M., while on the eighth day 50% of the day’s variation

has already occurred just after 10:00 A.M. Figure 2 displays the intraday return processes

for these nine days, for visual reference. It shows the daily return processes, with respect to

the previous day’s close: each day the process starts around zero with the overnight return,

and at the end of the day one may read off the close-to-close return. The relatively large

afternoon volatility on day number 5 in Figure 1(d) corresponds to a sudden downward price

movement on day number 5 in Figure 2. Figure 1(d) also shows two quantile lines. The

2Although the empirical autocorrelation function is an inappropriate tool for analyzing a nonstationary
time series, it is useful for detecting periodic frequencies.
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Figure 2: Nine intraday return processes, with respect to the previous day’s close. Starting
at 1997-02-12.

upper dashed line connects the per-interval 0.975 sample quantiles of the RQV -proportion

process for all 81 intervals. The lower dashed line connects the 0.025 quantiles. The sample

of the nine RQV -proportion processes is not atypical.

Summarizing, daily realized volatility may be high over periods of years, but varies sub-

stantially from day to day. The autocorrelations indicate the presence of a day structure.

The average intraday volatility pattern shows a clear U -shape. For individual days the shape

may differ substantially from the U -shape.

We shall now introduce a model for the log return process that allows for these charac-

teristics. Let us first look at the discrete time models.

2.2 End-of-Day Models

Let (Rt), t ∈ R, be the logarithmic cumulative return process of a financial price process.

The time interval [n−1, n) describes the process during the n-th business day. Note that Rn

represents the opening value on day n + 1. We consider discrete time models that describe

the close-to-close returns, given by rn = RC
n − RC

n−1 for n ∈ Z. Here RC
n is the closing value

of day n, with the convention RC
0 ≡ 0. We adopt the standard assumption that sample paths

are right continuous and have left limits (cadlag). We introduce a discrete time filtration

(FC
n ). The σ-field FC

n represents the observable information at the close of day n, including

intraday information: we assume that Rt is FC
n -measurable for t < n. Information FC

n may

also contain, for example, past news events. The minimal choice for FC
n is the sigma-field

σ(Rt, t < n).

The discrete time models have the form

rn = vnZn, (1)
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with (vn) a sequence of strictly positive random variables, and (Zn) a mean zero, variance

one, iid sequence. Moreover, it is assumed that Zn is independent of vn. More specifically,

Zn+1 is independent of the model information, GC
n = {FC

n , (vi)i≤n+1}, for all n. Note that

the model information GC
n extends the observable information FC

n with information from the

process (vk) up to day k = n+1. By construction, the innovation Zn is GC
n -measurable. The

process (vn) is referred to as the volatility process and is used to describe the dependence

structure in the returns (rn). Distinctive asset price features may be captured in models of

this form: uncorrelated returns, heavy tails, volatility persistence. In this paper we will not

impose model assumptions on the process (vn).

2.3 Continuous Time Embedding

Let time advance only during trading hours and normalize the length of the interval of

intraday trading to one. This means, that time is a real valued index, expressed in terms

of business days. The business day is a natural unit of time in financial applications. We

assume a product structure as in (1), with the random variable Zn replaced by a stochastic

process Ψn on the unit time interval: for each day the return process over that day is a

random standard day process multiplied by a random scaling factor. Let Ψ be a cadlag

process on the closed interval [0, 1], left continuous in 1. The standard day processes (Ψn)

are independent copies of the process Ψ. The scaling factors are strictly positive random

variables sn. The day n return process is given by snΨn. Define the discrete time model

filtration (GC
n ) as above, by GC

n = σ{FC
n , (si)i≤n+1}. As above, sn+1 is adapted to GC

n . The

information set GC
n contains all the information needed to start generating a sample path

for the return process on day n + 1. Observable information FC
n ⊂ GC

n is extended with

scaling factors sn, which ensures that Ψn is GC
n -measurable. For each day n, the process Ψn

is assumed independent of the scaling factor sn.

The continuous time process (Rt) is built up from the previous day’s close RC
n−1. Recall

the convention, RC
0 ≡ 0.

Model. Consider the n-th day, [n − 1, n). Let ϑ ∈ [0, 1) denote the time of day. Set t =

n− 1 + ϑ. The cumulative return process (Rt) satisfies

Rn−1+ϑ = RC
n−1 + snΨn(ϑ), 0 ≤ ϑ < 1. (2)

The standard day process Ψn+1 is independent of GC
n , and the processes (Ψn) are identically

distributed.

Remark 1. The overnight return, from day n − 1 to day n, is given by Rn−1 − RC
n−1 =
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Rn−1 −Rn−1−0 = snΨn(0).

Definition 2.1. A process that satisfies the conditions of model (2) is said to satisfy the

scaling hypothesis.

Proposition 2.2. Suppose (Rt) satisfies the scaling hypothesis. Moreover assume EΨ(1) = 0

and var(Ψ(1)) = 1. Then the close-to-close returns (rn) = (snΨn(1)) satisfy the discrete time

model (1), with vn = sn and Zn = Ψn(1).

Proof. The sequence (Zn) = (Ψn(1)) is iid, with mean and variance one. The innovation

Zn+1 is independent of GC
n , since Ψn+1 is independent of GC

n , by definition. Q.E.D.

If Ψ(1) is not standardized, then the discrete time returns satisfy rn = avn + vnZn. This

means that the continuous time model (2) also embeds a simple version of the ARCH-M

model introduced by Engle, Lilien, and Robins (1987).

The following example shows that one may use Brownian motion to interpolate.

Example 2.3.1. Let (vn)n≥1 be a sequence of scaling factors from a discrete time model of

the form (1) and let the innovations be standard Gaussian. Take sn = vn and set R0 = 0.

Let Ψ be Brownian motion on [0, 1]. The process (Rt), t ∈ R, constructed according to the

recursion (2) satisfies the scaling hypothesis. For Zn = Ψn(1), the discrete time returns

rn = snΨn(1) = vnZn satisfy the discrete time model (1). One may use the same construction

for a sequence (vn)n∈Z.

Proposition 2.3. For any discrete time model of close-to-close returns (rn) of the form (1)

there exists a continuous time extension (Rt) that satisfies the scaling hypothesis.

Proof. Consider a discrete time model rn = vnZn of the form (1). Define Ψn(ϑ) = ϑZn.

Q.E.D.

Remark 2. There are more realistic possibilities for Ψn than the one in the proof of proposi-

tion 2.3. For example, one may use the Brownian bridge to interpolate. Let β be a Brownian

bridge on [0, 1]. Then β(0) = β(1) = 0. Define Ψn(ϑ) = ϑZn +βn(ϑ), where the βn are Brow-

nian bridges, and βn+1 is independent of GC
n , for all n.

Corollary 2.4. Assume the sequence (vn, Zn) for the discrete time model (1) is stationary.

Then the process (sn,Ψn) associated with the extension (Rt) in the proof of Proposition 2.3

is stationary.

Proof. Since (sn, Zn) is a stationary sequence, and Ψn = ϑZn, the sequence (sn,Ψn) is

stationary. Q.E.D.
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Remark 3. In general, even if the process (sn,Ψn) is stationary, the process (Rt) will not

be stationary.

Remark 4. Corollary 2.4 also applies to the process (sn,Ψn) of Remark 2, since (sn, Zn, βn)

is stationary.

The scaling hypothesis yields a continuous time process with certain properties. The

scaling factors sn reflect the characteristics of the embedded discrete time model. The

scaling factor sn on day n may be thought of as the state of the market. This state may

change from day to day. It is the only source of dependence between increments of (Rt) on

different days. A change in the state may be driven by the return process over the past

days. It may also include an external source. A realization of the standard day process Ψ

determines the type, or shape of the intraday return process, such as up or down days. The

process Ψ captures the intraday properties of the process (Rt). There are no restrictions on

the day process Ψ. There may for example be deterministic or random diurnal effects, jumps,

autocorrelation in intraday returns, stochastic spot volatility, leverage effects.

Let us now turn to the issue of identification. Processes that satisfy the scaling hypothesis

do not have a unique representation.

Example 2.3.2. Consider a representation (sn,Ψn) for (Rt) that satisfies the scaling hy-

pothesis. Set s′n = sn/2 and Ψ′
n = 2Ψn. Then (R′

t) ≡ (Rt).

Identification of sn and Ψn is not necessary for the study of proxies, as we will see later.

3 Proxies

In statistics the term proxy is used for a variable that is not of prime interest itself, but

is closely connected to an object of interest. It is related to the concept of estimator, but

proxies tend to replace unobservable variables of interest, whereas an estimator is a recipe to

estimate a parameter. A good estimator of a parameter will have small mean squared error.

A good proxy to a variable will have large correlation with that variable.

3.1 Definitions and Basic Results

Recall that D[0, 1] is the Skorohod space of cadlag functions on [0, 1]. We assume that the

elements of D[0, 1] are left continuous in 1. Endow D[0, 1] with the Skorohod topology. The

space D[0, 1] is a separable, complete metric space (see Billingsley (1999)). The space C[0, 1]

of continuous functions on the unit interval is a linear subspace of D[0, 1].
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From now on we assume the scaling hypothesis for the process (Rt). Recall that Ψn de-

notes the standard day process, sn the scaling factor, and ϑ the time of day. Our proxies

are homogeneous volatility proxies. A proxy is a random variable, serving as a proxy for the

scaling factor. It is the result of applying a certain estimator, the proxy functional, to the

day n return process, snΨn.

Recall that a functionalH : D → [0,∞), acting on a linear spaceD, is positively homogeneous

if

H(αf) = αH(f), α ∈ [0,∞), f ∈ D.

Our proxy functionals are proxy functionals for Ψ.

Definition 3.1. Let H be a measurable, positively homogeneous functional D → [0,∞), on

a linear subspace D of D[0, 1]. Assume Ψ ∈ D a.s., and H(Ψ) > 0 a.s. Then H is a proxy

functional. The random variable

Πn = H(snΨn)

is a proxy.

Remark 5. For a realization ψn of Ψ, with ψn /∈ D, one may define Πn = 0. A proxy

functional is not linear: H(Ψ) + H(−Ψ) > 0 a.s., but H(Ψ − Ψ) = H(0) = 0. A proxy

functional need not be symmetric: H(Ψ) need not equal H(−Ψ).

Proxies are linear in the scaling factor sn. By definition Πn = H(snΨn). Homogeneity of H

implies

Πn = snVn, (3)

where (Vn) = (H(Ψn)) is a sequence of strictly positive iid innovations. Moreover, sn and Vn

are independent since sn and Ψn are independent. Thus the proxy gives information about

the scaling factor. Note that (3) has the same structure as the discrete time asset return

model (1). Because of positivity one may take logarithms,

log(Πn) = log(sn) + log(Vn).

This decomposition as a sum of independent random variables underlies many of the results

below.
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Example 3.1.1. Here are some examples of proxies: absolute daily return; absolute overnight

return; high minus low; realized volatility for any grid; maximal absolute two-minute return;

actual volatility, defined by the square root of the daily increment in quadratic variation. If

Ψ(1) has a density, then the almost sure positivity of H(Ψ) is ensured.

The proxies that we consider suffer from a serious limitation: any construction that uses

information from outside of the interval [n, n−1) to estimate sn is not a proxy. For example,

the volatility forecast of a daily GARCH model is not a proxy. The restriction to positively

homogeneous volatility proxies makes it possible to compare and optimize proxies, without

imposing model assumptions on the scaling sequence (sn). Moreover, a good proxy for sn

will be a good proxy under all models for sn.

There are various recipes for creating additional proxy functionals.

Proposition 3.2. Let H(i), i = 1, . . . , d, be proxy functionals. Let G : [0,∞)d → [0,∞) be

a measurable, positively homogeneous function. Moreover, let G(x) > 0 if x 6= 0. Then the

functional H : f 7→ G(H(1)(f), . . . , H(d)(f)) for f ∈ D, is a proxy functional.

Proof. Since G vanishes only at the origin, and every H(i)(Ψ) > 0 a.s. we have H(Ψ) > 0 a.s.

Homogeneity holds, sinceH(αf) = G(H (1)(αf), . . . , H(d)(αf)) =G(αH(1)(f), . . . , αH(d)(f)) =

αH(f). Q.E.D.

Example 3.1.2. Let H(1) and H(2) be proxy functionals. The functionals f 7→ H(f) below

define more proxy functionals.

1. H(f) ≡ aH(1)(f), for a > 0.

2. H(f) ≡ w1H
(1)(f) + w2H

(2)(f), for w1, w2 ∈ (0,∞).

3. H(f) ≡ (H(1)(f))w1 (H(2)(f))w2, for w1, w2 ∈ R, w1 + w2 = 1.

4. H(f) ≡ max{H(1)(f), H(2)(f)} and H(f) ≡ min{H (1)(f), H(2)(f)}.

Let us now define the nuisance proxy.

Definition 3.3. The nuisance proxy Vn for a proxy functional H is

Vn = H(Ψn).

If var
(
log(H(Ψ))

)
exists then nuisance variation is λ2 = var

(
log(H(Ψ))

)
, else λ2 ≡ ∞.

Remark 6. So far we have suppressed the proxy functional H in the notation for Πn, Vn, λ.

Whenever we need to distinguish between proxy functionals, this will be expressed in the

notation.
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The nuisance proxy is unobservable. If one thinks of Πn as a measurement of sn, then the

nuisance proxy Vn is the multiplicative measurement error, see (3). We use the nuisance

proxy for comparing proxies and defining optimality.

Definition 3.4. Let H(1) and H(2) be two proxy functionals. Define (λ(i))2 = var
(
log(H(i)(Ψ))

)
,

i = 1, 2. Then H (1) is better than H(2) if λ(1) ≤ λ(2). A proxy functional H is optimal if it

has finite nuisance variation and is better than all other proxy functionals.

Remark 7. Let H be a proxy functional and a > 0. Then G(f) ≡ aH(f) is an equally

good proxy functional. This follows from the equalities var(log(aH(Ψ))) = var(log(a)) +

var(log(H(Ψ))) = var(log(H(Ψ))).

Proposition 3.5 below underpins the use of the word proxies in the terminology: it shows

that a good proxy has large correlation with the scaling factor sn.

Proposition 3.5. If 0 < var(log(sn)) <∞ then

corr(log(Πn), log(sn)) =
(
1 +

λ2

var(log(sn))

)−1/2
(4)

Moreover, assume λ(1) ≤ λ(2) <∞. Then (4) implies

corr(log(Π(1)
n ), log(sn)) ≥ corr(log(Π(2)

n ), log(sn)).

If λ2 = 0 then corr(log(Πn), log(sn)) = 1.

Proof. Recall that var(log(Vn)) = λ2. Since log(Πn) = log(sn) + log(Vn) we have,

corr(log(Πn), log(sn)) = cov(log(sn), log(sn))/
(√

var(log(sn)) + var(log(Vn))
√

var(log(sn))
)

=
(
1 +

λ2

var(log(sn))

)−1/2

This correlation equals 1 if λ2 = 0. Q.E.D.

Good proxies may suffer from a bias: if EH(Ψ) 6= 1 then EΠn 6= Esn. The proxy is biased

by a constant scaling factor EH(Ψ). One may rescale the proxy to obtain an unbiased version.

The rescaled proxy is as good as the original one, see Remark 7.

The task of finding a good proxy amounts to finding a proxy functional H such that H(Ψ)

has small stochastic variation or, ideally, is a constant. The product structure Πn = snVn

of equation (3) and the definition of λ ensure that proxies with zero nuisance variation have

perfect correlation with sn. Perfect proxies do exist, in special cases. For example, take Ψ the

standard Brownian motion. The quadratic variation of Ψ then equals one, so actual volatility

12



AVn has zero nuisance variation. If a proxy has zero nuisance variation, then one knows the

value sn, without knowing the model for the sequence (sn). However, actual volatility is not

always the best proxy for sn.

Example 3.1.3. Consider a standard day process Ψ that is highly fluctuating after opening

and has moderate fluctuation for the rest of the day. More specifically, let B denote standard

Brownian motion for the interval [0,1] and suppose σ is a positive, discrete random variable,

independent of B that takes the values σ1 and σ2 with probability 1/2, where σ1 < 1, σ2 <

1, σ1 6= σ2. Let ϑ0 ∈ (0, 1). Define the process

Ψ(ϑ) = B(ϑ) 1ϑ≤ϑ0 +B(ϑ0) 1ϑ>ϑ0 + σ
(
B(ϑ) −B(ϑ0)

)
1ϑ>ϑ0, 0 ≤ ϑ ≤ 1.

The truncated actual volatility constructed for the interval [0, ϑ0] is a constant, and as such

has zero nuisance variation. Actual volatility over the interval [0, 1] is not a constant.

We emphasize that estimating the scaling factor sn is a different exercise from estimating

actual volatility AVn. Actual volatility is a measure for the price fluctuations that actually

occurred during the whole trading day. As an estimator of the volatility factor sn, actual

volatility is merely one out of many possible candidates.

Even when actual volatility is an optimal proxy for the scaling factor, and one is restricted

to a finite time grid, it is sometimes possible to improve upon realized volatility.

Example 3.1.4. Assume Ψ is standard Brownian motion on [0, 1]. The quadratic variation

over [0, 1] is 1. Realized quadratic variation sums the squared intraday returns (∆Ri)
2 =

(B(ϑi)−B(ϑi−1))
2. Realized quadratic variation of Ψ has expectation 1 and vanishing variance

when the mesh of the grid vanishes. Hence it converges in probability to 1.

Consider the sum of squared per-interval high-lows. Replace the sum of squared returns
∑

(∆Ri)
2 =

∑
(ϑi − ϑi−1)(∆Ri)

2/E(∆Ri)
2, by the sum of squared, standardized high-lows

∑
(ϑi − ϑi−1)hl

2
i /Ehl

2
i . The new sum has expectation 1 and vanishing variance. It is well

known that for standard Brownian motion on the unit time interval the estimator hl2/Ehl2

has approximately 5 times smaller variance than B(1)2, see, for example, Parkinson (1980).

Hence, the use of high-lows results in a higher rate of convergence to the quadratic variation.

Let us return to the issue of identification, which has been addressed by Example 2.3.2.

Proposition 3.6 shows that different representations (sn,Ψn) for the scaling hypothesis result

in the same ordering for proxy functionals.

13



Proposition 3.6. Suppose H(1) and H(2) are proxy functionals. Moreover, assume (sn,Ψn)

and (s′n,Ψ
′
n) both satisfy the scaling hypothesis for (Rt). If H(1) is better than H(2) for Ψ,

then H(1) is also better than H(2) for Ψ′.

Proof. By assumption s′nΨ′
n = snΨn. Independence of sn and Ψn implies

var(log(s′n)) + var(log(H(1)(Ψ′
n))) = var(log(sn)) + var(log(H(1)(Ψn)))

≤ var(log(sn)) + var(log(H(2)(Ψn)))

= var(log(s′n)) + var(log(H(2)(Ψ′
n))).

Hence var(log(H(1)(Ψ′
n))) ≤ var(log(H(2)(Ψ′

n))). Q.E.D.

3.2 Optimal Proxies

Theorem 3.7. If there exists a proxy functional with finite nuisance variation, then there

exists an optimal proxy functional.

Proof. We need to show that there exists a measurable, positively homogeneous functional

H∗ : D → [0,∞), with H∗(Ψ) > 0 a.s., and var(log(H∗(Ψ))) ≤ var(log(H(Ψ))) for all proxy

functionals H.

For a proxy functional H, write U = log(H). Define λ2
H = var(log(H(Ψ))). Let U denote

the space of all log proxy functionals with λ2
H < ∞. The space U is not empty, by assump-

tion. If EU(Ψ) = a 6= 0, then H ′ = e−aH is an equally good proxy functional for which

Elog(H ′(Ψ)) = 0. Therefore we may restrict attention to the subspace U0 of U of centered

functionals. The space U0 is affine: if U1, U2 ∈ U0, and w ∈ R, then wU1 + (1 − w)U2 ∈ U0,

since (H(1))w(H(2))(1−w) is a proxy functional, see Example 3.1.2.

Define λ2
inf = infH:log(H)∈U0{λ2

H}. Consider the space L2(D,B), of equivalence classes [U ] of

log proxy functionals U , with inner product < [U (1)], [U (2)] >= E
(
U (1)(Ψ)U (2)(Ψ)

)
. Here, B

denotes the Borel sigma-field for D. Notice that U0 is a subset of L2 and that λ coincides

with the L2-norm ||.|| on U0. Let U1, U2, . . . ∈ U0 be a sequence for which ||Ui|| → λinf . Then

[U1], [U2], . . . is a Cauchy sequence in L2 : apply the parallellogram law to obtain

0 ≤ ||Um − Un||2 ≤ −4||Um + Un

2
||2 + 2||Um||2 + 2||Un||2.

Since U0 is affine, (Um + Un)/2 ∈ U0, hence ||Um+Un

2
||2 ≥ λ2

inf . Therefore ||Um − Un||2 ≤
−4λ2

inf + 2λ2
m + 2λ2

n → 0 for m,n→ ∞.
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By completeness of L2 the sequence [U1], [U2], . . . converges to an element [U0] in L2 and

by continuity of the norm λ2
0 = λ2

inf . Pick a functional U0 ∈ U0 from [U0]. Let us use U0

to construct a functional H∗ that satisfies the above conditions. For every L2 convergent

sequence there exists a subsequence that converges almost surely. Let Uik = log(H(ik)(f)) →
U0(f) on a set C almost everywhere in D. Define on the convergence set C: H∗(f) =

limH(ik)(f). For {αf : f ∈ C, αf /∈ C, α ∈ [0,∞)}, define H∗(αf) = αH∗(f). For remaining

f ∈ D define H∗(f) ≡ 0. The functional H∗ assigns a single value to each f ∈ D : consider

f1, f2 ∈ C, α1, α2 > 0, and f = α1f1 = α2f2. Then H∗(α1f1) ≡ α1H
∗(f1) = α1H

∗(α2/α1 f2)

By homogeneity of H∗ on C this equals α2H
∗(f2) ≡ H∗(α2f2). Being the result of a limit,

the functional H∗ is measurable. Positive homogeneity follows by construction. Moreover,

H∗(Ψ) > 0 almost surely, since U0(Ψ)
a.s.
= log(H∗(Ψ)) and var(U0(Ψ)) = λ2

0 < ∞. Finally,

var(log(H∗(Ψ))) = λ2
inf ≤ λ2

H for all H. Q.E.D.

Remark 8. All proxy functionals of the form aH∗, a > 0, are optimal, see Remark 7. Any

optimal proxy functional H satisfies H(Ψ)
a.s.
= aH∗(Ψ) for certain a > 0, see Proposition 3.9.

Lemma 3.8. If H∗ is an optimal proxy functional, and H is a proxy functional, then

cov
(
log(H∗(Ψ)), log(H(Ψ))

)
= (λ∗)2.

Proof. Consider the proxy functional H(f) ≡
(
H∗(f)

)w(
H(f)

)1−w
, with nuisance variation

λ2
w = w2(λ∗)2 + 2w(1 − w) cov

(
log(H∗(Ψ)), log(H(Ψ))

)
+ (1 − w)2λ2. Since H∗ is optimal,

∂λ2
w/∂w |w=1 = 0. Hence cov

(
log(H∗(Ψ)), log(H(Ψ))

)
= (λ∗)2. Q.E.D.

Proposition 3.9. Suppose H(1) and H(2) are two optimal proxy functionals. Then there

exists a constant a > 0, such that H (1)(Ψ)
a.s.
= aH(2)(Ψ).

Proof. Both proxy functionals have nuisance variation (λ∗)2. Let H0 denote the centered

proxy: H0 = exp(−Elog(H(Ψ)) ) H, with Elog(H0(Ψ)) = 0. Consider the covariance of the

centered log proxies: cov
(
log(H

(1)
0 (Ψ)), log(H

(2)
0 (Ψ))

)
. By Lemma 3.8 this covariance equals

(λ∗)2. By Cauchy-Schwarz this equality holds if and only if H
(1)
0 (Ψ)

a.s.
= H

(2)
0 (Ψ). In other

words, if and only if H(1)(Ψ)
a.s.
= aH(2)(Ψ), for certain a > 0. Q.E.D.

3.3 Empirically Ranking Proxies

Theorem 3.7 guarantees that optimal proxies for the scaling factor exist, it is however of no

help in empirical applications. In empirical applications there is the problem that the process

Ψ is of unknown form. As a first practical step, this section provides two propositions that

are useful for comparing proxies in an applied setting.
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Let H(1) and H(2) be two proxy functionals. The nuisance variations (λ(i))2 are used to

compare these proxy functionals. This procedure is infeasible in an empirical situation, since

the standard day processes (Ψn) are not observed. However, by the multiplicative structure

of equation (3) and independence of sn and Ψn,

var(log(Πn)) = var(log(sn)) + λ2. (5)

Hence it suffices to compare the variances of the log proxies.

Proposition 3.10. Let H(1) and H(2) be two proxy functionals. Assume var(log(H(1)(Ψ))) <

∞ and var(log(H(2)(Ψ))) < ∞. Assume (sn,Ψn) satisfies the scaling hypothesis. Moreover,

assume var(log(sn)) <∞. Then

var(log(Π(1)
n )) − var(log(Π(2)

n )) = (λ(1))2 − (λ(2))2. (6)

Proof. The common term var(log(sn)) drops out by equation (5). Q.E.D.

Remark 9. Although the variance of the log proxy of equation (5) is useful for comparing

proxies, it cannot be used as an absolute measure for the quality of a proxy, due to the

unknown term var(log(sn)).

Remark 10. In empirical applications one uses estimates of the variances. In order to

reduce estimation error, we shall use the technique of prescaling, see Section 3.5.

The practical conclusion that follows from the following proposition is that good proxies have

large autocorrelations: one may compare proxies by inspecting the autocorrelation function

of their logarithms. It confirms the following intuition. Proxies are noisy measurements

of the scaling factors (sn). The less noisy a proxy, the more of the structure of (sn) is

visible in the autocorrelation of the proxy sequence. Condition (7) in the proposition below

stipulates that the autocorrelation for distant scaling factors dominates the impact of distant

innovations. Let ρ
·
(j) denote j-th order autocorrelation. Let (aj) ∼ (bj) denote asymptotic

equivalence: aj/bj → 1 for j → ∞.

Proposition 3.11. Assume the conditions of Proposition 3.10 hold. Assume ρlog(sn)(j) 6= 0

for all j > 0. Moreover, assume V
(i)
n = H(i)(Ψn), i = 1, 2, satisfies

corr(log(V
(i)
n−j), log(sn))/corr(log(sn−j), log(sn)) → 0 j → ∞, (7)

and var(log(sn)) > ǫ for all n, for certain ǫ. Then the following asymptotic equivalence holds
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for all n,

ρ
log(Π

(1)
n )

(j)

ρ
log(Π

(2)
n )

(j)
∼

√(
var(log(sn−j)) + (λ(2))2

) (
var(log(sn)) + (λ(2))2

)
(
var(log(sn−j)) + (λ(1))2

) (
var(log(sn)) + (λ(1))2

) , j → ∞. (8)

Proof. Form the left hand side fraction in (8) and decompose to obtain:

√(
var(log(sn−j)) + (λ(2))2

) (
var(log(sn)) + (λ(2))2

)
(
var(log(sn−j)) + (λ(1))2

) (
var(log(sn)) + (λ(1))2

) ·
cov(log(sn−j) + log(V

(1)
n−j), log(sn))

cov(log(sn−j) + log(V
(2)
n−j), log(sn))

.

The term to the right of the multiplication dot is equivalent to

ρlog(sn)(j) + corr(log(V
(1)
n−j), log(sn)) · λ(1)/

√
var(log(sn−j))

ρlog(sn)(j) + corr(log(V
(2)
n−j), log(sn)) · λ(2)/

√
var(log(sn−j))

,

which is asymptotically equivalent to 1: divide the numerator and the denominator by

ρlog(sn)(j), take the limit j → ∞ and apply (7). Q.E.D.

Remark 11. If the process (sn) is stationary, then the relation in (8) simplifies to

ρ
log(Π

(1)
n )

(j)

ρ
log(Π

(2)
n )

(j)
∼ var(log(s0)) + (λ(2))2

var(log(s0)) + (λ(1))2
, j → ∞.

3.4 Improving Proxies

Let H(1), . . . , H(d) be given proxy functionals. In this section we study all proxy functionals

of the form f 7→ H(w)(f) =
∏d

i=1(H
(i)(f))wi, w1 + . . .+ wd = 1, and wi ∈ R for all i. Here,

the column vector w is the d-dimensional weight vector. Such a functional is a geometric

proxy functional, based on H(1), . . . , H(d). The restriction
∑
wi = 1 is needed to obtain a

proxy functional, but the weights are not restricted to the interval [0, 1]. For this situation

there exists an optimal geometric proxy functional that is simple to compute.

Let Λ denote the covariance matrix of the logarithm of the nuisance proxies and let

λ2
w be the variance of the logarithm of the geometric proxy nuisance variation. Let ι be

a d-dimensional column vector of ones. We then have λ2
w = w′Λw and, similarly to the

minimal variance portfolio in Markowitz portfolio theory, λ2
w is optimal for w∗ = Λ−1ι

ι′Λ−1ι
, with

λ2
w∗ = 1

ι′Λ−1ι
. This solution is infeasible: it is impossible to estimate the variance matrix Λ,

since the nuisance proxies V
(j)
n = H(j)(Ψn) are not observed. Theorem 3.12 shows that it

suffices to know the covariance structure Λp,n of the logarithm of the proxies at day n to
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obtain the optimal weights. We have

Λp,n = var(log(sn)) ιι
′ + Λ. (9)

The covariance matrix Λp,n equals the covariance matrix Λ with a common noise term

var(log(sn)) added to each element. The covariance matrix Λp,n may be estimated.

Theorem 3.12. Let (sn,Ψn) satisfy the scaling hypothesis. Assume var(log(H (i)(Ψ))) <∞
for i = 1, . . . , d. Let Λp,n be the covariance matrix of the log of the day n proxies, and let Λ

denote the covariance matrix of the log nuisance proxies. The optimal weight vector w that

minimizes λ2
w = w′Λw does not depend on the form of the process (sn) and equals

w∗ =
Λ−1

p,nι

ι′Λ−1
p,nι

.

Let λ2
w∗ = 1

ι′Λ−1ι
. The variance of the logarithm of the optimal geometric proxy is

var(log(Π(w∗)
n )) = var(log(sn)) + λ2

w∗ .

Proof. The optimal weight w∗ does not depend on (sn): it follows from equation (9) that

arg minw w′Λp,nw = arg minw var(log(sn)) + w′Λw. (10)

Define the Lagrangian w′Λp,nw+µ (1−w′ι). Differentiating the Lagrangian with respect

to w yields 2Λp,nw−µι = 0, hence w = 1/2 Λ−1
p,nµι. By ι′w = 1, this yields µ = 2/ι′Λ−1

p,nι and

w = Λ−1
p,nι/ι

′Λ−1
p,nι. Since w′Λp,nw is convex in w and we have a unique solution to the first

order condition, we have found the optimum.

Using (10) we obtain the equalities w∗ = Λ−1
p,nι/ι

′Λ−1
p,nι = Λ−1ι/ι′Λ−1ι, which imply

var(log(Π
(w∗)
n )) = var(log(sn)) + λ2

w∗ .

Q.E.D.

Remark 12. In practice it may be useful to apply prescaling, see Section 3.5 below.

Example 3.4.1. Consider the two dimensional case, d = 2. Let Λ = (λi,j) denote the 2 × 2

covariance matrix cov
(
log(H(1)(Ψ)), log(H(2)(Ψ))

)
, with λi,i = (λ(i))2.

Then,

w∗ =

(
w∗

1

w∗
2

)
=

1

λ1,1 + λ2,2 − 2λ1,2

(
λ2,2 − λ1,2

λ1,1 − λ1,2

)
.
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This illustrates that an optimal weight may turn negative or larger than 1: if λ1,1 < λ1,2 then

w∗
2 < 0. This occurs if ρlog H(1)(Ψ),log H(2)(Ψ) >

√
λ1,1/λ2,2, that is if correlations are positive

and large. If, as in Equation (9), there is an additional noise term var(log(sn)), then

Λp,n = var(log(sn))

(
1 1

1 1

)
+

(
λ1,1 λ1,2

λ1,2 λ2,2

)
.

This leads to the same w∗.

3.5 Prescaling

The method of comparing proxies in Proposition 3.10 and the method of improving proxies in

Theorem 3.12 are formulated in terms of population variances and covariances. In practical

situations, one has to work with the sample counterparts of these quantities, which introduces

sampling error. To reduce the sampling error caused by the scaling factors (sn), we propose

the technique of prescaling. The idea is to stabilize the sequence (sn), by scaling it by a

predictable sequence of random variables (pn).

Definition 3.13. A prescaling sequence (pn) is an (FC
n−1) adapted sequence of strictly pos-

itive random variables.

The prescaling factors pn will be used to define adjusted scaling factors

s̃n = sn/pn.

Proposition 3.14. Assume the process (sn,Ψn) satisfies the scaling hypothesis. Prescale the

scaling factors (sn) to obtain the sequence (s̃n). The corresponding continuous time process

(R̃t) constructed from (s̃n,Ψn) according to the relation (2) of the continuous time model,

satisfies the scaling hypothesis.

Proof. The variables (s̃n) are positive. Both pn+1 and sn+1 are GC
n -measurable, hence so is

s̃n+1. Therefore (R̃t) satisfies the scaling hypothesis. Q.E.D.

As a result we may define proxies for s̃n. These are prescaled proxies:

Π̃n = Πn/pn.

This means that one may replace sn by s̃n and Πn by Π̃n in Proposition 3.10 and Theorem

3.12. As a consequence, the population value of the noise term var(log(sn)) of equation (9)
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changes into

var(log(s̃n)) = var(log(sn/pn)).

A good predictor pn of sn may result in a small term var(log(s̃n)).

Let us say a few words on the role of stationarity. Proposition 3.10 for comparing proxies

and Theorem 3.12 for optimizing proxies do not assume stationarity of the process (sn,Ψn).

This is reflected by the covariance matrix Λp,n in Theorem 3.12 depending on n. Suppose

the process (sn,Ψn) is stationary. Then the covariance matrix Λp is consistently estimated

by the sample covariance matrix of the log of the proxies, thereby providing weights ŵ that

are consistent for w∗. Preliminary results indicate that it is possible to show that ŵ is a

consistent estimator for the optimal weight w∗, without assuming stationarity for the scaling

factors (sn).

4 An Empirical Application

This section applies the theory of Sections 2 and 3 to the S&P 500 futures tick data. Ap-

pendix A describes the data.

4.1 Microstructure Noise Barrier

It is well known that on small time scales financial prices are subject to market microstruc-

ture effects, such as the bid-ask bounce, price discreteness, and asynchronous trading, see,

for instance, Zhang, Mykland, and Äıt-Sahalia (2005), Oomen (2006), and Hansen and

Lunde (2006). A commonly used way of avoiding such microstructure effects is to sample at

sufficiently wide intervals.

In this paper the measure of comparison is the variance of the logarithm. The proxies

RV and RV HL (see Table 1) depend on the sampling interval ∆ϑ. Figure 3 shows the graph

of ∆ϑ → v̂ar(log(Π∆ϑ
n )), for ∆ϑ ranging from zero to sixty minutes. These curves suggest

that a qualitative change of behaviour occurs for ∆ϑ ≈ five minutes for realized volatility,

and ∆ϑ ≈ eight minutes for realized high-low. From now on realized volatility is based on

five-minute sampling intervals or larger. For realized high-low our minimal sampling interval

will be ten minutes.
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Figure 3: Plots of the sample variance of the log of a proxy with ∆ϑ ranging from zero to 60
minutes (zero is tick per tick). (a) Realized volatility. (b) Realized high-low.

4.2 Ranking Proxies

Table 1 compares twelve simple proxies constructed from the data. We emphasize that these

proxies are a set of twelve out of many possible proxies. They are of no special importance

themselves.

For each proxy a measure of comparison is given for five samples: first the full sample

(days 2 to 4575) and then for four subsamples spanning the full sample (2:1144, 1145:2287,

2288:3431, 3432:4575). The first observation cannot be prescaled and is left out of the

variance computations. The measure of comparison is PV (prescaled variance), which is the

variance of the logarithm of a proxy after prescaling, PV = var(log(Π̃n)); see Sections 3.3

and 3.5. Smaller variances correspond to better proxies. For the prescaling sequence (pn) we

take an exponentially weighted moving average filter of five-minute realized volatility with

smoothing parameter β = 0.7, yielding a prescaling sequence pn = 0.7 pn−1 + 0.3 RV 5n−1.

We set the smoothing parameter so that the sample variance of the logarithm of prescaled

five-minute realized volatility is minimal. Recall that the prescaled variance equals nuisance

variation plus the unknown constant var(log(s̃n)). The prescaled variance is useful for ranking

proxies, but it is not an absolute measure for the quality of a proxy.

Table 1 shows that the quality of realized volatility improves if one samples more fre-

quently. The prescaled variance is largest for the absolute close-to-close returns.3 The

maximal absolute two-minute return is better than high minus low, which tends to use re-

turns based on much longer time spans. Overall, we find that sums of absolute values lead

3We used absolute returns larger than 0.001, or 10 basis points, in order to avoid taking the log of zero.
This leaves 4079 daily returns.
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full 1st 2nd 3rd 4th

name PV PV PV PV PV

RV5 0.064 0.070 0.070 0.073 0.042
RV10 0.080 0.085 0.093 0.090 0.052
RV15 0.089 0.096 0.105 0.093 0.061
RV20 0.100 0.110 0.117 0.103 0.071
RV30 0.117 0.133 0.134 0.113 0.087
abs-r 0.611 0.683 0.550 0.635 0.568
hl 0.161 0.179 0.176 0.160 0.130
maxar2 0.118 0.134 0.124 0.118 0.088
RAV5 0.058 0.060 0.065 0.066 0.040
RAV10 0.072 0.072 0.085 0.082 0.049
RVHL10 0.053 0.057 0.061 0.061 0.034
RAVHL10 0.047 0.048 0.055 0.054 0.031

Table 1: Performance of twelve proxies. The full sample is split into four subsamples.
Prescaling by EWMA(0.7) filter for RV5. The following proxies are included. RV5: root of
sum of squared 5 min returns; RV10: root of sum of squared 10 min returns; RV15: root
of sum of squared 15 min returns; RV20: root of sum of squared 20 min returns; RV30:
root of sum of squared 30 min returns; abs-r: absolute close-to-close return; hl: high-
low of the intraday return process; maxar2: maximum of the absolute 2-minute returns;
RAV5: sum of absolute 5-minute intraday returns; RAV10: sum of absolute 10-minute
intraday returns; RVHL10: root of sum of 10-minute squared high-lows; RAVHL10: sum
of 10-minute high-lows.

to better proxies than sums of squared values. This relates to a finding of Barndorff-Nielsen

and Shephard (2003), whose simulations indicate that absolute power variation, based on the

sum of absolute returns, has better finite sample behaviour than realized quadratic variation.

The best performing proxy in Table 1 is RAVHL10, the sum of the ten-minute high-lows.

The ranking of the different proxies in the various subsamples is the same as in the full

sample, with one exception in the second subsample for RV 30 and maxar2.

4.3 Improving Proxies

Let us now explore to what extent the proxies in Table 1 may be improved. We use the

technique of Section 3.4.

Proxy RV5 RV10 RV15 RV20 RV30 hl

weight 0.315 0.082 -0.041 -0.071 -0.036 -0.085

Proxy maxar2 RAV5 RAV10 RVHL10 RAVHL10

weight 0.020 -0.423 -0.608 -0.838 2.69

Table 2: Optimal weights for the geometric proxy, based on the proxies of Table 1, for the
full sample.
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Table 2 provides the optimal weights for the proxies of Table 1. Note that RAV HL10

is the most important component. The prescaled variance of the optimized proxy is PV =

0.039, which outperforms all proxies in Table 1. We refer to this proxy as the optimized

proxy Π(ŵ). If one extrapolates the prescaled variances of the realized volatilities of Table 1

to a time interval of length zero, one obtains a value between 0.050 and 0.060. The value

PV = 0.039 for the optimized proxy is well below those values.

Observe from Table 2 that weights may be negative. In geometrical terms this may be

restated as follows. The log proxies are vectors in an affine space. The proxies are highly

related, since they all approximate the same scaling factor sn, cf. (3). The optimal proxy is

not in the convex hull of the original proxies. The original proxies do not completely reflect

the direction of the optimal proxy. The weights outside [0, 1] correct for this.

full 1st 2nd 3rd 4th

name PV PV PV PV PV

Π(ŵ) 0.039 0.039 0.042 0.044 0.029

Π(ŵ,1) 0.039 0.038 0.043 0.045 0.030

Π(ŵ,2) 0.040 0.040 0.041 0.045 0.031

Π(ŵ,3) 0.040 0.041 0.043 0.043 0.030

Π(ŵ,4) 0.040 0.041 0.045 0.046 0.028

Table 3: Geometric proxies, optimized for different
subsamples: performance and stability.
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Figure 4: Autocorrelations of log
proxies. Lags 1 to 50 days. From
bottom to top: RV30, RV15, RV10,
RV5, Π(ŵ).

Table 3 investigates the stability of the optimized proxy Π(ŵ). As in Table 1 we report

performance measures for the full sample and for four subsamples. By comparing the per-

formance of Π(ŵ) in the different subsamples to Table 1, it is clear that Π(ŵ) outperforms all

those proxies in every subsample. The proxy Π(ŵ,i) is constructed using weights based on the

i-th subsample. In the first subsample the performance of the globally optimized Π(ŵ) is not

substantially improved by Π(ŵ,1). A similar statement holds for the other subsamples. More-

over, proxies based on a particular subsample are close to optimality in all other subsamples.

We conclude that the optimality of Π(ŵ) is stable.

Figure 4 shows the autocorrelations of log(Π
(ŵ)
n ) and the log of four different realized

volatilities, RV30, RV15, RV10, and RV5. The autocorrelations of the different realized

volatilities increase as the sampling interval decreases. The figure also shows that the au-

tocorrelations for the optimized proxy are substantially larger than those for five-minute
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realized volatility. Hence, Proposition 3.11 provides an additional indication that Π(ŵ) is the

best.

Table 4 explores the quality of the optimized proxy in a heuristic way. It gives the

coefficient of determination, R2, of a linear regression of the logarithm of a proxy on the

logarithm of another proxy lagged one day. A large R2 in a particular column means that

the proxy in that column is largely predictable, suggesting that it is a good proxy for daily

volatility. A large R2 in a particular row means that the proxy in that row is a good predictor.

The optimized geometric proxy Π(ŵ) is maximal in all rows and all columns.

RV30 RV20 RV15 RV10 RV5 Π(ŵ)

RV30(-1) 0.35 0.39 0.42 0.46 0.50 0.59
RV20(-1) 0.38 0.42 0.45 0.49 0.54 0.62
RV15(-1) 0.39 0.44 0.47 0.50 0.55 0.64
RV10(-1) 0.41 0.45 0.48 0.52 0.57 0.66
RV5(-1) 0.43 0.48 0.51 0.55 0.60 0.70

Π(ŵ)(−1) 0.46 0.50 0.52 0.56 0.61 0.73

Table 4: R2 of the regression log(Π
(j)
n ) = α + β log(Π

(i)
n−1) + εn, for i, j = 1, . . . , 6, and

n = 2, . . . , 4575.

We end this section by supplying the simplified proxy

Πn = (RAV HL10n)
1.82(RAV 10n)

−0.82. (11)

The proxy (11) is almost as good as the optimized proxy Π
(ŵ)
n : it has prescaled variance

PV = 0.041.

5 Conclusions

This paper provides a theoretical basis for the comparison and optimization of volatility

proxies, based on intraday data. The theory is founded on a continuous time model that

embeds discrete time, daily volatility models.

In this paper a volatility proxy is the result of applying a positively homogeneous func-

tional to the intraday return process. This is a limitation that rules out, for instance,

volatility predictors. On the other hand, it offers the possibility of developing a simple

theory for comparing and optimizing proxies. By definition, the log of a good proxy has

small variance. Equivalently, the correlation with daily volatility is large. We show that

optimal proxies exist. An optimal proxy for the scaling factor vn is an optimal proxy under

all possible discrete time models of the form rn = vnZn, where the Zn are iid innovations.
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For the S&P 500 data a combination of the high-lows over ten-minute intervals, and the

absolute returns over ten-minute intervals yields a good proxy.

A Data

Our data set is the U.S. Standard & Poor’s 500 stock index future, traded on the Chicago

Mercantile Exchange (CME), for the period 1st of January, 1988 until May 31st, 2006. The

data were obtained from Nexa Technologies Inc. (www.tickdata.com). The futures trade

from 8:30 A.M. until 15:15 P.M. Central Standard Time. Each record in the set contains a

timestamp (with one second precision) and a transaction price. The tick size is $0.05 for the

first part of the data and $0.10 from 1997-11-01. The data set consists of 4655 trading days.

We removed sixty four days for which the closing hour was 12:15 P.M. (this occurs on days

before a holiday). Sixteen more days were removed, either because of too late first ticks, too

early last ticks, or a suspiciously long intraday no-tick period. This leaves us with a data set

of 4575 days with nearly 14 million price ticks, on average more than 3 thousand price ticks

per day, or 7.5 price ticks per minute.

There are four expiration months: March, June, September, and December. We use the

most actively-traded contract: we roll to a next expiration when the tick volume for this

expiration is larger than for the current expiration.

An advantage of using future data rather than the S&P 500 cash index is the absence

of non-synchronous trading effects which cause positive autocorrelation between successive

observations, see Dacorogna et al. (2001). As in the cash index there are bid-ask effects in

the future prices which induce negative autocorrelation between successive observations. We

deal with this by taking large enough time intervals, see Section 4.1. Since we study a very

liquid asset the error term due to microstructures is relatively small.
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