UNIVERSITY OF ILLINOIS LIBRARY
 AT URBANA CHAMARY BOOKSTARMS

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

ON A CERTAIN PENALTY METHOD IN OPTIMAL CONTROL AND DIFFERENTIAL GAMES
 Ronald J. Stern

College of Commerce and Business Administration University of lllinois af Urbana-Champaign

FACULTY WORKING PAPERS

College of Commerce and Business Administration University of Illinois at Urbana-Champaign November 21, 1972

ON A CERTAIN PENALTY METHOD IN OPTIMAL CONTROL AND DIPFERENTIAL GAMES

Ronald J. Stern
\#74

To be presented at the International Management Science Conference, Tel-Aviv, Israel, June, 1973

$$
\because: \therefore: \cdot \because
$$

$$
: \therefore: \therefore!\cdot:
$$

$\therefore i$
 $\because \vdots: \because \because$, !'..! : …........

ON A CERTAIN PENALTY METHOD IN OPTIMAL CONTROL AND DIFFERENTLAL GAMES
by

Ronald J. Stern*

Abstract

The penalty technique introduced in [6] is applied to linearquadratic optimal control probleme, N-Person non-2ero sum differential games, efficient point problems in linear control problems with multiple quadratic criteria, and to bicriterion optimal control problems. In all these cases the reason for applying the technique is to overcome the computational difficulty introduced by the imposition of a pointwise magnitude restraint on the feasible controls. Additional details are available in [6] - [9].

[^0]
CONTROL AND DIFFERENTIAL GAMES

1. Introduction. In recent works a new penslty technique has been employed to derive procedures for computing optimal open loop controls for two person zero sum linear-quadratic differential gsmes [6] and N person non-zero sum linear-quadratic differential gsmes [7]. The method also has been applied to compute open loop solutions to bicriterion control problems and efficient points for multicriteria problems in control [8], [9]. "Open loop" solutions, it will be recalled, are solutions which are not of the feedback type; that is, they are functions of time only. In each of the problems mentioned above, the penalty method is employed to overcome computational difficulties which arise from the imposition of a pointwise magnitude restraint on the feasible controls.

In section 2 we give a detailed exposition of the technique, for the case of a general linear-quadratic optimal control problem with pointwise magnitude restraints. In subsequent sections we outline the application of the technique to the various problems mentioned in the preceeding paragraph, by referring to section 2 .
2. Application to Linear-Quadratic Optimal Control. Consider the following linear system of differential equations in \mathbf{R}^{m} :

$$
\text { (2.1) } \dot{x}=A(t) x+B(t) u \quad(t o \leqq t \leqq T 0)
$$

with initial condition

$$
\text { (2.2) } x(\text { to })=x_{0}
$$

Here $A(t)$ and $B(t)$ are continuous (mxm) and (mxs) matrices on the compact time interval [to, To]. Feasible controls $u=u(t)$ are Lebesque-
measurable R^{s}-valued functions which almost everywhere on $\left[t_{0}, T_{0}\right.$] take values in U, the closed unit ball with center 0 in R^{8}. We should denote this class of feasible controls by U.

For each $u \in U$ a unique solution to (2.1) - (2.2) is determined by

$$
\text { (2.3) } x(t)=S\left(T_{0}, t\right) x_{0}+\int_{t_{0}}^{t} S(t, s) B(s) u(s) d s
$$

where S is the fundamental solution of $\dot{x}=A(t) x$ (see e.g., [1].
We now introduce an objective function of quadratic type:

$$
\begin{aligned}
& \text { (2.3) } J(u)=\left\langle x\left(T_{0}\right)-\left\{, W\left[x\left(T_{0}\right)-\xi\right]\right\rangle\right. \\
& \quad+\int_{t_{0}}^{T_{0}}\langle\tilde{x}(t)-c(t) x(t), Q(t)[\tilde{x}(t)-C(t) x(t)]\rangle d t-\int_{t_{0}}^{T_{0}}\langle u(t), u(t)\rangle d t
\end{aligned}
$$

Here $\left\{\right.$ is a fixed vector in R^{m}, W is a constant symmetric (mxm) matrix, $\tilde{x}(t)$ is a continuous R^{m} - valued junction on $\left[t_{0}, T_{0}\right], C(t)$ is a continuous (mxm) matrix, and $Q(t)$ is a continuous symmetric (mxm) matrix on $\left[t_{0}, T_{0}\right]$. $x(t)$ denotes the solution of (2.1) - (2.2) corresponding to U.

The following lemma is required. The proof, which is omitted, is of a computational nature and makes use of bounds of the various parameters in (2.1) - (2.3).

Lemma 2.1. There exists $\mathbb{N}>0$ such that $T_{0}-t_{0} \leqq N$ implies the following:
(i) $J(u)$ is a strictly concave functional on $L^{2, s}\left(t_{0}, T_{0}\right)$, the space of measurable functions u satisfying To
$\int|u(t)|^{2} d t<\infty$, where $\|$ is the Euclidean norm. t。
(ii) $J(u)$ is bounded above over $L^{2, s}\left(t_{0}, T_{0}\right)$.

Now we introduce the following pair of problems :

$$
\begin{array}{ll}
\frac{P_{1}}{} & \text { maximize } J(u) \\
P_{2} & \text { subject to } u \in L{ }^{2}, s_{\left(t_{0}, T_{0}\right)}^{\text {maximize }} J(u) \\
& \text { subject to } u \in U .
\end{array}
$$

In view of Lemma 2.1, the condition
(2.4) $\left.\frac{d}{d \varepsilon} J(\bar{u}+\varepsilon v)\right|_{\epsilon=0}=0 \quad$ for all $v \varepsilon L^{2, s}\left(t_{0}, T_{0}\right)$
is sufficient for \bar{u} to be the (unique) solution of P_{1}. (2.4) gives rise to the following integral equation:
(2.5) $\bar{u}(s)=B^{*}(s) S^{*}\left(T_{0}, s\right) W\left[\bar{x}\left(T_{0}\right)-\{]\right.$

$$
+\int_{S}^{T} B^{*}(s) S^{*}(t, s) C^{*}(t) Q(t)[\tilde{x}(t)-\bar{x}(t)] d t
$$

Here $\bar{x}(t)$ is expressed by (2.3) in terms of $\bar{u}(t)$. We write (2.5) as follows:
(2.6) $\bar{u}=A \bar{u}$
where $A: C^{0, S}\left[t_{0}, T_{0}\right] \rightarrow C^{0, S}\left[t_{0}, T{ }_{0}\right]$ (Here we denote by $C^{0, s}\left[t_{0}, T_{0}\right]$ the space of continuous R^{s}-valued functions on $\left[t_{0}, T_{0}\right]$). It is easily shoen (see e.g.[2] that if $T_{0}-t_{0}$ is sufficiently small then A is a contraction. We therefore have

Theorem 2.1 There exists $\overline{\mathrm{N}}>0$ such that $\mathrm{T}_{0}-\mathrm{t}_{\mathrm{o}}<\overline{\mathrm{N}}$ implies P_{1} has a unique solution.

This solution can be identified as the uniform limit of a sequence of successive approximations using (2.5). The case for problem P_{2} is not as straightforward we now turn our attention ot it. To this end, we first introduce a new payoff functional.

$$
(2.7) \cdot J^{k}(u)=J(u)-\int_{t_{0}}^{T}|u(t)|^{2 k} d t
$$

where k is a positive integer. The general penalty method discussed in this paper uses the (computable) optimal payoffs of an unconstrained problem with (2.7) as payoff in order to approximate the optimal payoff of P_{2}, as $k \rightarrow \infty$. We shall denote by P_{k} the control problem with payoff given by (2.7) and with the only requirement for the feasibility of u being membership in $\mathrm{L}^{2 \mathrm{k}, \mathrm{s}}\left(\mathrm{t}_{0}, \mathrm{~T}_{0}\right)$.

We defer the proof of the following theorem until later in this section.

Theorem 2.2. There exists $\overline{\bar{N}}>0$ such that $T_{0}-t_{0} \leqq \overline{\bar{N}}$ implies P_{k} has a unique solution.

We now define the following map of R^{2} into R.

$$
\varphi^{k}(v)= \begin{cases}0 & \text { if }|v| \leqq k^{-1 / 2 k} \\ |v|^{2 k} & \text { otherwise }\end{cases}
$$

We also define the following payoff functional:
(2.8)

$$
J^{\varphi^{k}}(u)=J(u)-\int_{t_{0}}^{T_{0}} \varphi^{k}(u(t)) d t
$$

Note that

$$
\begin{equation*}
\left|J^{k}(u)-J^{\varphi^{k}}(u)\right| \leqq \frac{T_{0}^{-t_{0}}}{k} \tag{2.9}
\end{equation*}
$$

for any $u \in L^{2 k, s}\left(t_{0}, T_{o}\right)$.

Let us denote the solution of P_{k} by u^{k}. Proof of the following result is of a computational nature (using Hölder's inequality) and will be omitted.

Lemma 2.2. $T_{0}-t_{0} \leq \overline{\bar{N}}$ implies that there is a real $Q>0$ such that

$$
\sup _{k} \int_{t_{0}}^{T}\left|u^{k}(t)\right|^{2 k} d t \leqq Q
$$

Let U^{k} be the set of vectors in R^{s} with Euclidean length $\leqq 1-k^{1 / 2 k}$ and let $\rho_{k}(\cdot)$ denote the Euclidean distance in R^{s} from U^{k}. Lemma 2.2 implies
(2.10)

$$
\int_{t_{0}}^{T} \rho_{k}^{2}\left(U^{k}(t)\right) d t \leqq \frac{Q}{k}
$$

from Theorem 2.2 and (2.9) we have, for any $u \in L^{2 k} s\left(t_{0}, T_{0}\right)$, the following:
(2.11) $J(u) \geqq J^{\varphi^{k}}\left(u^{k}\right)-\frac{T_{0}-t_{0}}{k}$
for each positive integer k.
Now let $\overline{\mathrm{P}}_{\mathrm{k}}$ denote the problem with objective function $J(u)$, but where admissible controls are those Lebesgue measurable functions which almost everywhere on $\left[t_{0}, T_{o}\right]$ are valued in U^{k}.

We now prove the following lemma:

Lemma 2.3. Let $T_{0}{ }^{-t}{ }_{0} \leqq \overline{\bar{N}}$. Then there exists a real $D>0$ such that the following is true: for each positive integer k there is a control \hat{u}^{k} such that:
(2.12) $J\left(\hat{u}^{k}\right) \geqq J(u)-D\left(k^{-1 / 2}+1-k^{-1 / 2 k}\right) \frac{T_{o}-t_{o}}{k}$
for any control u feasible for P_{k}.

Proof. Let v be any vector in R^{s}. Let

$$
\hat{v}=\left\{\begin{array}{lll}
v & \text { if } & v \in U^{k} \\
k^{-1 / 2 k} \frac{v}{T v \mid} & \text { otherwise }
\end{array}\right.
$$

By a simple argument we have that $\hat{u}(t)$ is Lebesque measurable for any Lebesque measurable control $u(t)$.

A routine calculation (additional details are to be found in [6]) yields (2.12). (2.10) and (2.11) are utilized here.

We now have the following:
Theorem 2.3. If $T_{0}-t_{0} \leqq \overline{\bar{N}}$ then $J\left(u^{k}\right) \longrightarrow \sup J(u)$
$u \in$

The proof is found (subject to minor changes) in [7]. The weak topology is employed in the argument, which is similar in spirit to a result in [5], P. 209.

We turn now to the proof of Theorem 2.2.

Proof of Theorem 2.2. By arguments similar to those in the proof of Lemma 2.1 we have negativity of the second Gateoux differential of $J^{k}(u)$ if $T_{0}{ }^{-t}{ }_{0}$ is sufficiently small. (See e.g., [2] for proof). The condition of stationarity (i.e., $J^{k}(u)$ have zero first Gateaux derivative) is then both a necessary and sufficient condition for optimality. The condition is given by the following integral equation (see [2] for similar equations):
(2.13)

$$
\begin{aligned}
& u(s)+2 k|u(s)|^{2 k-2} u(s) \\
= & B^{*}(s) S^{*}\left(T_{0}, s\right) W\left[x\left(T_{0}\right)-\{]\right. \\
+ & \int_{t}^{S} B^{*}(s) S^{*}(t, s) C^{*}(t) Q(t)[\tilde{x}(t)-x(t)] d t .
\end{aligned}
$$

(2.13) is next rewritten as follows:

$$
(2.14) \quad M^{k}(u(s))=T^{k}\left[M^{k}(u(s))\right]
$$

Here $M^{k}: R^{s} \longrightarrow R^{s}$ is given by

$$
M^{k}(v)=2 v+2 k|v|^{2 k-2} v .
$$

M^{k} has an inverse given by

$$
M^{-1}(w)=\frac{w}{2+2 k\left[r_{k}(|w|)\right]^{2 k-2}}
$$

where $r_{k}(|w|)$ is the unique real proof of the polynomial $2 k x^{2 k-1}+2 x-$ $|w|$. Note that the expressability of (2.13) in the form (2.14) is dependent upon the invertibility of M^{k}.

Each T^{k} is a contraction when $\mathrm{T}_{0}{ }^{-t}$ o is small enough, say $\overline{\tilde{\mathrm{N}}}$; this by Theorem 4.2 in [6]. This completes the proof of the theorem.
(2.13) can be solved computationally. A procedure is given in section 5 of [6]. This procedure circumvents the problem that r_{k} has no explicit form when $k>2$.
3. Application to Differential Games. The outline presented in this section summarizes results of both references [6] and [7].

The governing dynamics are given by the following system in R^{m} :
(3.1) $\quad \dot{x}=A(t) x+\sum_{i=1}^{N} B_{i}(t) u_{i} \quad\left(t \leqq t \leqq T_{o}\right)$
with initial condition
(3.2) $x\left(t_{0}\right)=x_{0}$.

We define N cost functionals of quadratic type:
(3.3)

$$
J_{i}\left(u_{1}, u_{2}, \ldots, u_{N}\right)=\left\langle x\left(T_{0}\right)-\left\{{ }_{i}, W_{i}\left[x\left(T_{0}\right)-\left\{_{i}\right]\right\rangle\right.\right.
$$

$$
\begin{aligned}
& +\int_{t_{0}}^{T}\left\langle\tilde{x}_{i}(t)-c_{i}(t) x(t), Q_{i}(t)\left[\tilde{x}_{i}(t)-c_{i}(t) x(t)\right]\right\rangle d t \\
& +\int_{t_{0}}^{T}\left\langle u_{i}(t), u_{i}(t)\right\rangle d t, \quad i=1,2, \ldots, N
\end{aligned}
$$

Assumptions on the parameters of (3.1) ~ (3.3) parallel those made in section 2. Admissible controls u_{i} for the ith player are Lebesque measurable functions which almost everywhere take values in the unit ball of R^{i}.

For the above game, denoted G, we seek an open loop Nash equilibrium; that is, a vector of feasible controls $\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{N}\right)$ such that
(3.4) $J_{i}\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{N}\right) \geqslant J_{i}\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{i-1}, u_{i}, \bar{u}_{i+1}, \ldots \bar{u}_{N}\right)$ for any admissible $u_{i}, \quad i=1,2, \ldots, N$.

An approximating game, denoled G_{k}, is introduced, for k a positive integer. The payoff functionals for this differential game are
(3.5) $J_{i}^{k}\left(u_{1}, u_{2}, \ldots, u_{N}\right)=J_{i}^{k}\left(u_{1}, u_{2}, \ldots, u_{N}\right)-\int_{t_{0}}^{T_{o}}\left|u_{i}(t)\right|^{2 k} d t$ for $i=1,2, \ldots$ N.

An analog of Theorem 2.2, the proof of which may be found in [7], is the following:

Theorem 3.1. If $T_{0}-t_{0}$ is sufficiently small then G^{k} has a unique open loop Nash equilibrium.

An analog of Lemma 2.3 is now given:
Lemma 3.1. If $\mathrm{T}_{0}-{ }_{0}$ is sufficiently small then there exists a constant $D>0$ such that the following is true: For each positive integer k there is a vector of controls $\left(\hat{\mathrm{u}}_{1}^{k}, \hat{\mathrm{u}}_{2}^{k}, \ldots, \hat{u}_{N}^{k}\right)$ feasible for G_{k} such that
(3.6) $J_{i}\left(\hat{u}_{1}^{k}, \hat{u}_{2}^{k}, \ldots, \hat{u}_{N}^{k}\right) \geqq J_{i}\left(\hat{u}_{1}^{k}, \hat{u}_{2}^{k}, \ldots, \hat{u}_{i-1}^{k}, u_{i}, \hat{u}_{i+1}^{k}, \ldots, \hat{u}_{N}\right)$ $-D\left(k^{-1 / 2}+1-k^{-1 / 2 k}\right)-\frac{T_{0}-t_{0}}{k}$ where \bar{G}_{k} is the game with the same payoffs as G but where feasible controls u_{i} are Lebesque measurable and are valued almost everywhere in the ball of radius $k^{-1 / 2 k}$ in R^{i}.

By properties of the weak topology it is shown in [7] that G has an open loop Nash equilibrium which can be represented as the weak limit of a subsequence of $\left(\hat{u}_{1}^{k}, \hat{u}_{2}^{k}, \ldots, \hat{u}_{N}^{k}\right)$. It is shown there that the equilibrium costs of G are computable by the method of [6], section 5 .

4. Application to Multicriteria Control

$$
\text { (4.1) } \dot{x}=A(t)+B(t) u \quad\left(t_{0} \leq t \leq T_{0}\right)
$$

with initial condition
(4.2) $x\left(t_{0}\right)=x_{0}$
and n criterion functions

$$
\begin{aligned}
& \text { (4.3) } \quad \xi_{i}(u)=\left\langle x\left(T_{0}\right)-\xi_{i}, W_{i}\left[x\left(T_{0}\right)-\xi_{i}\right]\right\rangle \\
& +\int_{t_{0}}^{T_{0}}<\tilde{x}_{i}(t)-C_{i}(t) x(t), Q_{i}(t)\left[\tilde{x}(t)-C_{i}(t) x(t)\right]>d t \\
& -\int_{t_{0}}^{T_{0}}<u(t), u(t)>d t,(1 \leq i \leq n),
\end{aligned}
$$

where assumptions on (4.1) - (4.3) parallel those made in section 1. An efficient point u° over a class of controls C is a control $u^{\circ} E$ such that for no other $u \in C$

$$
E_{i}(u) \geq f_{i}\left(u^{0}\right) \quad 1 \leq i \leq n
$$

with at least one strict inequality.
The class of controls P in the above definition will be taken here as one of the following two classes.
$L^{2, s}\left(t_{0} T_{0}\right)$ - the space of controls u with $\int_{t_{0}}^{T_{0}}|u(t)|^{2} d t<\infty$, where | | denotes the Euclidean norm.
U - the class of measurable controls with $|u(t)| \leq 1$ a.e. on $\left[t_{0}, T_{0}\right]$.

The following two efficient point problems will be studied here:
E_{1} Find all efficient points over $L^{2, s}\left(\tau_{0}, T_{0}\right)$.
E_{2} Find all efficient points over \mathcal{L}.
For the bicriterion case $n=2$ we study two other optimal control problems
M_{1} Maximize min $\left\{f_{1}(u), f_{2}(u)\right\}$ subject to $u \in L^{2}, s\left(t_{0}, T_{0}\right)$
M_{2} Maximize $h\left[f_{1}(u), f_{2}(u)\right]$ subject to $u \in \mathscr{L}$,
where $h: \quad R^{2} \rightarrow R$ is continuous and non-decreasing in each of its arguments on the nonmegative orthant R_{+}^{2}, and quasiconcave over the interior of R_{+}^{2}. We further assume that

$$
|u(t)| \leq 1 \text { a.e. on }\left[t_{0}, T_{0}\right] \Rightarrow f_{i}(u) \geqslant 0, i=1,2 \text {, which is guaranteed, }
$$

for example, if W_{i} are positive definite and $\left|x_{o}\right|$ is sufficiently large.
We observe that the objective function of M_{1} is a special case
of the objective frimoion $h(x, y)$ of M_{2}. Other examples are

$$
h(x, y)=x^{\beta} y ; \quad \beta>0
$$

or

$$
h(x, y)=c_{1} x^{\beta} 1,+c_{2} y^{\beta} 2 ; c_{1}, c_{2}, \beta_{1}, \beta_{2}>0 .
$$

(For other examples see e.g., 「37 p. 40).
In what follows let the vector

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \text { satisfy } \\
& (4.4) \sum_{i=1}^{n} \alpha_{i}=I \text { and } \alpha_{i} \geq 0 \quad I \leq i \leq n .
\end{aligned}
$$

For each such α we define the following single criterion analog of E_{1} :
P_{1}^{α} Maximize $\sum_{i=1}^{n} \alpha_{i} f_{i}(u) \underline{\text { subject to }} u \in L^{2, s}\left(t_{0}, T_{0}\right)$
Similarly to theorem 2.1 we have
Theorem 4.1. If $T_{0} t_{0}$ is sufficiently small then P_{1}^{α} has a unique open loop solution.

The problems E_{1} and E_{1}^{α} are related by following Theorem.
Theorem 4.2. If $T_{0}{ }^{-t_{0}}$ is sufficiently small
Then
(i) If the vector α satisfying (4.4) is positive (i.e., if $\alpha_{i}>0$, $1 \leq i \leq n)$, then the solution u^{α} of P_{1}^{α} is an efficient point over $L^{2, s}\left(t_{0}, T_{o}\right)$.
(ii) If u° is an efficient point over $L^{2, s}\left(t_{0}, T_{0}\right)$ then for some α^{0} satisfying (4.4), u^{0} is the solution of P_{1}^{α}.

Proof. (i) is obvious. (ii) is proved as in the finite dimensional case, see e.g., [4], Section 7.4.

A method for approximating a solution of P_{1}^{α} is given by Theorem 4.2 namely, u^{α} is the uniform limit of a sequence of successive approximations. We now define a new problem:

$$
P_{2}^{\alpha} \stackrel{\text { Maximize }}{ } \sum_{i=1}^{n} \alpha_{i} f_{i}(u) \text { subject to } u \in U
$$

Although U is not a compact subset of $L^{2, s}\left(t_{0}, T_{o}\right)$ the consistency of $\left\{\mathrm{P}_{2}^{\alpha}\right\}$ is guaranteed by the following Theorem.

Theorem 4.3. If $T_{0}{ }^{-t}{ }_{0}$ is sufficiently small then each problem P_{2}^{α} has a unique solution.

See [8] for proof.
The relations between E_{1} and P_{1}^{α}, studied in Theorem 4.2, hold also for E_{2} and P_{2}^{α}.

Theorem 4.4. If $T_{0}-t_{0}$ is sufficiently small then (i) If the vector α satisfying (4.4) is positive, then the solution of P_{2}^{α} is an efficient point over U.
(ii) If u° is an efficient point over $U_{\text {then }} u^{\circ}$ is the solution of P_{2}^{α} for some α_{0} satisfying (4.4).

The penalty method outlined in section 2 is applicable to problem P_{2}^{α}.

The following results are prover similarly to the corresponding results in [3].

Lemma 4.1. If $T_{0}{ }^{-t} \leq \mathbb{N}$, then M_{1} and M_{2} have optimal solutions, and at least one solution of each is efficient.

Theorem 4.5. Let $T_{0}{ }_{0} t_{0}<N$.
Then the following function of α

$$
h\left[f_{1}\left(u^{\alpha}\right), f_{2}\left(u^{\alpha}\right)\right]
$$

is unimodal on $[0,1]$.
Using the customary search techniques for finding the supremum of a unimodal function, Theorems $4.1,4.2$, Lemma 4.1 and Theorem 4.5 constitute a procedure for approximately solving M_{1}, while Theorems 4.3, 4.4, Lemma 4.1 and Theorem 4.5 similarly constitute a procedure for approximately solving M_{2}.

1. E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955.
2. A. Friedman, Differential Games, Wiley-Interscience, 1971.
3. A. M. Geoffrion, "Solving Bicriterion Mathematical Programs," Operations Research, 15, 1967, p. 39-54.
4. S. Karlin, Mathematical Methods and Theory in Games, Programming and Economics, Vol. I, Addison-Wesley, 1959.
5. E. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
6. R. Stern, "Open Loop Approximation of Differential Games," SIAM J. Control, 11, 1973.
7. R. Stern, "Open Loop Nash Equilibrium of N-Person Non-Zero Sum Linear-Quadratic Differential Games with Magnitude Restraints," (Forthcoming).
8. R. Stern, and A. Ben-Israel, "Multiple Criteria in Optimal Control," (Forthcoming).
9. R. Stern and A. Ben-Israel, "On Linear Optimal Control Problems with Multiple Quadratic Criteria," Proceedings of the Seminar on Multicriteria Decision Making held in Columbia, South Carolina, 1972.

[^0]: *Department of Business Administration, University of Illinois at Urbans.

