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Shear thickening and migration in granular suspensions 
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We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and 
concentration measurements using Magnetic Resonance Imaging with macroscopic rheometry experiments. In steady state, we 
observe that the material is heterogeneous, and we find that that the local rheology presents a continuous transition at low shear rate 
from a viscous to a shear thickening, Bagnoldian, behavior with shear stresses proportional to the shear rate squared, as predicted by a 
scaling analysis. We show that the heterogeneity results from an unexpectedly fast migration of grains, which we attribute to the 
emergence of the Bagnoldian rheology. The migration process is observed to be accompanied by macroscopic transient discontinuous 
shear thickening, which is consequently not an intrinsic property of granular suspensions. 
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The realm of complex fluids encompasses biological 
liquids such as blood, many liquid foodstuffs, building 
materials, glasses and plastics, crude oil, etc. Despite their 
importance, the most basic, quintessential question about 
the flow of these fluids has remained unanswered: it is 
generally impossible to predict their flow resistance, and it 
is even unclear why most fluids shear thin, whereas only 
some shear thicken. Understanding shear thickening, i.e. the 
increase of the apparent viscosity of materials with 
increasing flow rate, is thus an important issue in complex 
fluids with in addition a strong impact on energy 
consumption in industrial processes [1]. It is observed in 
dense colloidal suspensions [1,2], where it has been related 
to the formation of dense clusters of particles [2-4]. The 
viscosity rise with the shear rate is then usually reversible (it 
is a steady-state property), continuous, and is sharper at 
higher volume fractions [2-4]. For colloids, the competition 
between shear-induced cluster formation and Brownian 
motion that homogenizes the suspensions then naturally 
determine a critical shear rate for the onset of shear 
thickening. 

As Brownian motion is absent in pastes made of large 
particles, the sharp shear thickening transition observed in 
for instance cornstarch suspensions [5] is highly surprising. 
In fact, the conditions of emergence of shear thickening in 
non-Brownian suspensions remain ill-characterized: in some 
systems, thickening was observed at low shear rates [1,5-7], 
while in others no shear thickening (only viscous behavior) 
is observed whatsoever, even close to jamming [8-10]. Up 
to now it is thus impossible to predict whether a given 
system will shear thicken or not. 

In systems for which it is observed, a more pronounced 
shear thickening [6,7] is observed near jamming, similarly 
to colloidal suspensions, and is attributed to aggregation of 
hydroclusters into a percolating network [4,11]. However, 
one should question whether these observations of sharp and 
discontinuous shear thickening reflect an intrinsic (local, 
steady-state) property of materials. For example, an 
important effect of confinement on shear thickening was 
recently evidenced in both colloidal [12] and noncolloidal 

[5] suspensions. In channel flows [12], the macroscopic 
shear thickened state was shown to form a plug flow 
and was not observed in large channels, which shows 
that local observations are crucial to get a better insight 
into shear thickening. 

In this Letter, we address these puzzles by studying 
the emergence of shear thickening in the simplest of 
systems: model density-matched suspensions of non-
Brownian particles in water. We use a wide gap Couette 
geometry to avoid confinement effects, and we access 
the intrinsic material behavior by measuring the local 
flow properties and particle concentration using 
Magnetic Resonance Imaging (MRI). In steady state, 
we show that the material is heterogeneous, and that the 
local rheology presents a continuous transition, from a 
viscous to a shear thickening, Bagnoldian, behavior 
(shear stresses proportional to the shear rate squared) at 
any fixed volume fraction, as predicted by a scaling 
analysis. The heterogeneity is shown to result from an 
unexpectedly fast migration of grains during the 
transient, which is attributed to the emergence of the 
Bagnoldian rheology. The migration process is 
accompanied by macroscopic transient discontinuous 
shear thickening, which is thus not an intrinsic property 
of granular suspensions. 

Materials and methods — We study dense 
suspensions of noncolloidal monodisperse spherical 
particles immersed in a Newtonian fluid. We use 
polystyrene beads (diameter 40 μm, polydispersity 
<5%, density 1.05 g.cm-3) suspended in aqueous 
solutions of NaI to match the solvent and particle 
densities; the solution viscosity is 1 mPa.s. The density 
matching ensures that there are no gravity-induced 
contacts [13] and that the only source of normal stresses 
is shear [14,15]. We focus on results obtained at a 59% 
mean volume fraction as experiments at other high 
volume fractions show similar features. The material 
behavior is studied with a wide-gap Couette rheometer 
(inner radius: 4.1 cm; outer radius: 6 cm; height of 
sheared fluid: 11 cm) inserted in a MRI scanner, 
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allowing us to access local velocity and particle volume 
fraction profiles in the flowing sample [9,16,17]. Sandpaper 
is glued to the walls and there is no significant slip on the 
velocity profiles. The inner cylinder velocity is controlled, 
and we record the torque exerted by the material on the 
inner cylinder with a Bohlin rheometer. 

Macroscopic vs. local behavior — We first focus on the 
macroscopic behavior (Fig. 1a). The torque T values 
measured during a slow ramp in rotational velocity Ω 
(logarithmic ramp, 45 s/decade of shear) are shown as black 
circles. At the beginning of the ramp, T increases linearly 
with Ω, as expected for a homogeneous, Newtonian 
suspension [9,10]. Around Ωc≈ 2.5 rpm (corresponding to a 
low average shear rate of 0.6 s-1), T presents a sudden 
increase – by a factor of 20 – which is a usual signature of 
“discontinuous” shear thickening, following which T 
continues to increase with Ω, yet at a slower pace. At the 
end of the ramp, Ω is kept constant and T reaches a 
stationary value. Subsequent slow changes (down or up) of 
the rotational velocity then drive the system reversibly along 
the curve T(Ω) in open symbols, i.e. the system has reached 
steady state. This curve presents very smooth, moderate, 
“continuous” shear thickening. 
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Fig. 1: a) Torque vs. rotational velocity Ω when shearing a 59% 
suspension: increasing velocity ramp (filled circles) and stationary 
state (empty circles); the line is a viscous law. b) Volume fraction 
vs. radius R, for various Ω, during an increasing velocity ramp. c) 
Critical strain needed to complete migration in a 59% suspension 
vs. Ω; the dotted line indicates the 2/γ γ  transition on the 59% 
suspension. The line is a 1/γ  scaling. d) Dimensionless velocity 
vs. R (empty symbols: before migration, filled symbols: various Ω 
after migration, line: Newtonian velocity profile). 
 

We now turn to local measurements. During the initial 
increasing velocity ramp, at a low rotational velocity, 
Ω=2 rpm (<Ωc), the density ( )Rφ  remains uniform 
(Fig. 1b) while the flow (Fig. 1d) is homogeneous– there is 

no jammed region [5]. The velocity profile V(R) closely 
matches that of a Newtonian fluid (Fig. 1d) [9,18], 
consistent with the initial linear behavior of the torque. 
Shortly after shear thickening occurs (here at Ω=9 rpm) 
we observe that the material has become strongly 
heterogeneous (Fig. 1b) while the velocity profiles 
present a jammed region near the outer cylinder. This 
change is irreversible: the density profiles subsequently 
remain similar, even when Ω is increased further and, 
later, decreased below Ωc. 

Clearly, the discontinuous shear thickening observed 
during the initial up-ramp is a transient phenomenon 
associated with a large-scale reorganization of the 
material, which involves shear-induced migration from 
low to high shear zones. While migration is expected in 
dense suspensions [9,19-21], it is particularly striking 
here that the change in φ(R) occurs over a very short 
time interval, corresponding to a small total strain of 
order 100. Such a rapid migration is a puzzle as it is not 
predicted by classical theories [9]. 

Constitutive behavior — We now analyze the steady-
state behavior. We first note that density and velocity 
profiles are in steady state whenever the torque is. 
Moreover, while φ(R) is Ω-independent in steady state, 
the dimensionless velocity profiles V(R,Ω)/V(Ri,Ω) 
measured at various Ω do not superpose, implying that 
the local behavior is not simply viscous [9,18]. Finally, 
the flow is always strictly localized: for all Ω, there is a 
jammed region beyond a critical radius Rm=5.7 cm; this 
corresponds to density threshold φ(R)>φm≈60.5% above 
which the material is jammed [9]. 

The material and flow being heterogeneous, 
macroscopic torque measurements T(Ω) are not 
sufficient to infer the intrinsic constitutive behavior, in 
particular the stress/strain-rate relationship in the shear 
thickening regime. This intrinsic behavior can however 
be obtained using our local measurements. The key 
point [9] is that the steady-state density profile ( )Rφ is 
independent of Ω; a change of variables can then be 
performed between radius R and ( )Rφ . In addition, the 
stress profile is prescribed by momentum balance 

2( ) /(2 )R T HRτ π=  while the local shear rate can be 
extracted from the velocity profile V(R) via: 

( ) d( / ) dR R V R Rγ = . A local stress/strain-rate curve 
( , )τ γ φ  – at fixed and well-defined density φ – is then 

obtained by collecting all measurements of local stress 
( )Rτ  and shear rate ( )Rγ  for a fixed R and varying Ω. 
The results of this local analysis (Fig. 2a) show that, 

for a fixed volume fraction φ, a clear transition from a 
τ γ∝  (Newtonian) to a 2τ γ∝  (Bagnoldian) regime 
occurs at a critical shear rate ( )cγ φ  (Fig. 2b). Such a 
transition has been predicted to be a generic property of 
noncolloidal suspensions on the basis of theoretical 
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dimensional arguments [22,23]. The 2γ  scaling signals a 
regime where particle inertia dominates over viscous forces 
[8,23], leading to a behavior analogous to that of dry 
granular materials (it needs not be associated with collision-
dominated flows as Bagnold suggested [24]). It is 
particularly striking that inertial scaling arises in our dense, 
highly damped, suspension, with particles of size of only 
~10 μm. Moreover, the critical shear rate cγ  (i) is rather 
low (of order 1 s-1), (ii) vanishes almost linearly as the 
volume fraction tends to φc≈60.5%, which (iii) is identical – 
within the experimental accuracy – to the threshold φm at 
which the material jams. 
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Fig. 2: a) Local shear stress vs. local shear rate measured for 
various local volume fractions when varying the inner cylinder 
rotational velocity from 0.1 to 50 rpm (from right to left: φ=56.8%, 
57.6%, 58.1%, 58.5%, 58.8%, 59%, 59.3%, 59.5%, 59.7%, 59.8%, 
60%). The full lines are γ  scaling; the dotted line are 2γ  scaling. 

b) Critical shear rate for the 2/γ γ  transition vs. volume fraction. 
 

Viscous/inertial transition — To understand what controls 
these scaling regimes, following [22,23], we write Newton's 
equations for a set of rigid particles. For the particles' 
centers of mass ri these read: 2 2d d visc

i ij ij
m r t F F= +∑  

where ijF  denote rigid contact forces and visc
iF  

hydrodynamic forces which we suppose linear in terms of 
all the velocities entering into the problem. No other force is 
supposed to be involved. The key of the analysis is to 
remark that rigid forces ijF  do not introduce, by definition, 
any force or length scale [22,23]. Two limiting cases can 
then be identified: “viscous” (V) when viscous forces are 
dominant over grain inertia 0 visc

ij ij
F F= +∑ , and “inertial” 

(I) when grain inertia is dominant 2 2d di ijj
m r t F= ∑ . Both 

expressions verify exact scale invariance by a change of 
time and force units [23], guaranteeing ijF γ∝  in (V) and 

2
ijF γ∝  in (I), with identical scaling with γ  for all 

components of the stress tensor as rigorously shown in [23]. 
The full problem then reduces to (V) (resp. (I)) at low (resp. 
high) γ , which explains the existence of a crossover 
between the two simple scaling regimes τ γ∝  (viscous) 
and 2τ γ∝  (inertial). 

This formalism now helps us understand why the 
critical shear rate ( )cγ φ  can be so low and vanishes 
precisely at φm. In the viscous (V) and inertial (I) 
regimes, the stresses are respectively of the form 

( )o Vτ η γ φ= Σ  and 2 2 ( )Idτ ρ γ φ= Σ . Numerical 
simulations [25] indicate that ( )V φΣ  and ( )I φΣ  should 
diverge at the same (jamming) packing fraction φm and 
read ( ) ( ) V

V m
αφ φ φ −Σ ∝ − , ( ) ( ) I

I m
αφ φ φ −Σ ∝ − , 

where ρ  and d  are the particle density and diameter, 
and oη  is the interstitial fluid viscosity. The cross-over 
between the viscous and inertial regimes is found by 
equating the two expressions for the stress, finally 
leading to 2

0( ) ( / ) ( ) I V
c md α αγ φ η ρ φ φ −∝ − . Together 

with the values 2Iα = , 1Vα =  proposed in the 
literature [26,27], this equation explains, as observed, 
that ( )cγ φ  vanishes (i) linearly with φ, (ii) at the 
jamming packing fraction φm. Moreover, the crossover 
stress verifies 22 2

0( ) ( / ) ( ) I V
c md α ατ φ η ρ φ φ −∝ − , 

which, together with the same values of ,I Vα α  as 

above, suggests that cτ  should indeed be independent 
of volume fraction. Although our stress measurements 
are not sufficiently accurate to assert that ( ) cstcτ φ ∼ , 
we then note in Fig. 2a that, indeed, in the experiments 

cτ  does not vary much. We finally conclude that it is 
the difference in singular behavior of the inertial and 
viscous stresses 2 2 ( )Idρ γ φΣ  and 0 ( )Vη γ φΣ  at the 
approach of jamming (i.e. when mφ φ→ ) which leads 
to the linear vanishing of ( )cγ φ , and hence permits this 
transition to take place at low strain rates. 

Accelerated shear-induced migration — We now 
show that this transition explains the sudden migration 
associated with the macroscopically observed transient 
discontinuous shear thickening (Fig. 1a). In viscous 
suspensions, shear-induced migration is usually thought 
to be negligible when small particles are involved. 
Indeed, the typical strainscale for migration is very 
large: it is expected to be rate independent and to scale 
as 2 2( )o iR R a∝ −  [9,19-21], leading to an expected 
strain of order 50000 [9], more than 500 times higher 
than what we observe here at the onset of shear 
thickening. Our observations may be understood as a 
strong enhancement of migration kinetics in the inertial 
regime. 

Within the framework of two-phase models, 
migration is driven by gradients of internal normal 
stresses within the particle network p

iiΣ  (not the total 
stress), and requires the fluid to filter through the 
granular phase to compensate for the local changes of 
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packing fraction [20,21]. This filtration process exerts an 
average hydrodynamic drag U∝  on the particle network, 
with U  the average filtration velocity. The balance between 
these two effects controls the migration/filtration rate, 
leading to p

iiU ∝∇Σ . When injected in a mass conservation 
equation ( )t Uρ ρ∂ ∂ = −∇ , this leads to a diffusion 
equation for the particle density ρ  [20,21]. The local 
particulate stress p

iiΣ  entering this analysis is expected to 
display local viscous or inertial scaling over very short 
strainscales [22,25,26] compared to those of the migration 
process. If p

ii γΣ ∝  in the whole system, the timescale of 
migration scales as 1/γ  and migration is controlled by a 
(large) rate-independent strainscale, which is the classical 
result [19-21]. Strikingly, the same analysis performed in 
the inertial regime now yields an unexpected 1/γ  
strainscale for migration: this explains why migration is 
much accelerated, and manifests itself abruptly when 
entering the inertial regime. 

To confirm this analysis, we have studied the migration 
kinetics at constant Ω ’s, starting each time from a 
homogeneous state. We define the critical strain migr ( )Γ Ω  
as the macroscopic strain above which the instantaneous 
volume fraction profile matches the steady state one within 
experimental uncertainty (0.2 %). Fig. 1c shows migr ( )Γ Ω  
vs. Ω : it decreases strongly with Ω . Although the exact 
kinetics results from a complex history (as both γ  and φ  
change locally in time), the asymptotic 1/γ  decay 
predicted by the above scaling analysis in the Bagnoldian 
regime is roughly consistent with our observations (see line 
in Fig. 1c). Migration theories based on normal stresses 
[20,21] are thus shown here to be more generally applicable 
than diffusive theories [19]. 

Macroscopic shear thickening — To summarize, we 
propose the following scenario: (i) the intrinsic behavior of 
dense noncolloidal suspension presents a continuous 
transition at low strain rates from a viscous to a shear 
thickening, Bagnoldian, rheology characterized by shear 
stresses 2γ∝ ; (ii) in the Bagnoldian regime, a very fast 
particle migration then occurs towards low shear zones; (iii) 
the interplay between flow and migration shows up as a 
sharp shear thickening of the transient macroscopic stress. 

Note that we checked the robustness of the above scenario 
by verifying that it is not specific to wide gap Couette 
geometry. We have studied the behavior of the same 
material in a parallel plate geometry and have observed 
similar phenomenology, i.e. transient discontinuous shear 
thickening associated with fast migration due to the 2γ∝  
scaling of stresses. 

We here contrast our findings with those of Brown and 
Jaeger [7] in a similar system (spheres in a Newtonian 
fluid). On the basis of steady-state macroscopic 

measurements, they find a transition between a roughly 
viscous and a shear thickening regime 1/ nτ γ∝  with n 
continuously decreasing for 0.5 to 0 when mφ φ→ . 
Here, we find instead that the local (intrinsic) rheology 
shows only viscous or Bagnoldian scalings (i.e. n=0.5) 
even when mφ φ→ . We insist that in steady state such 
systems are heterogeneous, and that consequently the 
macroscopic stress/strain-rate relationship cannot be 
directly related to the local constitutive behavior, in 
particular in the shear thickening regime. 

Let us finally note that our mechanism may also be at 
work in Brownian suspensions, in competition with or 
as an alternative to hydrodynamic clustering [2]. It is 
compatible with the reversibility of the shear thickening 
transition usually observed in Brownian suspensions: 
migration is indeed expected to be reversible due to the 
osmotic pressure. It is therefore particularly striking 
that our mechanism leads to a constant critical shear 
stress, exactly what is observed for colloids [2]. 

We thank Daniel Lhuillier for enlightening 
discussions on shear-induced migration. 
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