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Abstract. We present a new approach to 3D scene modeling

based on geometrical constraints. Contrary to most of the exist-
ing methods, we obtain 3D scene models that respect the given
constraints ezactly. Our tool can describe a large variety of linear
and non-linear constraints in a flexible way.
Our approach is based on a dictionary of so-called r-methods,
based on theorems in geometry, which can solve a subset of ge-
ometrical constraints in a very efficient way. Two fast and com-
plete graph-based algorithms are proposed to find a reduced pa-
rameterization of a scene, and to decompose the equation system
in a sequence of r-methods.

1 Introduction

Reconstruction of accurate and photorealistic 3D models is one of the most
challenging tasks in Computer Vision. In this paper, we address the problem
of image-based reconstruction of a scene respecting a set of geometrical con-
straints. Defining geometrical constraints between scene primitives and incor-
porating them into the reconstruction system helps to stabilize the calibration,
improves the quality of the model and limits the number of required images.

A common approach consists in incorporating the constraints into the op-
timization process. These methods however are often costly. Furthermore, they
guarantee neither the convergence nor the (exact) constraint satisfaction.

Our model acquisition approach is detailed in [7]. It is divided into three
main phases: initialization, constraint planning and optimization.

Initialization. In addition to 2D images, geometric objects and constraints
must be defined. The 3D model is represented by points, lines and planes. They
are subject to linear and non-linear constraints such as distance, incidence,
parallelism and orthogonality.

An initial reconstruction is provided by a quasi-linear approach exploiting
projections and geometrical constraints [6]. After this phase, all the variables
(camera and model parameters) have an initial value.



Constraint planning. Our model reconstruction system requires a set of r-
methods which allows us to decompose the whole equation system into small
subsystems. An r-method [5] is a predefined routine used to solve a subset of
geometric constraints. An r-method computes the coordinates of output objects
based on the current value of input object coordinates, and satisfies the under-
lying constraints between input and output objects. For example, an r-method
computes the parameters of a line based on the current position of two points
incident to this line.

Several r-method patterns have been incorporated in a dictionary used by
our system. They correspond to standard theorems of geometry. The constraint
planning is divided into two steps:

1. R-method addition phase: Add automatically in the equation graph all the
r-methods corresponding to r-method patterns present in the dictionary.

2. Planning phase: Perform GPDOF [5]' on the enriched equation graph. GPDOF
produces a set of input parameters and a sequence of r-methods (called
plan) to be executed one by one. Input parameters are a subset of the vari-
ables describing the scene such that, when a value is given to them, there
exists a finite set of solutions for the system satisfying the constraints.

Model optimization. The optimization process® only adjusts the input pa-
rameters. Every time the cost function is computed (inside the numerical algo-
rithm), the r-methods in the plan are executed, producing a new value for the
other variables such that all the constraints are satisfied. The detailed process
can be found in [7].

Contribution

Many works have focused on incorporating geometrical constraints for camera
calibration and 3D reconstruction including [3, 2]. The reader will refer to [7] for
more details on the existing approaches which often require costly computations
or do not guarantee to provide a solution. The approach presented in this paper
overcomes these drawbacks. It is complete, fast and can be used to model non-
linear constraints like distances, angles and distance/angle ratios.

This paper focus on the constraint planning process (Section 2) and shows
experimental results in Section 3.

2 Constraint Planning

This section details the algorithms necessary for the constraint planning.
2.1 Automatic addition of r-methods

The automatic addition of r-methods is essentially based on a simple subgraph
isomorphism algorithm performed on the constraint graph. When a subgraph
matches an entry in the dictionary, the corresponding r-methods are added to
the equation graph. Two steps are performed:

! GPDOF stands for General Propagation of Degrees of Freedom.
% based on a standard numerical algorithm and minimizing the reprojection errors



Fig. 1. Left: A didactic 2D scene describing a parallelogram in terms of lines, points,
incidence constraints and parallelism constraints. Center: The corresponding con-
straint graph. It contains 4 points P,,...,Py, 4 lines Lq,...,Lq, 8 incidence constraints
Chi,...,Cs and 2 parallelism constraints P;, P». Right: The enriched equation graph
after automatic addition of r-methods. Equations are represented by rectangles and
variables by circles. An r-method is represented by a hyper-arc including equations
and output variables. Only 8 of the 16 r-methods are depicted for the sake of clarity.
These r-methods match one of the three following patterns: line incident to two points
(e.g., r-methods my and mr); point at the intersection of two known lines (ma, may,
me, mg); line passing through a known point and parallel to another line (ms, ms).

-1- The first step explores all the connected subgraphs with size at most a small
value k equal to the maximum number of nodes (objects+constraints) implied
in any r-method of the dictionary, e.g., 7 in our tool. Starting from every single
node, the subgraphs are built by incrementally adding a neighbor node to the
current connected subgraph until the size k is reached. This depth first search
algorithm is a simplification of the algorithmic scheme presented in [1]. The
key idea allowing the algorithm to explore a tree of subgraphs is to consider at
each step only a specific subset of selected neighbors, depending on a unique
numbering of the nodes [1].

In practice, the time complexity of this algorithm is linear in the actual num-

ber of connected subgraphs of size less than k (which is O(n*)). It is acceptable
for small values of k and sparse graphs.
-2- For every found subgraph, a second procedure compares it with the subgraph
patterns in our dictionary implemented as a hash table, which eliminates most of
the subgraphs. A final comparison is made by a combinatorial process ® inspired
by the solving process of CSPs (BT). In short, objects in the subgraph are
reordered to be matched with objects in a subgraph pattern. If the subgraph
matches, the corresponding r-methods are added to the equation graph.

2.2 The GPDOF algorithm

GPDOF [5] works on an enriched equation graph. It computes a sequence of r-
methods to be executed for satisfying all the equations. GPDOF solves this combi-
natorial problem in polynomial-time and is quasi-linear in practice. It performs
the three following steps until no more equation remains in the equation graph
G (success) or no more free r-method is available (failure)?:

3 Deciding whether two graphs are isomorphic is still an open problem.

4 In this case, one obtains an incomplete plan which solves only a subpart of the
equations (geometric constraints) and more parameters are adjusted by optimization.



1. select a free r-method m 2,
2. remove from G the equations and the output variables of m,
3. create all the submethods of a r-method m; that share equations or output

variables with m.

A plan can be obtained by reversing the selection order: the first selected r-
method will be executed last. The first two steps above define the standard PDOF
local propagation algorithm [4] on which GPDOF is based (PDOF accepts only r-
methods solving one equation.) Selecting iteratively free r-methods ensures that
no loop is created in the plan.

It turns out that, when r-methods can solve several equations, there is no
guarantee that PDOF finds a plan, even if one exists. This highlights the notion of
submethod which renders GPDOF complete. In short, the notion of submethod ex-
plains that a partially removed r-method remains available for a future selection.
The reader will refer to [5] to get a more detailed information.

Fig. 2. Two possible planning phases performed by GPDOF on the didactic scene.
Left: At the beginning, r-methods ma, ma4, me, mg are free, so that one of them is
selected, e.g., ma. (a) This selection implies the removal of the equations and the
output variables of m4 from the equation graph. (b) This frees r-methods ms and
ms which are selected and removed next in any order. (c¢) The r-methods m; and mr
are then free and can be selected. The process ends since no more constraint remains
in the equation graph. The obtained plan is the sequence (mi, mr, ms, ms, ma).
Right: GPDOF may also select first mg which is free. The third step of GPDOF then
creates the submethod m§ of ms and the submethod m? of m7. The process continues
and selects ma, m§, m1, mh, ms, and finally m?. Selected r-methods (m1, ma, me) and
submethods (m}, mj, ms, m7) are represented by thick hyper-arcs.

2.3 Determining the input parameters

The input parameters modified by the numerical optimization simply consist of
the variables which are output by no r-method in the plan. This yields the 6
coordinates of points P,, Py, P; for the plan illustrated in Fig. 2-left- or the
2 coordinates of point P, for the plan illustrated in Fig. 2-right-. Due to the
selection of submethods, the values of variables in a second set of parameters are

5 Qutput variables of a free r-method appear in no “external” equations.



read a first time (recall that every variable has an initial value) and computed
later by r-methods, e.g., the coordinates of P, are in this set (Fig. 2-right-). The
other variables are only modified by r-method execution. This subtlety cannot
be explained here due to a lack of space.

3 Results

We have used our approach to build a model of a church (see Figure 3). Five
images architectural plans (distances) were used. The scene includes 137 con-
straints (including 10 distances), 251 equations, 119 objects, 427 variables. The
time for the constraint planning (2 min. on a Pentium IV 2GHz) is dominated
by the exploration of the connected subgraphs. 2213 r-methods have been added
automatically. The execution time of GPDOF is negligible. The plan was built of
107 r-methods and is executed in 55 ms.

(c)

Fig. 3. (a)-One of the five photos used for the reconstruction; (b)-Some artifacts of
the unconstrained model. (c)-The constrained model after optimization corrects the
artifacts.
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