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ON A CERTAIN PENALTY METHOD IN OPTIMAL

CONTROL AND DIFFERENTIAL GAMES

by

Ronald J. Stern*

ABSTRACT

The penalty technique introduced in [6] is ^piklied to linear-

quadratic optimal control probleias, N-Person noa>z«ro sum differential

games, efficient point problems in linear control problems with Mtltiple

quadratic criteria, and to bicriterion optimal control problems. In all

these cases the reason for applying the technique is to overcome the

computational difficulty introduced by the imposition of a pointwlse

magnitude restraint on the feasible controls. Additional details are

available in [6] - [9].

*
Department of Business Administration, University of Illinois at Urbane
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ON A CERTAIN PENALTY METHOD IN OPTIMAL

CONTROL AND DIFFERENTIAL GAMES

1. Introduction . In recent works a new penalty technique has

been employed to derive procedures for computing optimal open loop

controls for two person zero sum linear-quadratic differential games

[6] and N person non-zero sum linear-quadratic differential games [7],

The method also has been applied to compute open loop solutions to

bicriterion control problems and efficient points for multicriteria

problems in control [S], [9]. "Open loop" solutions, it will be

recalled, are solutions which are not of the feedback type; that is,

they are functions of time only. In each of the problems mentioned

above, the penalty method is employed to overcome computational dif-

ficulties which arise from the imposition of a pointwise magnitude

restraint on the feasible controls.

In section 2 we give a detailed exposition of the technique, for

the case of a general linear-quadratic optimal control problem with

pointwise magnitude restraints. In subsequent sections we outline

the application of the technique to the various problems mentioned in

the preceeding paragraph, by referring to section 2.

2. Application to Linear-Quadratic Optimal Control . Consider the

following linear system of differential equations in r":

(2.1) X = A(t)x + B(t)u (to < t < To)

with initial condition

(2.2) x(to) = x^

Here A(t) and B(t) are continuous (mxm) and (mxs) matrices on the com-

pact time interval [to. To]. Feasible controls u = u(t) are Lebesmie-
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measurable R -valued functions which almost everywhere on [t ,T ]o o

take values in U, the closed unit ball with center in R^ . We

should denote this class of feasible controls by 7/.

For each u e Xt a unique solution to (2.1) - (2.2) is determined

by

t

(2.3) x(t) = S(To,t)x + J S(t,s) B(s)u(s)ds
t
o

where S is the fundamental solution of x = A(t)x (see e.g., [l].

We now introduce an objective function of quadratic type:

(2.3) J(u) = (x(T^) -f . W[x(T^) -5 iy

+ J <^x(t) - G(t)x(t),Q(t) [x(t) - G(t)x(t)]y dt -
J ^<L(t),u(t^dt

o

Here < is a fixed vector in r'", W is a constant symmetric (mxm) matrix,

x(t) is a continuous R - valued junction on [t ,T ], C(t) is a continuous
O' O"

(mxm) matrix, and Q(t) is a continuous symmetric (mxm) matrix on Ct ,T ].
o o

x(t) denotes the solution of (2.1) - (2.2) corresponding to U.

The following lemma is required. The proof, which is omitted, is of

a computa tioral nature and makes us3 of bounds of the various parameters

in (2.1) - (2.3).

Lemma 2.1. There exists M > such that T - t < N implies the fol-—————— _____ Q Q >

lowing

;

(i) J(u) is a strictly concave functional on L^'° (t T )
o* o'

'

the space of measurable functions u satisfying
T
o

J iu(t) I
dt < ", where

|

| is the Euclidean norm.

t
o
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2 s
(ii) J(u) is bounded above over L ' (t ,T ).

Now we introduce the following pair of problems ;

P, maximize J(u)

2 s
subject to ueL ' (t ,T )J ^ o o

P„ maximize J(u)

subject to ue LM .

In view of Lemma 2.1, the condition

(2.4) —^ J(u + sv)
1

=0 for all ve L^'®(t ,T )^ ' ^ ' ie=o ^00
de

is sufficient for u to be the (unique) solution of P^ . (2.4) gives rise

to the following integral equation:

*
(2.5) G(s) = B (s) S (T^,s) W [x(T^) -

f ]

T

+ J B*(s) S*(t,s) C*(t) Q(t) [x(t) - x(t)] dt.

Here x(t) is expressed by (2.3) in terms of u(t). We write (2.5) as

follows:

(2.6) G = aG

where A: C°'^ Tt ,T ] —^ C°'^ [t ,T ] (Here we denote by C°'^[t ,T ]o o o o o o

the space of continuous R -valued functions on [t ,T ]) . It is easily

shoen (see e.g. [2] that if T -t is sufficiently small then A is a contrac.'ifon° o o '

We therefore have

Theorem 2.1 There exist s N > such that T -t < N implies P,_________ Q Q —c I

has a unique solution .
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This solution can be identified as the uniform limit of a sequence

of successive approximations using (2.5). The case for problem P„ is

not as straightforward we now turn our attention ot it. To this

end, we first introduce a new payoff functional.

T

(2.7) /(u) = J(u) - /luCt)!^'' dt
t
o

where k is a positive integer. The general penalty method discussed in

this paper uses the (computable) optimal payoffs of an unconstrained prob-

lem with (2.7) as payoff in order to approximate the optimal payoff of

P-, as k —> <=°. We shall denote by P the control problem with payoff

given by (2.7) and with the only requirement for the feasibility of u

2k s
being membership in L ' (t ,T ).

o o

We defer the proof of the following theorem until later in this

section.

Theorem 2.2 . There exists N > such that T -t < N implies P.
3:;2IZZZZZII ° ° ~ — k

has a unique solution .

2
We now define the following map of R into R.

^> (v) =

£ I I ^ 1
-l/2k

1 f V I < k

otherwise

We also define the following payoff functional:
k To

(2.8) J^ (u) = J(u) - J /(u(t)) dt
t
o

Note that

, k T -t

(2.9) lAu) - j'P
(u)| <

for any u e L ' (t ,T )
o o





Let us denote the solution of P, by u . Proof of the following

result is of a computational nature (using Holder's inequality) and

will be omitted.

Lemma 2.2. T - t < N implies that there is a real Q > such
o o ~ —

'

—
:

that

T

sup J
|u (t) I dt < Q.

k
t
o

Let "SJ be the set of vectors in R with Euclidean length

\J , Lemma 2.2 implies

< 1 - k and let P, (•) denote the Euclidean distance in R from

T

(2.10) J ^
^ (/(t)) dt < -2-

t \ k

2'is
from Theorem 2.2 and (2.9) we have, for any ije L ^ (t ,T ), the

following:
,rk . 1

o o^. k.
T -'

(2.11) J(u) > J (u ) -

for each positive integer k.

Now let P denote the problem with objective function J(u) , but
K.

where admissible controls are those Lebesque measurable functions which

almost everywhere on [t ,T "i are valued in \j' o ' o

We now prove the following lemma:

Lemma 2.3. Let T -t < N. Then there exists a real D > such that
o o =

the following is true : for each positive integer k there is a control

^k
u such that :

T ~ t

(2.12) J (GS > J(u) - D(k"^^^ + 1 - k"^/^S -^
for any control u feasible for P. .
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Proof. Let v be any vector in R . Let

V =
if V e u^

k V otherwise
^

FT

By a simple argument we have that u(t) is Lebesque measurable for

any Lebesaue measurable control u(t).

A routine calculation (additional details are to be found in [6])

yields (2.12). (2. 10) and (2.11) are utilized here.

We now have the following:

Theorem 2.3. If T -t < N then

J(u ) ^ sup J(u)

ue

The proof is found (subject to minor changes) in [?]. The weak

topology is employed in the argument, which is similar in spirit to a

result in [s], p. 209.

We turn now to the proof of Theorem 2.2.

Proof of Theorem. 2.2. By arguments similar to those in the proof of

Lemma 2.1 we have negativity of the second Gateoux differential of J (u)

if T -t is sufficiently small. (See e.g., [2] for proof). The condi-

tion of stationarity (i.e., J (u) have zero first Gateaux derivative)

is then both a necessary and sufficient condition for optimality. The

condition is given by the following integral equation (see [2] for similar

equations):
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(2.13) u(s) + 2k|u(s)r ^1(8)

= B*(s) S*(T^,s) W Cx(T^) - ^ ]

S

+
J B*(s) S*(t,s) C*(t) Q(t) [x(t) - x(t)] dt,

t
o

(2.13) is next rewritten as follows:

(2.14) m''(u(s)) = T^[M'^(a(s))]

Ic s s
Here M : R R is given by

m'^(v) = 2v + 2k|vt^'''S.

M has an inverse given by

M (w) =

2+2k[r, (!wl)]
2k-2

where r,(|w|) is the unique real proof of the polynomial 2kx + 2x

lw| . Note that the expressability of (2.13) in the form (2.14) is de-

pendent upon the invertibility of M .

k =
Each T is a contraction when T -t is small enough, say N; this

by Theorem 4.2 in [6]. This completes the proof of the theorem.

(2.13) can be solved computationally. A procedure is given in

section 5 of [6]. This procedure circumvents the problem that r, has

no explicit form when k > 2

.

3. Application to Differential Games . The outline presented in

this section summarizes results of both references [6] and [?].

The governing dynamics are given by the following system in R
N

(3.1) i = A(t)x + 2 B.(t) u . (t < t < T )
. 1 1 1 o= = o
1=1

with initial condition

(3.2) x(t^) = x^ .

o o

m





We define N cost functionals of quadratic type;

(3.3) J.Cu^.u^,...., V = <(>^(V - ^ i' V-^V - ^ i^

T
o

I Vi^^'^ ' ^i'^'^)^^'^^' Qi<'> L x.(t) - C.(t)x(t)]\ dt
t
o

T
o

J <Vi(t),^.(t:)^+
J <v,. (t),\t,(t:)> dt, i=l,2,...,N

'o

Assumptions on the parameters of (3.1) - (3.3) parallel those made in

section 2. Admissible controls li. for the ith player are Lebesque

measurable functions which almost everywhere take values in the unit

ball of R^.

For the above game, denoted G, we seek an open loop Nash equilibrium;

that is, a vector of feasible controls (u, , u„,...,,u^) such that

(3.4) J.(a^, n^, ...., u^) > J.(G^, u^, . . . , a._^, u.. u.^^.-.-V

for any admissible u., i=l ,2 , . . . ,N.

An approximating p^iame, denoted G, , is introduced, for k a positive

integer. The payoff functionals for this differential game are

T
k k ° 2k

(3.5) J.(u^,U2,,.., u^) = J. (u^,U2,...,u^) - J |u.(t)| dt

o

for i = 1, 2,. . . .N.

An analog of Theorem 2.2, the proof of which may be found in [7],

is the following:

Theorem 3.1. If T -t is sufficiently small then G has a unique
•

' — o o ^ T

open loop Nash equilibrium .
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An analog of Lemma 2.3 is now given:

Lemma 3.1. If T -t is sufficiently small then there exists a con-

stant D > such that the following is true : For each positive integer

k there is a vector of controls (u, , u„

,

u„) feasible for G, such12 N k

that

(3.6) J.(u^, U2,...,u^) > JiC^i, U2'--'-"i-r "i' Vl"--'V

-D(k-^^2 ^ ^ _
^-l/2k^ _ ^o-'^o

k

where G, is the game with the same payoffs as G but where feasible con-

trols u. are Lebesque measurable and are valued almost everywhere in the

ball of radius k Jji R .

By properties of the weak topology it is shown in [?] that G has

an open loop Nash equilibrium which can be represented as the weak limit

of a subsequence of (u. , u„ , ..., u».) • It is shown there that the equi-

librium costs of G are computable by the method of [6], section 5.

4. Application to Mul ticriteria Control

(4.1) i = A(t) + B(t)u (t < t < T )

with initial condition

(4.2) x(t^) = X
^

and n criterion functions

(4.3) f.(u) = < x(T^) - 5., W.rx(T^) - 5.] >

T

+ J < x.(t) - C.(t)x(t), 0.(t)Cx(t) - C.(t)x(t)] > dt

o

T
o

-
J

< u(t),u(t) > dt, (1< i < n),
t
o
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where assumptions on (4.1) - (4.3) parallel those made in section 1.

An efficient point u over a class of controls rj is a control

u £ Q such that for no other u. 6 1^

f (u) ^ f^(u°) 1 <: i ^ n

with at least one strict inequality.

The class of controls £• in the above definition will be taken

here as one of the following two classes.

T
L * (t T ) - the space of controls u with ju(t)| dt < as, where

o

I
j
denotes the Euclidean norm.

IL - the class of measurable controls with ]u(t)| ^ 1 a.e. on

[t ,T 1.
'- o' o'

The following two efficient point problems will be studied here:

2 s
E Find all efficient points over L ' (t ,T ).
1 ' '

*^— o o

E_ Find all efficient points over [JL, .

For the bicriterion case n = 2 we study two other optimal control

problems

M- Maximize minjf . (u) ,f^ (u)

|

subject to u f L"* (t ,T )

M Maximize hff . (u) ,f „ (u)") subject t o uf ttf,

2
where h: R - R is continuous and non-decreasing in each of its argu-

7
ments on the non-negative orthant R , and quasiconcave over the interior

2
of R. We further assume that

+

|u(t)j 5 1 a.e. on [t^,T 1 => f,(u) > 0, i = 1,2, which is guaranteed,

for example, if W. are positive definite and jx
|

is sufficiently large.

We, observe that the objective function of M. is a special case

of the objective 'fttBCftian. h(x,y) of M^. Other examples are

h(x,y) = x^y
; g >

or
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6 R
h(x,y) = CjX 1, + c^y 2; t:i.C2,P^,32 > 0-

(For other examples see e.g., TsT p. 40).

In what follows let the vector

a= (a. ,a^, . . . , ,a ) satisfy
1 2 n '

n

(4.4) £ Q'. = 1 and c > 1 < i < n.
. , 1 1 " " "
1=1

For each such awe define the following single criterion analog of E-

:

n „
c^ J. s

P, Maximize S o?.f.(u) subject to ue L ' (t ,T )
1 . ^ 11 ' o o

1=1

Similarly to Theorem 2 . 1 we have

a
Theorem 4.1. If T -t is sufficiently small then P, has a unique" - — o o ' 1 ^^

—

open loop solution .

ex
The problems E^ and P^ are related by following Theorem.

Theorem 4.2. If T ~t is sufficiently small
' — o o — ^ "" —

—

Then

(i) If the vector a satisfying (4.4) is positive (i.e., if a. > 0,

a 01 2 s
1 < i < n) , then the solution u of P, is an efficient point over L ' (t ,T )" — — 1 ^ DO

(ii) If u is an efficient point over L ' (t ,T ) then for some a

O Of
satisfying (4,4) , u is the solution of P^o

.

Proof . (i) is obvious. (ii) is proved as in the finite dimensional

case, see e.g., [4], Section 7,4.

A method for approximating a solution of P is given by Theorem 4.2

ex
namely, u is the uniform limit of a sequence of successive approximations.

We now define a new problem:

Po Maximize L Q'.f.(u) sublect to ue U.
Z _ 11 -^

1=1
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Although \jL is not a compact subset of L ' (t ,T ) the consistency
o' o'

of [P-] is guaranteed by the following Theorem.
2

aTheorem 4.3 . If T -t is sufficiently small then each problem P„

has a unique solution,

See [s] for proof.

The relations between E and P., studied in Theorem 4.2, hold also

a
for E- and P^.

Theorem 4.4. If T -t is sufficiently small then (i) If the vector
zzmizziziiiii — ° ° - •^

a satisfying (4.4) is positive, then the solution of P„ is an efficient

point over it

.

(ii) If_ u is an efficient point over U then u is the solution of

P- for some a satisfying (4.4).

The penalty method outlined in section 2 is applicable to problem

(X
P*^2-

The following results are proves similarly to the corresponding results

in [3].

Lemma 4.1. If T -t < N, then M, and M„ have optimal solutions, and— o o ——— 1 2 —*- 2

at least one solution of each is efficient .

Theorem 4.5. Let T -t < N.
o o

Then the following function of a

hCf,^(u°'), fjCii'^')]

is unimodal on [0,1J.

Using the customary search techniques for finding the supremum of

a unimodal function, Theorems 4.1, 4.2, Lemma 4.1 and Theorem 4,5 con-

stitute a procedure for approximately solving M^ , while Theorems 4.3,

4.4, Lemma 4.1 and Theorem 4.5 similarly constitute a procedure for

approximately solving M_

.
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