
AMERICAN OPTIONS BASED ON MALLIAVIN

CALCULUS AND NONPARAMETRIC VARIANCE

REDUCTION METHODS

Lokman Abbas-Turki, Bernard Lapeyre

To cite this version:

Lokman Abbas-Turki, Bernard Lapeyre. AMERICAN OPTIONS BASED ON MALLIAVIN
CALCULUS AND NONPARAMETRIC VARIANCE REDUCTION METHODS. 2011. <hal-
00589081v2>

HAL Id: hal-00589081

https://hal.archives-ouvertes.fr/hal-00589081v2

Submitted on 28 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00589081v2

AMERICAN OPTIONS BASED ON MALLIAVIN CALCULUS AND
NONPARAMETRIC VARIANCE REDUCTION METHODS

L. A. ABBAS-TURKI∗ AND B. LAPEYRE†

Abstract. This paper is devoted to pricing American options using Monte Carlo and the
Malliavin calculus. Unlike the majority of articles related to this topic, in this work we will not use
localization fonctions to reduce the variance. Our method is based on expressing the conditional
expectation E[f(St)/Ss] using the Malliavin calculus without localization. Then the variance of the
estimator of E[f(St)/Ss] is reduced using closed formulas, techniques based on a conditioning and
a judicious choice of the number of simulated paths. Finally, we perform the stopping times version
of the dynamic programming algorithm to decrease the bias. On the one hand, we will develop the
Malliavin calculus tools for exponential multi-dimensional diffusions that have deterministic and no
constant coefficients. On the other hand, we will detail various nonparametric technics to reduce
the variance. Moreover, we will test the numerical efficiency of our method on a heterogeneous
CPU/GPU multi-core machine.

Key words. American Options, Malliavin Calculus, Monte Carlo, GPU.

AMS subject classifications. 60G40, 60H07

Introduction and objectives. To manage CPU (Central Processing Unit)
power dissipation, the processor makers have oriented their architectures to multi-
cores. This switch in technology led us to study the pricing algorithms based on
Monte Carlo (MC) for multi-core architectures using CPUs and GPUs (Graphics
Processing Units) in [1] and [2]. In the latter articles we basically studied the im-
pact of using GPUs instead of CPUs for pricing European options using MC and
American options using the Longstaff and Schwartz (LS) algorithm [3]. The results
of this study proves that we can greatly decrease the execution time and the energy
consumed during the simulation.

In this paper, we explore another method to price American Options (AO) and
which is based on MC using the Malliavin calculus (MCM). Unlike the LS method
that uses a regression phase which is difficult to parallelize according to [2], the MCM
is a square1 Monte Carlo method which is more adapted to multi-cores than the LS
method. Moreover, using MCM without localization does not depend on parametric
regression, we can increase the dimensionality of the problem without any constraints
except for adding more trajectories if we aim at more accurate results.

American contracts can be exercised at any trading date until maturity and their
prices are given, at each time t, by [4]

Pt(x) = supθ∈Tt,T
Et,x

(
e−r(θ−t)Φ(Sθ)

)
,(0.1)

where Tt,T is the set of stopping times in the time interval [t, T], Et,x is the expectation
associated to the risk neutral probability knowing that St = x and r and φ(St) are
respectively the risk neutral interest rate and the payoff of the contract.

∗Universit Paris-Est, Laboratoire d’Analyse et de Mathmatiques Appliques, Champs-sur-Marne,
77454 Marne-la-Valle Cedex2, France.

†Ecole des Ponts ParisTech, CERMICS Applied Probability Research Group, Champs-sur-Marne,
77455 Marne-la-Valle cedex 2, France.

1What we mean by square Monte Carlo is not necessarily simulating a square number of trajec-
tories, but a Monte Carlo simulation that requires a Monte Carlo estimation, for each path, of an
intermediate value (here the continuation) and this can be done by using the same set of trajectories
as the first Monte Carlo simulation.

1

2

With Markovian models (which is the case in this article), to evaluate numerically
the price (0.1), we first need to approach stopping times in Tt,T with stopping times
taking values in the finite set t = t0 < t1 < ... < tn = T . When we do this
approximation, pricing American options can be reduced to the implementation of the
dynamic programming algorithm [4]. Longstaff and Schwartz consider the stopping
times formulation of the dynamic programming algorithm which allows them to reduce
the bias by using the actual realized cash flow. We refer the reader to [5] for a formal
presentation of the LS algorithm and details on the convergence. In (0.2), we rewrite
the dynamic programming principle in terms of the optimal stopping times τk, for
each path, as follows

τn = T,
∀k ∈ {n− 1, ..., 0}, τk = tk1Ak

+ τk+11Ac
k
,

(0.2)

where the set Ak = {Φ(Stk) > C(Stk)} and C(Stk) is the continuation value whose
expression is given by

C(Stk) = E
(
e−r(tk+1−tk)Ptk+1

(Stk+1
)
∣∣∣Stk

)
.(0.3)

Thus, to evaluate the price (0.1), we need to estimate C(Stk). Algorithms devoted
to American pricing and based on Monte Carlo, differ essentially in the way they
estimate and use the continuation value (0.3). For example the authors of [6] perform
a regression to estimate the continuation value, but unlike [3], they use C(Stk) instead
of the actual realized cash flow Ptk+1

(Stk+1
) to update the price in (0.2). Other

methods use the Malliavin Calculus [7] or the quantization method [8] for C(Stk)
estimation. In [2], we implement the LS method because it is gaining widespread use
in the financial industry. As far as this work is concerned, we are going to implement
MCM but unlike [7] we use the induction (0.2) for the implementation and we reduce
the variance differently, without using localization.

Formally speaking, if r = 0, we can rewrite the continuation using the Dirac
measure εx(·) at the point x

C(x) =
E
(
Ptk+1

(Stk+1
)εx(Stk)

)

E (εx(Stk))
=

E
(
Ptk+1

(Stk+1
)1Stk

≥x(Stk)πtk,tk+1

)

E
(
1Stk

≥x(Stk)πtk,tk+1

) .(0.4)

The second equality is obtained using the Malliavin calculus and we will specify, in sec-
tion 2 expression (2.3), the value of πtk,tk+1

by an integration by part argument for the
Multi-dimensional Exponential Diffusions with deterministic Coefficients (MEDC)
model

dSt = Stσ(t)dWt, S0 = y,

in the case of deterministic non-constant triangular matrix σ(t) and when σij(t) =
σijδ(i − j) with a fixed constant σij (The latter case will be used as a bench-
mark). Instead of simulating directly the last term in (0.4), in section 3 we project
1Stk

≥x(Stk)πtk,tk+1
using a conditioning as follows

C(x) =
E
(
Ptk+1

(Stk+1
)E
[
1Stk

≥x(Stk)πtk,tk+1

∣∣{
∫ tk+1

0 σij(u)dW
j
u}1≤j≤i≤d

])

E
(
E
[
1Stk

≥x(Stk)πtk,tk+1

∣∣{
∫ tk+1

0 σij(u)dW
j
u}1≤j≤i≤d

]) .(0.5)

3

Then, in section 4, we estimate (0.5) by Monte Carlo simulation and we use the
approximation

C(x) ≈
1
N ′

∑N ′

l=1 P
l
tk+1

(Stk+1
)h(x, {

∫ tk+1

0
σij(u)dW

j
u}l1≤j≤i≤d)

1
N

∑N
l=1 h(x, {

∫ tk+1

0 σij(u)dW
j
u}l1≤j≤i≤d)

,(0.6)

h(x, {yij}j≤i) = E(1Stk
≥x(Stk)πtk,tk+1

∣∣{
∫ tk+1

0 σij(u)dW
j
u}1≤j≤i≤d = {yij}1≤j≤i≤d)

and N 6= N ′. Thus, in section 4, we provide another method to accelerate the conver-
gence based on a choice of the appropriate relation between N and N ′ that reduces
the variance of the quotient (0.6). Note that, even if one can reduce the variance
by an ”appropriate” control variable, we choose here not to implement this kind of
method because it is not standard for American options.

In the last section, on the one hand, we provide the numerical result comparison
of LS and MCM. On the other hand, we study the results of using the two variance
reduction methods (0.5) and (0.6). Finally, we test the parallel capabilities of MCM
on a desktop computer that has the following specifications: Intel Core i7 Processor
920 with 9GB of tri-channel memory at frequency 1333MHz. It also contains one
NVIDIA GeForce GTX 480.

Let us begin with section 1 in which we establish the notations, the Malliavin
calculus tools and the model used.

1. Notations, hypothesis and key tools. Let T be the maturity of the Amer-
ican contract, (Ω,F , P) a probability space on which we define an d-dimensional stan-
dard Brownian motion W = (W 1, ...,W d) and F = {Fs}s≤T the P -completion of the
filtration generated by W until maturity. Moreover, we denote by {F i,...,d

s }s≤t the
P -completion of the filtration generated by (W i, ...,W d) until the fixed time t ∈ [0, T].
The process St models the price of a vector of assets S1

t , ..., S
d
t which constitute the

solution of the following stochastic differential equation (’ is the transpose operator)

dSi
t

Si
t

= (σi(t))
′dWt, Si

0 = zi, i = 1, .., d,(1.1)

where σ(t) = {σij(t)}1≤i,j≤d is a deterministic triangular matrix ({σij(t)}i<j = 0).
We suppose that the matrix σ(t) is invertible, bounded and uniformly elliptic which
insures the existence of the inverse matrix ρ(t) = σ−1(t) and its boundedness.

We choose the dynamic (1.1) because it is largely used for equity models, HJM
interest rate models and variance swap models. Moreover, the case of σij(t) = σijδ(i−
j) (σij is a constant) will be easily tested in the section 5. One should notice that in
the case where the dynamic of S is given by

dSi
t

Si
t

= (σi)
′(t, St)dWt, Si

0 = zi, i = 1, .., d,

we can use, for instance, the following Euler scheme to reduce this model to the model
(1.1)

d log(Si
t) =

n−1∑

k=0

1t∈[tk,tk+1[

[
(σi)

′(tk, Stk)dWt −
1

2
[(σi)

′σi](tk, Stk)dt

]
,

Si
0 = zi, i = 1, .., d, tk =

kT

n
.

4

Note that this scheme does not discretize the process S but the process log(S).
Throughout this article, we will use two operators: The Malliavin derivatives

D and the Skorohod integral δ and we define them in the same way as in [9]. For
a fixed m ∈ N, we define the subdivision {tkm}k≤2m of the finite interval [0, T] by:
tkm = kT/2m. Then we introduce S(R2m) the Schwartz space of infinitely differentiable
and rapidly decreasing functions on R

2m . Let f ∈ S(R2m), we define the set S
m of

simple functionals by the following representation

F ∈ S
m ⇔ F = f

(
Wt1m

−Wt0m
,Wt2m

−Wt1m
, ...,Wt2mm

−Wt2
m

−1
m

)
.

One can prove that S =
⋃

m∈N
S

m is a linear and dense subspace in L2(Ω) and that
the Malliavin derivatives DiF of F ∈ S defined by

Di
tF =

2m−1∑

k=0

∂f

∂xi,k

(
Wt1m

−Wt0m
, ...,Wt2mm

−Wt2
m

−1
m

)
1[tkm,tk+1

m [(t)

represents a process of L2(Ω× [0, T]) with values in L2([0, T]). We associate to S the
norm || · ||1,2 defined by

||F ||21,2 = E|F |2 +
d∑

i=1

E

∫ T

0

(Di
tF)2dt.

Finally, the space D
1,2 is the closure of S with respect to this norm and we say that

F ∈ D
1,2 if there exists a sequence Fm ∈ S that converges to F in L2(Ω) and that

DuFm is a Cauchy sequence in L2(Ω× [0, T]).
Now we use the duality property between δ and D to define the Skorohod integral

δ. We say that the process U ∈ Dom(δ) if ∀F ∈ D
1,2

E

(∫ T

0

Ut ·DtFdt

)
≤ C(U)||F ||1,2,

where C(U) is a positive constant that depends on the process U . If U ∈ Dom(δ),
we define the Skorohod integral δ(U) =

∫
UtδWt by

∀F ∈ D
1,2, E

(
F

∫ T

0

Ut · δWt

)
= E (Fδ(U)) = E

(∫ T

0

Ut ·DtFdt

)
,(1.2)

(·) is the inner scalar product on R
d.

Below, we give some standard properties of the operators D and δ:
1. If the process Ut is adapted, δ(U) =

∫
UtδWt coincides with the It integral∫

UtdWt.
2. The Chain Rule: Let F = (F1, F2, ..., Fk) ∈ (D1,2)k and φ : R

k → R a
continuously differentiable function with bounded partial derivatives. Then
φ(F1, F2, ..., Fk) ∈ D

1,2 and:

Dtφ(F1, F2, ..., Fk) =

k∑

i=1

∂φ

∂xi
(F1, F2, ..., Fk)DtFi.

5

3. The Integration by Parts: The IP formula will be extensively used in the next
section on the time intervals I = (0, s) and I = (s, t) with s < t ∈]0, T]: Let
F ∈ D

1,2, an adapted process U ∈ Dom(δ) and that FU ∈ Dom(δ). For each
1 ≤ i ≤ d we have the following equality

∫

I

FUuδ
iWu = F

∫

I

UudW
i
u −

∫

I

UuD
i
uFdu.(1.3)

To simplify the notations, we denote Hi(S
i
s) = H(Si

s − xi) for the heaviside function
of the difference between the ith stock and the ith coordinate of the positive vector x.

Throughout this article, we will suppose that g ∈ Eb is a measurable function
with polynomial growth

Eb(Rd) =
{
f ∈ M(Rd) : ∃C > 0 and m ∈ N; f(y) ≤ C(1 + |y|d)m)

}
,

where M(Rd) is the set of measurable functions on R
d. The elements of the set Eb(Rd)

satisfy the finiteness of the expectations computed in this article.

2. The expression of the continuation value . The first theorem of this sec-
tion provides the expression of the continuation (0.3) when using Malliavin calculus
for MEDC models. This theorem can be considered as an extension of the log-normal
multi-dimensional model detailed in [7]. In Theorem 2.4, we provide the expression of
Γk
s,t, introduced in Theorem 2.1, without using Malliavin derivatives and this expres-

sion can be computed using the relation (2.15). The last theorem is a special case of
the first one because we take σij(t) = σijδ(i− j) (σij is a constant) that will be used
to test numerically our nonparametric variance reduction methods detailed in section
3 and section 4.

Theorem 2.1. For any s ∈]0, t[, g ∈ Eb and x > 0

E
(
g(St)

∣∣∣Ss = x
)
=

Ts,t[g](x)

Ts,t[1](x)
,(2.1)

with

Ts,t[f](x) = E

(
f(St)Γs,t

d∏

k=1

Hk(S
k
s)

Sk
s

)
,(2.2)

where Γs,t = Γ1
s,t and Γ1

s,t can be computed by the following induction scheme Γd
s,t =

πd,d
s,t , for k ∈ {1, ..., d− 1}: Γk

s,t = Γk+1
s,t πk,d

s,t −∑d
j=k+1

∫ t

0
Dj

uΓ
k+1
s,t Dj

uπ
k,d
s,t du with

πk,d
s,t = 1 +

d∑

j=k

∫ t

0

ϕjk(u)dW
j
u , ϕjk(u) =

1

s
ρjk(u)1u∈]0,s[−

1

t− s
ρjk(u)1u∈]s,t[,

where ρ is the inverse matrix ρ(u) = σ−1(u).
From this theorem the value of πtk,tk+1

in (0.4) is given by

πtk,tk+1
= Γtk,tk+1

d∏

i=1

1

Si
tk

.(2.3)

To prove Theorem 2.1, we need the following two lemmas which are proved in the
appendix. Lemma 2.2 expresses the independence of the sum

∑d
i=k ρik(u)D

i
ug(St)

from the variable u.

6

Lemma 2.2. For any u ∈]0, t[and f ∈ C1(Rd) then

d∑

i=k

ρik(u)D
i
uf(St) = Sk

t ∂xk
f(St), ρ(u) = σ−1(u).(2.4)

The following lemma constitutes with equality (2.4) the two keys of the proof of
Theorem 2.1.

Lemma 2.3. For any I ⊂]0, t[, h ∈ C∞
b (R), x ∈ R

d
+ and F ∈ D

1,2, we have

E
(∫

I
FDk

uh(S
k
s)

σkk(u)
du
)

= E
(
h(Sk

s)F
∑d

i=k

∫
I
ρik(u)dW

i
u

)

− E
(
h(Sk

s)
∑d

i=k

∫
I ρik(u)D

i
uFdu

)
,

(2.5)

where ρ is the inverse matrix ρ(u) = σ−1(u).
Proof of Theorem 2.1. To prove Theorem 2.1, it is sufficient to prove the following
recursive relation on the parameter k for each hi ∈ C∞

b (R) and f ∈ C1(Rd) ∩ Eb(Rd)

E

(
f(St)

d∏

i=1

h′
i(S

i
s)

)
= E

(
f(St)Γ

k+1
s,t

k∏

i=1

h′
i(S

i
s)

d∏

i=k+1

hi(S
i
s)

Si
s

)
.(2.6)

Indeed, if it is the case then by density of S in L2(Ω), one can approximate f(St) ∈
L2(Ω) by Fm ∈ S and pass to the limit on the left and on the right term of (2.6)
using Cauchy-Schwarz inequality and the dominated convergence theorem. Let us now
consider the singularity due to the heaviside, let φ ∈ C∞

c (R) be a mollifier function
with support equal to [−1, 1] and such that

∫
R
φ(y)dy = 1, then for any y ∈ R we

define

hmk(y) = (Hk ∗ φm)(y) ∈ C∞
b (R), φm(y) = m−1φ(m−1y).

If the equality (2.6) is correct for any k, then

E

(
f(St)

d∏

k=1

h′
mk(S

k
s)

)
= E

(
f(St)Γs,t

d∏

k=1

hmk(S
k
s)

Sk
s

)
.(2.7)

On the one hand, hmk(y) converges to Hk(y) except at y = 0 and the absolute
continuity of the law of Sk

s ensures that hmk(S
k
s) converges almost surely to Hk(S

k
s).

Using the dominated convergence theorem, we prove the convergence of hmk(S
k
s) to

Hk(S
k
s) in Lp(Ω) for p ≥ 1. By Cauchy-Schwarz inequality, we prove the convergence

E

(
f(St)Γs,t

d∏

k=1

hmk(S
k
s)

Sk
s

)
−→ E

(
f(St)Γs,t

d∏

k=1

Hk(S
k
s)

Sk
s

)
.

On the other hand, h′
mk(yk) =

∫
R
Hk(zk)φ

′
m(yk − zk)dzk = φm(yk − xk). More-

over, we observe that, according to our assumption, the distribution of the vector
(S1

s , ..., S
d
s , S

1
t , ..., S

d
t) admits a density with respect to the Lebesgue mesure on R

d×R
d

we denote it by p(y, z) with y = (y1, ..., yd) and z = (z1, ..., zd), thus

E

(
f(St)

d∏

k=1

h′
mk(S

k
s)

)
=

∫

Rd

f(z)

(∫

Rd

d∏

k=1

φm(yk − xk)p(y, z)dy1...dyd

)
dz1...dzd

7

Because
∫
Rd

∏d
k=1 φm(yk − xk)p(y, z)dy1...dyd converges to p(x, z), we have

E

(
f(St)

d∏

k=1

h′
mk(S

k
s)

)
−→ E

(
f(St)

d∏

k=1

εxk
(Sk

s)

)
,

which concludes the first part of this proof.

To prove the induction (2.6), we introduce the following notations:

ĥd
k(x) =

d∏

i=k

hi(xi)

xi
, ĥ′

k(x) =

k∏

i=1

h′
i(xi), x = (x1, ..., xd).

The case k = d is given by

E
(
f(St)ĥ′

d(Ss)
)

= E
(

1
s

∫ s

0
f(St)ĥ′

d−1(Ss)
Dd

uhd(S
d
s)

Dd
uS

d
s

du
)

= E
(

1
s

∫ s

0 f(St)ĥ′
d−1(Ss)

Dd
uhd(S

d
s)

σdd(u)Sd
s
du
)
,

where we replaced h′
d(S

d
s) by

Dd
uhd(S

d
s)

Dd
uS

d
s

in the first equality and Dd
uS

d
s by its value

σdd(u)S
d
s in the second equality. Using Lemma 2.3 with

F =
f(St)

Sd
s

d−1∏

i=1

h′
i(S

i
s) =

f(St)

Sd
s

ĥ′
d−1(Ss)

and the fact that ĥ′
d−1(Ss) does not depend on the dth coordinate of the Brownian

motion yields

E
(

1
s

∫ s

0 f(St)ĥ′
d−1(Ss)

Dd
uhd(S

d
s)du

σdd(u)Sd
s

)

= E
(
Fhd(S

d
s)

1
s

∫ s

0
dWd

u

σdd(u)

)
− E

(
hd(S

d
s)

1
s

∫ s

0
Dd

u
ĥ′

d−1(Ss)f(St)
Sd
s

du
σdd(u)

)

= E
(
Fhd(S

d
s)

1
s

∫ s

0
dWd

u

σdd(u)

)
− E

(
ĥ′

d−1(Ss)hd(S
d
s)

1
s

∫ s

0 Dd
u
f(St)
Sd
s

du
σdd(u)

)
.

(2.8)

Besides using Lemma 2.2 for the Malliavin derivative of f(St), we get for v ∈]s, t[

1

σdd(u)
Dd

u

[
f(St)

Sd
s

]
=

1

Sd
sσdd(v)

Dd
vf(St)−

f(St)

Sd
s

.

Thus, the value of the last term of (2.8) is given by

E
(
ĥ′

d−1(Ss)hd(S
d
s)

1
s

∫ s

0 Dd
u
f(St)
Sd
s

du
σdd(u)

)
= −E

(
ĥ′

d−1(Ss)hd(S
d
s)

f(St)
Sd
s

)

+E
(
ĥ′

d−1(Ss)
hd(S

d
s)

Sd
s

1
t−s

∫ t

s
Dd

vf(St)
dv

σdd(v)

)
.

And by duality (1.2) we remove the Malliavin derivative of f(St) in the last term of
the previous equality

E
(

ĥ′
d−1(Ss)hd(S

d
s)

Sd
s

1
t−s

∫ t

s
Dd

vf(St)dv
σdd(v)

)
= E

(
ĥ′

d−1(Ss)hd(S
d
s)

Sd
s

E
{

1
t−s

∫ t

s
Dd

vf(St)dv
σdd(v)

∣∣∣Fs

})

= E
(

ĥ′
d−1(Ss)hd(S

d
s)

Sd
s

E
{
f(St)

1
t−s

∫ t

s
dWd

v

σdd(v)

∣∣∣Fs

})
.

8

Regrouping all terms together

E
(
f(St)ĥ′

d(Ss)
)
= E

(
f(St)Γ

d
s,tĥ

′
d−1(Ss)ĥ

d
d(Ss)

)
, Γd

s,t = πd,d
s,t .

Let us suppose that (2.6) is satisfied for k and prove it for k − 1, thus

E
(
f(St)ĥ′

d−1(Ss)
)

= E
(
f(St)Γ

k+1
s,t ĥd

k+1(Ss)ĥ′
k(Ss)

)

= E
(

1
s

∫ s

0 f(St)Γ
k+1
s,t ĥd

k+1(Ss)ĥ′
k−1(Ss)

Dk
uhk(S

k
s)

σkk(u)Sk
s
du
)

= E

(
1
s

∫ s

0

f(St)Γ
k+1

s,t ĥd
k+1(Ss)ĥ′

k−1(Ss)

Sk
s

Dk
uhk(S

k
s)

σkk(u)
du

)
,

where we replaced h′
k(S

k
s) by

Dk
uhk(S

k
s)

Dk
uS

k
s

in the second equality. Using Lemma 2.3 with

F =
f(St)Γ

k+1
s,t ĥd

k+1(Ss)ĥ′
k−1(Ss)

Sk
s

and the fact that ĥ′
k−1(Ss) does not depend on the jth coordinate (j ≥ k) of the

Brownian motion yields

E
(

1
s

∫ s

0
FDk

uhk(S
k
s)

σkk(u)
du
)
=
∑d

j=k E
(
Fhk(S

k
s)

1
s

∫ s

0
ρjk(u)dW

j
u

)

−∑d
j=k E

(
hk(S

k
s)ĥ

′
k−1(Ss)

1
s

∫ s

0
Dj

u

[
f(St)ĥ

d
k+1(Ss)Γ

k+1

s,t

Sk
s

]
ρjk(u)du

)
.

(2.9)

Besides, if for x = (x1, ..., xd) we denote Π(x) =
ĥd
k+1(x)

xk
, the Malliavin derivative of

the last term of (2.9) provides

Dj
u

[
Γk+1
s,t Π(Ss)f(St)

]
= Dj

uΓ
k+1
s,t Π(Ss)f(St) + Γk+1

s,t Dj
uΠ(Ss)f(St)

+ Γk+1
s,t Π(Ss)D

j
uf(St).

Using Lemma 2.2 for the Malliavin derivative in the two last terms, we get

d∑

j=k

ρjk(u)D
j
uΠ(Ss) = Sk

s ∂xk
Π(Ss) = −Π(Ss),(2.10)

d∑

j=k

ρjk(u)D
j
uf(St) = Sk

t ∂xk
f(St).(2.11)

From (2.10), we deduce that

ĥ′
k−1(Ss)hk(S

k
s)f(St)Γ

k+1
s,t

1

s

∫ s

0

d∑

j=k

ρjk(u)D
j
uΠ(Ss)du = − ĥ′

k−1(Ss)ĥ
d
k(Ss)f(St)Γ

k+1
s,t

Sk
s

.

Thus, introducing the random variable π̃k,d
s,t = 1+

∑d
j=k

∫ s

0 ρjk(u)dW
j
u and using (2.9)

E
(

1
s

∫ s

0
FDk

uhk(S
k
s)

σkk(u)
du
)

= E
(
Fhk(S

k
s)π̃

k,d
s,t

)

− E
(

ĥd
k(Ss)ĥ′

k−1(Ss)f(St)
Sk
s

1
s

∫ s

0

∑d
j=k ρjk(u)D

j
uΓ

k+1
s,t du

)

− E

(
ĥd
k(Ss)ĥ′

k−1(Ss)Γ
k+1

s,t

Sk
s

1
t−s

∫ t

s

∑d
j=k ρjk(u)D

j
uf(St)du

)
,

(2.12)

9

where we used the fact (2.11) that
∑d

j=k ρjk(u)D
j
uf(St) does not depend on u. Let

us develop the last term of (2.12)

E

(
ĥd
k(Ss)ĥ′

k−1(Ss)Γ
k+1

s,t

Sk
s

1
t−s

∫ t

s

∑d
j=k ρjk(u)D

j
uf(St)du

)

= E
(

ĥd
k(Ss)ĥ′

k−1(Ss)
Sk
s

∑d
j=k E

[
1

t−s

∫ t

s
Γk+1
s,t ρjk(u)D

j
uf(St)du

∣∣∣Fs

])

= E
(

ĥd
k(Ss)ĥ′

k−1(Ss)
Sk
s

∑d
j=k E

[
f(St)

1
t−s

∫ t

s
Γk+1
s,t ρjk(u)δW

j
u

∣∣∣Fs

])

=
∑d

j=k E
(
Fhk(S

k
s)

1
t−s

∫ t

s ρjk(u)dW
j
u

)

− ∑d
j=k E

(
f(St)ĥ

d
k(Ss)ĥ′

k−1(Ss)
Sk
s

1
t−s

∫ t

s
ρjk(u)D

j
uΓ

k+1
s,t du

)
.

We applied (1.2) in the third equality to remove the Malliavin derivative of f(St). We
also used (1.3) in the last equality. To complete the proof, we should remark that

1

s

∫ s

0

Dj
uΓ

k+1
s,t ρjk(u)du− 1

t− s

∫ t

s

Dj
vΓ

k+1
s,t ρjk(v)dv = −

∫ t

0

Dj
yΓ

k+1
s,t Dj

yπ
k,d
s,t dy

and because Γk+1
s,t is an Fk+1,...,d

t -measurable random variable

Γk
s,t = Γk+1

s,t πk,d
s,t −

d∑

j=k

∫ t

0

Dj
uΓ

k+1
s,t Dj

uπ
k,d
s,t du = Γk+1

s,t πk,d
s,t −

d∑

j=k+1

∫ t

0

Dj
uΓ

k+1
s,t Dj

uπ
k,d
s,t du.

Theorem 2.4 provides the expression of Γk
s,t in (2.16) without using the Malliavin

derivatives {Dj
u}j>k and which can be efficiently computed using (2.15). We will use

in Theorem 2.4 the set of the second order permutations Sk,d defined as the following

Sk,d = {p ∈ Sk,d, p ◦ p = Id},(2.13)

where Sk,d is the set of permutations on {k, ..., d} and Id is the identity application.
By induction, one can easily prove that

Sk,d = {τkk ◦ p, p ∈ Sk+1,d} ∪ {τ lk ◦ p, p ∈ Sk+1,d, p(l) = l, l ∈ {k + 1, ..., d}},(2.14)

with τ ji : i 7→ j as the transition application on {k, ..., d}. We also denote by ∆
the determinant that involves only the permutations of Sk,d, that is to say, the ∆
associated to the matrix C = {Ci,j}k≤i,j≤d is given by

∆ =
∑

p∈Sk,d

ǫ(p)

d∏

i=1

Ci,p(i)

Using (2.14), we can easily prove that

∆ = Ck,k∆k,k +

d∑

i=k+1

ǫ(τ ik)Ci,kCk,i∆k,i(2.15)

where ∆k,i is the ∆ associated to the Ci,k obtained from C by suppressing the line and
the column i as well as the line and the column k. Based on the development according
to the first line, relation (2.15) provides a recursive formula even more efficient than

10

the determinant formula. Of course, we can generalize the relation (2.15) to the one
that involves the development according to a jth line or a jth column with k ≤ j ≤ d.

Theorem 2.4. Based on the assumptions and the results of Theorem 2.1, for
k ∈ {1, ..., d} the value of Γk

s,t is given by

Γk
s,t =

∑

p∈Sk,d

ǫ(p)Ak,p(k)Ak+1,p(k+1)...Ad,p(d) =
∑

p∈Sk,d

ǫ(p)

d∏

i=k

Ai,p(i),(2.16)

with ǫ(p) as the signature of the permutation p ∈ Sk,d, Sk,d defined in (2.13) and

A =




π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

...
. . .

. . .
. . .

...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,d
s,t




,

where Ck,l is the covariance of πk,d
s,t and πl,d

s,t.
Proof. We prove (2.16) by a decreasing induction. For k = d, the expression

(2.16) is clearly satisfied. We suppose that (2.16) is satisfied for k + 1 and we prove

it for k. According to Theorem 2.1, Γk
s,t = Γk+1

s,t πk,d
s,t −∑d

j=k+1

∫ t

0 Dj
uΓ

k+1
s,t Dj

uπ
k,d
s,t du,

but

Dj
uΓ

k+1
s,t =

∑d
l=k+1

∑
p∈Sk+1,d

ǫ(p)
∏d

i=k+1,i6=l Ai,p(i)D
j
uAl,p(l)

=
∑d

l=k+1

∑
p∈Sk+1,d,p(l)=l ǫ(p)

∏d
i=k+1,i6=l Ai,p(i)D

j
uAl,l,

the second equality is due to the fact that Al,p(l) is a constant except for p(l) = l.
Subsequently

−∑d
j=k+1

∫ t

0
Dj

uΓ
k+1
s,t Dj

uπ
k,d
s,t du

= −∑d
l=k+1

∑
p∈Sk+1,d,p(l)=l ǫ(p)

∏d
i=k+1,i6=l Ai,p(i)

∑d
j=k+1

∫ t

0
Dj

uAl,lD
j
uπ

k,d
s,t

= −∑d
l=k+1

∑
p∈Sk+1,d,p(l)=l ǫ(p)

∏d
i=k+1,i6=l Ai,p(i)Ck,l.

Finally

Γk
s,t = Γk+1

s,t πk,d
s,t −

d∑

j=k+1

∫ t

0

Dj
uΓ

k+1
s,t Dj

uπ
k,d
s,t du

= πk,d
s,t

∑

p∈Sk+1,d

ǫ(p)

d∏

i=k+1

Ai,p(i) −
d∑

l=k+1

Ck,l

∑

p∈Sk+1,d,p(l)=l

ǫ(p)

d∏

i=k+1,i6=l

Ai,p(i)

=
∑

p∈Sk,d

ǫ(p)

d∏

i=k

Ai,p(i).

The last equality is due to the development of
∑

p∈Sk,d
ǫ(p)

∏d
i=k Ai,p(i) according to

the kth line of A which can be justified by (2.14).

11

As a corollary of Theorem 2.1 and Theorem 2.4, we obtain the following result.
Corollary 2.5. For any s ∈]0, t[, g ∈ Eb and x > 0, if σij(t) = σijδ(i− j) then

E
(
g(St)

∣∣∣Ss = x
)
=

Ts,t[g](x)

Ts,t[1](x)
,

with

Ts,t[f](x) = E

(
f(St)

d∏

k=1

Hk(S
k
s)W

k
s,t

σks(t− s)Sk
s

)
,(2.17)

and

W k
s,t = (t− s)(W k

s + σks)− s(W k
t −W k

s), k = 1, ..., d.

3. Variance reduction method based on conditioning . In this section, we

show that one can reduce the variance by a projection on L2

({∫ t

0 σij(u)dW
j
u

}
i,j

)

and by using a closed formula of Ts,t[1](x). Like in section 2, we give in Theorem 3.1
the results of the special case σij(t) = σijδ(i− j) (σij is a constant) that will be used
to test our variance reduction method.

We begin with Ts,t[1](x), we can compute the explicit value of this function of x.
The Ts,t[1](x) closed formula can be got, for instance, from a change of probability.

Indeed, we define the probability P = Ncoeff (
∏d

k=1 S
k
0/S

k
s)P which yields

Ts,t[1](x) =
1

Ncoeff
E

([
d∏

k=1

Hk(S
k
s)

]
Γs,t

)
,

Ncoeff is a deterministic normalization coefficient such thatMs = Ncoeff (
∏d

k=1 S
k
0 /S

k
s)

is an exponential martingale with E(Ms) = 1. Under P, Γs,t has the same law as a
polynomial of Gaussian variables which is sufficient to conduct the computations.

Let us now denote

h(x, {yij}j≤i) = E

(
Γs,t

d∏

k=1

Hk(S
k
s)

Sk
s

∣∣
{∫ t

0

σij(u)dW
j
u

}

1≤j≤i≤d

= {yij}1≤j≤i≤d

)

In what follows, we are going to prove that the function h(x, {yij}1≤j≤i≤d) can be
explicitly known if, for each j, the (d − k) × (d − k) matrix Σjt =

{
Σik

jt

}
j≤i,k≤d

={∫ t

0 σij(u)σkj(u)du
}
j≤i,k≤d

is invertible. First, please remark that according to our

notations i− j + 1 and k− j + 1 are the indices of the element Σik
jt in the matrix Σjt

(we will use similar convention also for Aj , Bj , Ψjt and Φjt). Also we notice that the
condition of invertibility of Σjt is not an important constraint, because one can choose
a time discretization {tm} such that the matrices {Σjtm}k≤d fulfill this condition2.

2Nevertheless, this is a difficult task when the dimension is sufficiently big.

12

The computation of h(x, {yij}1≤j≤i≤d) is based on a regression of Gaussian vari-

ables according to the Gaussian variables Yij =
∫ t

0
σij(u)dW

j
u . First, we perform a

linear regression of
∫ t

0
ϕjk(u)dW

j
u according to Yij

∫ t

0

ϕjk(u)dW
j
u =

d∑

i=j

aji,kYij +Xjk,(3.1)

with {Xjk}1≤k≤j≤d as a Gaussian vector N (0, CX) which is orthogonal to Y . Using
It isometry twice and the orthogonality of Y and X , we obtain

E

(∫ t

0

ϕjk(u)dW
j
uYlj

)
=

∫ t

0

ϕjk(u)σlj(u)du =

n∑

j=k

Σli
jta

j
i,k.

If we denote Aj = {aji,k}j≤i,k≤d and Ψjt =
{∫ t

0 ϕjk(u)σlj(u)du
}
k,l
, we get

Aj = Σ−1
jt Ψjt.

In the same way, we perform a linear regression of
∫ s

0 σkj(u)dW
j
u according to Yij

∫ s

0

σkj(u)dW
j
u =

d∑

i=j

bji,kYij + Zkj ,(3.2)

with {Zkj}1≤j≤k≤d as a Gaussian vector N (0, CZ) which is orthogonal to Y . Using
It isometry twice and the orthogonality of Y and Z, we obtain

E

(∫ s

0

σkj(u)dW
j
uYlj

)
=

∫ s

0

σkj(u)σlj(u)du =

d∑

i=j

Σli
jtb

j
i,k.

If we denote Bj = {bji,k}j≤i,k≤d, we get

Bj = Σ−1
jt Σjs.

Now using (3.1), (3.2) and the value of A and B, the covariance matrices CX , CZ and

CXZ = E(XZ) are given by (Φi,k
jt =

∫ t

0
ϕji(u)ϕjk(u)du)

[CX]ji,k = E(XjiXjk) = Φi,k
jt − (Aj

k)
′Ψi

jt − (Aj
i)

′Ψk
jt + (Aj

k)
′ΣjtA

j
i ,

[CZ]
j
i,k = E(ZijZkj) = Σi,k

js − (Bj
k)

′Σi
js − (Bj

i)
′Σk

js + (Bj
k)

′ΣjtB
j
i ,

[CXZ]
j
i,k = E(XjiZkj) = Ψi,k

js − (Aj
k)

′Σi
js − (Bj

i)
′Ψk

jt + (Aj
k)

′ΣjtB
j
i .

Using (3.1) and (3.2), we express Γs,t and Sk
s according to Yij , Zij and Xji then we

conduct standard Gaussian computations to obtain the expression of h(x, yij)
3. In

Theorem 3.1, we give an explicit expression of Ts,t[1](x) and h(x, yij) in the case of
multi-dimensional B&S models with independent coordinates.

We can see that now that we know the explicit value of Ts,t[1](x) and h(x, {yij}1≤j≤i≤d),
subsequently, we should choose between the simulation of:

3One can use Mathematica to compute it formally.

13

P1) N paths of g(St)h
(
x, {
∫ t

0
σij(u)dW

j
u}i,j

)
then set the continuation to the

value

C(x) :=

1
N

∑N
l=1 g

l(St)h
(
x, {
∫ t

0
σij(u)dW

j
u}l1≤j≤i≤d

)

Ts,t[1](x)
.

P2) N ′ paths of g(St)h
(
x, {
∫ t

0 σij(u)dW
j
u}i,j

)
andN paths of h

(
x, {
∫ t

0 σij(u)dW
j
u}i,j

)

then set the continuation to the value

C(x) :=

1
N ′

∑N ′

l=1 g
l(St)h

(
x, {
∫ t

0
σij(u)dW

j
u}l1≤j≤i≤d

)

1
N

∑N
l=1 h

(
x, {
∫ t

0
σij(u)dW

j
u}l1≤j≤i≤d

) .

Based on a variance reduction argument, Theorem 4.3 will indicate the preferable
method to use.

Theorem 3.1. For any s ∈]0, t[, g ∈ Eb and x > 0, if σij(t) = σijδ(i − j) then
the conditional expectation given in Theorem 2.5 can be reduced to

E
(
g(St)

∣∣∣Ss = x
)
=

E
(
g(St)

∏d
k=1

√
t exp

(
−sσk

t

(
sσk

t +W k
t

)
− (d2k(W

k
t)+mk)

2

2

))

∏d
k=1

√
(t− s)e−

d2
1k
2

,

with

mk = σk

√
s(t− s)

t
, d2k(W

k
t) =

√
t

s(t− s)

(
βk −

sW k
t

t

)
, d1k =

βk + σks√
s

,

where

βk =
1

σk

(
ln

[
xk

Sk
0

]
+

σ2
k

2

)
.

Proof. We simplify the constant σks(t − s) in (2.17) from the denominator and

the numerator of the conditional expectation E
(
g(St)

∣∣∣Ss = x
)
, then we use the in-

dependence of the coordinates to obtain

E
(
g(St)

∣∣∣Ss = x
)
=

E
(
g(St)

∏d
k=1 Hi(S

k
s)W

k
s,t/S

k
s

)

∏d
k=1 E

(
Hk(Sk

s)W
k
s,t/S

k
s

) .

Afterwards, we use the independence of the increments to obtain

E
(

Hk(S
k
s)

Sk
s

W k
s,t

)
= E

(
Hk(S

k
s)

Sk
s

[(t− s)(W k
s + σks)− s(W k

t −W k
s)]
)

= (t− s)E
(

Hk(S
k
s)

Sk
s

(W k
s + σks)

)
− sE

(
Hk(S

k
s)

Sk
s

)
E(W k

t −W k
s)

= (t− s)E
(

Hk(S
k
s)

Sk
s

(
√
sG+ σks)

)
,

where the random variable G has a standard normal distribution. Moreover we have
the following equality in distribution

Sk
s

.
= Sk

0 exp

(
−σ2

k

2
s+ σk

√
sG

)
.

14

Computing the expectation we obtain

E

(
Hk(S

k
s)

Sk
s

(
√
sG+ σks)

)
= αk(t− s)

√
s

2π
e−

d2
1k
2 ,(3.3)

with αk = eσ
2
ks.

Regarding the numerator, we condition according to W k
t = wk and we use the

independence of coordinates

E

(
g(St)

d∏

k=1

Hk(S
k
s)W

k
s,t/S

k
s

)
= E

(
g(St)

d∏

k=1

hk(W
k
t)

)
,

with

hk(w
k) = E

(
Hk(S

k
s)W

k
s,t/S

k
s

∣∣∣W k
t = wk

)
.(3.4)

Knowing W k
0 = 0 and W k

t = wk, when we fix s the random variable W k
s

.
= swk

t +√
s(t−s)

t G and G has a standard normal distribution. Also, we have the follow-

ing equality in distribution for W k
s,t: W k

s,t
.
= (t − s)σks +

√
ts(t− s)G and Sk

s
.
=

Sk
0 exp

(
−σ2

k

2 s+ σk
swk

t + σk

√
s(t−s)

t G

)
. Then we compute (3.4) which yields:

hk(w
k)

.
= αk

√
ts(t− s)

2π
exp

(−sσk

t

(sσk

t
+ wk

)
− (d2k(w

k) +mk)
2

2

)
,(3.5)

with αk = eσ
2
ks.

Using (3.3) and (3.5) we obtain the requested result.

4. Advanced variance reduction method. We present, in this section, a less
intuitive idea of variance reduction that is based on an appropriate relation between
N and N ′ in (0.6). This method can be applied independently from conditioning
detailed in previous section.

Lemma 4.1. Let (Xk)k∈N∗ be a sequence of independent Rn-valued random vari-
ables that have the same law. We suppose that Xk is square integrable and we denote
µ = E(Xk), Ci,j = Cov(Xi, Xj). Let r > 0, Vµ = {x ∈ R

n, ||x − µ||Rn < r} and
g : Rn → R such that g ∈ C1(Vµ), then we have the following limits when N → ∞

g(XN) −→ g(µ) a.s.,
√
N(g(XN)− g(µ)) −→ N (0,Σ) in law,

such that

XN =
1

N

N∑

i=1

Xi, Σ =

(
∂g

∂x1
, ...,

∂g

∂xn

)

x=µ

C

(
∂g

∂x1
, ...,

∂g

∂xn

)t

x=µ

.(4.1)

Proof. The almost sure convergence of g(XN) results from the law of the large
numbers and from the continuity of g in µ. For the same reasons, the gradient vector
∂g
∂x (XN) converges a.s. to ∂g

∂x(µ). Besides
√
N(g(XN)− g(µ)) = ∂g

∂x(XN) ·
√
N(XN −

µ) +
√
N(XN − µ) · ǫ(XN − µ) and using the Slutsky Theorem, with G ∼ N (0, C)
• (∂g∂x (XN),

√
N(XN − µ)) converges in law to (∂g∂x (µ), G).

15

• (ǫ(XN − µ),
√
N(XN − µ)) converges in law to (0, G).

Finally, because (x, y) 7→ xy and (x, y) 7→ x + y are continuous, then
√
N(g(XN) −

g(µ)) converges in law to ∂g
∂x (µ)G.

Let us denote Q as the quotient given by

Q =
1
N ′

∑N ′

i=1 Xi

1
N

∑N
i=1 Yi

(4.2)

If |E(Yi)| ≥ ε > 0, according to Lemma 4.1 Q converges to E(Xi)/E(Yi). In the
following two theorems we will prove that we can accelerate the speed of convergence
when acting on the relation between N and N ′. We analyze the two cases:
case 1: N ′ = λ1N with λ1 ∈ [1/N, 1] and we normalize (4.2)

Q =
1
N ′

∑N ′

i=1 Xi

1
N

(
N ′

N ′

∑N ′

i=1 Yi +
N−N ′

N−N ′

∑N−N ′

i=1 Yi

) =
AN ′

λ1BN ′ + (1− λ1)BN,N ′

,

where

AN ′ =
1

N ′

N ′∑

i=1

Xi, BN ′ =
1

N ′

N ′∑

i=1

Yi, BN,N ′ =
1

N −N ′

N−N ′∑

i=1

Yi.

We set g1(x, y, z) = x/(λ1y + (1− λ1)z) and (4.1) provides

Σ1(λ1) =
1

B2

(
(2λ2

1 − 2λ1 + 1)
A2

B2
σ2
2 + σ2

1 −
2λ1A

B
σ1σ2ρ

)
,(4.3)

with A = E(X), B = E(Y), σ2
1 = V ar(X), σ2

2 = V ar(Y) and ρ = Cov(X,Y)/(σ1σ2).
case 2: N = λ2N

′ with λ2 ∈ [1/N ′, 1] and we normalize (4.2)

Q =

1
N ′

(
N
N

∑N
i=1 Xi +

N ′−N
N ′−N

∑N ′−N
i=1 Xi

)

1
N

∑N
i=1 Yi

=
λ2AN + (1− λ2)AN ′,N

BN
,

where

AN =
1

N

N∑

i=1

Xi, AN ′,N =
1

N ′ −N

N ′−N∑

i=1

Xi, BN =
1

N

N∑

i=1

Yi.

We set g2(x, y, z) = (λ2x+ (1− λ2)y)/z and (4.1) provides

Σ2(λ2) =
1

B2

(
(2λ2

2 − 2λ2 + 1)σ2
1 +

A2

B2
σ2
2 −

2λ2A

B
σ1σ2ρ

)
,(4.4)

with A = E(X), B = E(Y), σ2
1 = V ar(X), σ2

2 = V ar(Y) and ρ = Cov(X,Y)/(σ1σ2).
Theorem 4.2. Based on what we defined above:
1. If A2σ2

2 ≥ B2σ2
1 the minimum variance Σmin = Σ1(λ

min
1), with

λmin
1 =

1

2
+

Bσ1ρ

2Aσ2
, Σ1 given in (4.3).

16

2. If A2σ2
2 ≤ B2σ2

1 the minimum variance Σmin = Σ2(λ
min
2), with

λmin
2 =

1

2
+

Aσ2ρ

2Bσ1
, Σ2 given in (4.4).

Proof. We almost proved this theorem, indeed, one can easily verify that λmin
1 is

the minimum of Σ1(λ1) and λmin
2 is the minimum of Σ2(λ2). To conclude we verify

that Σ1(λ) ≤ Σ2(λ) if and only if A2σ2
2 ≥ B2σ2

1 .
What is really appealing, in this theorem, is the fact that even if ρ = 0, one

should use N = (1/2)N ′ or N ′ = (1/2)N depending on whether A2σ2
2 ≥ B2σ2

1 or not.
Nevertheless, in order to apply the results of either this theorem or Theorem 4.3, we
should have a ”sufficiently good” approximation of σ1, σ2, A, B and ρ. With our
model B = Ts,t[1](x) is explicitly known and we can have σ2 in the same fashion as
Ts,t[1](x). In section 5, procedure P2 is implemented by using the closed expression
of B and σ2 and simulating σ1, A, ρ to get an approximation of λmin

1 or λmin
2 that we

use to re-simulate Q. In the case where B and σ2 are not known, we can implement
one of the two methods that are also efficient:
M1) Using all the simulated paths Nmax, we approximate the values of σ1, σ2, A,

B and ρ then we compute λmin
1 or λmin

2 that we use to re-simulate Q.
M2) A fixed point alike method: Using all the simulated paths Nmax, we approx-

imate the values of σ1, σ2, A, B and ρ then fix a threshold ǫ and test the
condition A2σ2

2 ≥ B2σ2
1 :

If A2σ2
2 ≥ B2σ2

1 : Use the previous approximations except A that will be
simulated using λ1Nmax paths, such that λmin

1 is reached when

∣∣∣∣λ1 −
1

2
− Bσ1ρ

2Aσ2

∣∣∣∣ < ǫ.

If A2σ2
2 ≤ B2σ2

1 : Use the previous approximations except B that will be
simulated using λ2Nmax paths, such that λmin

2 is reached when
∣∣∣∣λ2 −

1

2
− Aσ2ρ

2Bσ1

∣∣∣∣ < ǫ.

In the following theorem, we will answer on whether we should implement the simu-
lation procedure P1 or P2.

Theorem 4.3. Based on what was defined above and on the values of λmin
1 and

λmin
2 given in Theorem 4.2, if

1. A2σ2
2 ≥ B2σ2

1 and 1 ≥ ρ > Aσ2

Bσ1

(√
13−3
2

)
then

(
B2Σ1(λ

min
1)− σ2

1

)
< 0.

2. A2σ2
2 ≤ B2σ2

1 and 1 ≥ ρ > Bσ1

Aσ2

(√
5
4 +

2A2σ2
2

B2σ2
1

− 3
2

)
then

(
B2Σ2(λ

min
2)− σ2

1

)
< 0.

Proof.
1. If A2σ2

2 ≥ B2σ2
1 : Σ1(λ

min
1) = Σ1(ρ) then we look for the condition on ρ that

allows that the trinomial
(
B2Σ1(ρ)− σ2

1

)
is negative.

2. We go through the same argument as in 1.

Theorem 4.3 tells us that, even though we can compute explicitly the expression of
Ts,t[1](x), according to the correlation, one can accelerate the convergence when using
the quotient of two Monte Carlo estimators.

17

5. Simulation and numerical results. In this section we test our simulations
on a geometric average payoff that has the following payoff

Φd
geo(ST) =

(
K −

d∏

i=1

(SiT)
1/d

)

+

.(5.1)

In addition, we will test the American put on minimum and the American call on
maximum that have the following payoffs

Φmin(ST) =
(
K −min(S1

T , S
2
T)
)
+
, Φmax(ST) =

(
max(S1

T , S
2
T)−K

)
+
.(5.2)

The parameters of the simulations are the following: The strikeK = 100, the maturity
T = 1, the risk neutral interest rate r = ln(1.1), the time discretization is defined
using the time steps that is given as a parameter in each simulation, Si

0 = 100 and
σij(t) = σij(t)δ(j − i) with σii = 0.2. The model considered is a multidimensional
log-normal model

dSi
t

Si
t

= rdt + (σi)
′dWt, Si0 = yi, i = 1, .., d.

All the prices and the standard deviations are computed using a sample of 16 simu-
lations. Besides, the true values, to which we compare our simulation results, are set
using:

• the one-dimensional equivalence and a tree method [10], available in Premia
[11], for options with Φn

geo(ST) as payoff,
• the Premia implementation of a finite difference algorithm [12] in two dimen-
sions for Φmin(ST) and Φmax(ST).

In Figure 5.1, we compare the P2 (N 6= N ′) version of MCM with a standard
LS algorithm. The LS is implemented using linear regression for multidimensional
contracts and using up to three degree monomials for the one-dimensional contract.
The reason behind the choice of linear regression in the multidimensional case is the
fact that the regression phase of LS can really increase the execution time without a
significant amelioration of the prices tested.

In Figure 5.1, even if all the prices are sufficiently good, we see that MCM pro-
vides better prices than those of LS. Also when we increase the time steps, MCM
is more stable than LS. However, for n = 10 and time steps > 10, we remark that
one should simulate 214 trajectories to stablize MCM. This fact is expected due to
the important variance of the ten dimension contract and that one should simulate
more trajectories, on the one hand, to have an asymptotically good approximation
of the relation between N and N ′ and, on the other, to have a sufficient number of
trajectories for the approximation of the continuation. The executions of MCM and
LS with 210 trajectories are carried out in less than one second. Moreover, using 214

trajectories the LS and MCM are executed within seconds (< 5s). As a conclusion
from this figure, MCM provides better results than LS in approximately the same
execution time. When we increase the simulated trajectories to 214, the MCM prices
are stabilized for high dimensions and are always better than LS prices.

18

0 20 4010 30
4.4

4.6

4.8

5

5.2

Time Steps

P
ric

es

1 Dimension and 210 Trajectories

0 20 4010 30
4.4

4.6

4.8

5
1 Dimension and 214 Trajectories

PM
PL
PR

0 10 20 30 40
1.4

1.5

1.6

1.7

1.8

Time Steps

P
ric

es

5 Dimensions and 210 Trajectories

0 10 20 30 40

1.5

1.55

1.6
5 Dimensions and 214 Trajectories

PM
PL
PR

0 10 20 30 40
0.8

0.85

0.9

0.95

1

Time Steps

P
ric

es

10 Dimensions and 210 Trajectories

0 10 20 30 40
0.75

0.8

0.85

0.9

0.95
10 Dimensions and 214 Trajectories

PM
PL
PR

Fig. 5.1. MCM Vs. LS for Φd
geo(ST): PR is the real price. PM and PL are the prices obtained

respectively by MCM and LS represented with their standard deviations.

In Table 5.1, we remain with the same payoff Φd
geo(ST) but this time we compare

the different nonparametric methods of implementing MCM. In P2(=) and P2(Opt),
we use the same P2 method but with N = N ′ for the first one and N 6= N ′ for the
second (The relation between N and N ′ is detailed in pages 16 and 17). First, we
remark that P2(=) is not stable in the multidimensional case and can give wrong
results if the time steps > 10. However the P2 method is stabilized when we im-

19

plement the version N 6= N ′ of the advanced variance reduction method detailed in
section 4. Also when we use 210 trajectories, P1 and P2(Opt) are almost similar.
Nevertheless, with 214 trajectories, P2(Opt) outperforms P1 which indicates that we
fill the conditions of Theorem 4.3 and we have an asymptotically good approximation
of the relation between N and N ′. As far as the execution time is concerned, the time
consumed by P2(Opt) is not much different from P1 when we use 210 trajectories.
In addition, using 214 trajectories, the computations of the relation between N and
N ′ can be performed on the CPU when the rest of the simulation is done on the GPU.
The latter fact allows a similar overall execution time for P2(Opt) and P1 (within
seconds).

Table 5.1

P1 Vs. P2 for Φd
geo(ST): The real values are equal to 4.918, 1.583 and 0.890 for dimensions

one, five and ten respectively

Simulated Dim Time Price Std Deviation
Paths n Steps P1 P2(=) P2(Opt) P1 P2(=) P2(Opt)
210 1 10 4.750 4.826 4.789 0.213 0.167 0.160
210 1 20 4.729 4.880 4.800 0.270 0.226 0.216
210 1 30 4.679 4.909 4.853 0.270 0.179 0.190
210 5 10 1.548 1.681 1.526 0.071 0.073 0.067
210 5 20 1.632 > 2.0 1.588 0.070 0.048
210 5 30 1.650 > 2.3 1.619 0.074 0.069
210 10 10 0.900 1.112 0.869 0.039 0.045 0.044
210 10 20 0.921 > 1.3 0.936 0.043 0.047
210 10 30 0.908 > 1.5 0.949 0.035 0.046

214 1 10 4.738 4.812 4.807 0.057 0.046 0.047
214 1 20 4.675 4.869 4.825 0.047 0.044 0.043
214 1 30 4.638 4.876 4.856 0.072 0.059 0.058
214 5 10 1.487 1.526 1.506 0.057 0.012 0.012
214 5 20 1.504 1.639 1.534 0.047 0.021 0.016
214 5 30 1.508 > 1.8 1.543 0.072 0.015
214 10 10 0.845 0.938 0.842 0.013 0.015 0.012
214 10 20 0.901 > 1.2 0.893 0.012 0.014
214 10 30 0.923 > 1.3 0.916 0.015 0.016

Because of the bad results obtained previously with P2(=), we eliminate this
method and we only consider P2(Opt) and P1. In Table 5.2, we analyze the Ameri-
can put on minimum and the American call on maximum in two dimensions. As far as
Φmin is concerned, P2(Opt) outperforms P1 even when we use only 210.Regarding
Φmax, P1 performs better than P2(Opt) for 210 trajectories which indicates that,
because of the big variance produced by Φmax relatively to Φmin, the relation between
N and N ′ is not well estimated. Simulating 214 trajectories, we obtain similar results
for P1 and P2(Opt) for Φmax.

Let us now study the parallel adaptability of MCM for parallel architectures.
In Figure 5.2, we present the speedup of parallelizing4 MCM on the four cores of
the CPU instead of implementing it on only one core. We notice that the speedup
increases quickly according to the number of the simulated trajectories and it reaches

4We use OpenMP directives.

20

Table 5.2

P1 Vs. P2 for Φmin and Φmax: The real values are equal to 8.262 and 21.15 respectively

Simulated The Time Price Std Deviation
Paths Payoff Steps P1 P2(Opt) P1 P2(Opt)
210 Φmin 10 7.734 7.986 0.190 0.248
210 Φmin 20 7.618 7.895 0.257 0.270
210 Φmin 30 7.564 7.920 0.224 0.263
210 Φmax 10 21.03 20.33 0.66 0.86
210 Φmax 20 20.46 19.38 0.61 0.73
210 Φmax 30 19.73 18.13 0.73 0.93

214 Φmin 10 7.755 8.088 0.058 0.067
214 Φmin 20 7.584 8.098 0.098 0.052
214 Φmin 30 7.467 8.087 0.082 0.043
214 Φmax 10 20.96 20.91 0.09 0.24
214 Φmax 20 20.58 20.56 0.16 0.16
214 Φmax 30 20.36 20.05 0.15 0.22

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
2

2.5

3

3.5

4

4.5

Number of Simulated Paths

S
pe

ed
up

Fig. 5.2. The speedup of using all the CPU cores according to the number of trajectories.

a saturation state for > 9000 trajectories. For a large dimensional problem, the
maximum speedup obtained is approximately equal to the number of logical cores on
the CPU which indicates that MCM is very appropriate for parallel architectures. We
point out, however, that our parallelization of MCM is done on the trajectories5, so
the speedup is invariable according to dimensions and time steps.

Regarding GPU implementation, we also use a path parallelization of simulations.
In Figure 5.3, we present the speedup of parallelizing6 MCM on the GPU instead of
implementing it on the four cores of the CPU. The speedup increases quickly not only
according to the number of simulated trajectories, but also according to the dimension
of the contract. The latter fact can be easily explained by the memory hierarchy of the
GPU. The speedups provided in Figure 5.3 prove, once again, the high adaptability
of MCM on parallel architectures.

5which is the most natural procedure of parallelizing Monte Carlo.
6We use CUDA language.

21

16384 32768 65536
0

20

40

60

80

100

120

Number of trajectories

S
pe

ed
up

 =
 T

1
C

P
U

 w
ith

 O
pe

nM
P
 /

T 1
G

P
U

 w
ith

 C
U

D
A

1 asset
5 assets
10 assets

Fig. 5.3. The speedup of using the GPU instead of the CPU cores according to the number of

trajectories.

6. Conclusion. In this article we provided, on the one hand, theoretical results
that deal with the continuation computations using the Malliavin calculus and how one
can reduce the Monte Carlo variance when simulating this continuation. On the other
hand, we presented numerical results related to the accuracy of the prices obtained
and the parallel adaptability of the MCM method on multi-core architectures.

As far as the theoretical results are concerned, based on the Malliavin calculus,
we provided a generalization of the value of the continuation for the multi-dimensional
models with deterministic and non a constant triangular matrix σ(t). Moreover, we
pointed out that one can effectively reduce the variance by a simple conditioning
method. Finally, we presented a less intuitive but very effective variance reduction
method based on an appropriate choice of the number of trajectories used to approx-
imate the quotient of two expectations.

Regarding the numerical part, we proved that the one who looks for instantaneous
simulations can obtain better and sufficiently good prices with MCM than with LS
using only 210 trajectories. Also, unlike LS, our nonparametric variance reduction
implementation of MCM does not require parametric regression. Thus we improve
the results of the simulation by only increasing the number of trajectories. Finally,
increasing the number of trajectories is time consuming but MCM can be effectively
parallelized on multi-core CPUs and GPUs. Indeed, the MCM simulation of 214

trajectories using the GTX 480 GPU can be performed within seconds (< 5s).

Appendix. Proof of Lemma 2.2. The equality (2.4) can be easily proved.
Indeed, using the chain rule

Dk
uf(St) =

n∑

p=k

σpk(u)S
p
t ∂xp

f(St)

Besides, we assumed that ρ(u) = σ−1(u) which completes the proof.

22

Proof of Lemma 2.3. Using duality (1.2) we have

E
(
h(Sk

s)F
∑n

i=k

∫
I ρik(u)dW

i
u

)
= E

(∑n
i=k

∫
I D

i
u

[
h(Sk

s)F
]
ρik(u)du

)

= E
(
h(Sk

s)
∑n

i=k

∫
I D

i
uFρik(u)du

)
+ E

(
F
∑n

i=k

∫
I h

′(Sk
s)σki(u)ρik(u)S

k
s du

)

Moreover, the fact that σ(u) and ρ(u) are two triangular matrices such that ρkk(u) =
1/σkk(u) simplifies the last term which can be also rewritten using the Malliavin
derivative

E

(
F

∫

I

h′(Sk
s)S

k
s du

)
= E

(
F

∫

I

Dk
uh(S

k
s)

σkk(u)
du

)

This provides the required result.

Acknowledgment: We started this work in the ANR GCPMF project, and it is
supported now by CreditNext project. The authors want to thank Professor Damien
Lamberton for his review of our work and Professor Vlad Bally for his valuable advice.

REFERENCES

[1] L. A. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier, “High dimensional pricing of exotic
european contracts on a GPU cluster, and comparison to a CPU cluster,” Parallel and Dis-

tributed Computing in Finance, in IEEE International Parallel & Distributed Processing

Symposium, May 2009.
[2] L. A. Abbas-Turki and B. Lapeyre, “American options pricing on multicore graphic cards,”

IEEE The Second International Conference on Business Intelligence and Financial Engi-

neering, July 2009.
[3] F. A. Longstaff and E. S. Schwartz, “Valuing American options by simulation: A simple least-

squares approach,” The Review of Financial Studies, vol. 14, no. 1, pp. 113–147, 2001.
[4] P. Glasserman, Monte Carlo Methods in Financial Engineering. Applications of Mathematics,

Springer, 2003.
[5] E. Clément, D. Lamberton, and P. Protter, “An analysis of a least squares regression algorithm

for American option pricing,” Finance and Stochastics, vol. 17, pp. 448–471, 2002.
[6] J. Tsitsiklis and B. V. Roy, “Regression methods for pricing complex American-style options,”

IEEE Transactions on Neural Networks, vol. 12, no. 4, pp. 694–703, 2001.
[7] V. Bally, L. Caramellino, and A. Zanette, “Pricing American options by Monte Carlo methods

using a Malliavin calculus approach,” Monte Carlo Methods and Applications, vol. 11,
pp. 97–133, 2005.

[8] V. Bally and G. Pagès, “A quantization algorithm for solving multidimensional discrete-time
optimal stopping problems,” Bernoulli, vol. 9, no. 6, pp. 1003–1049, 2003.

[9] V. Bally, “An elementary introduction to Malliavin calculus,” INRIA Rapport de Recherche,
vol. 4718, 2003.

[10] M. Broadie and J. Detemple, “American option valuation: new bounds, approximations, and
a comparison of existing methods securities using simulation,” The Review of Financial

Studies, vol. 9, pp. 1221–1250, 1996.
[11] “http://www-roc.inria.fr/mathfi/Premia/,”
[12] S. Villeneuve and A. Zanette, “Parabolic ADI methods for pricing American options on two

stocks,” Mathematics of Operations Research, vol. 27, pp. 121–149, 2002.

