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Abstract ^ .
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ON LINEAR OPTIMAL CONTROL PROBLEMS WITH MULTIPLE
QUADRATIC CRITERIA

I. Introduction . Consider the system

(1.1) i - A(t) + B(t)u .(t^^^t^T^) -

with initial condition

(1.2) x(t^) - x^

and n criterion functions

(1.3) f^(u) -< x(T^) - §^, WjCx(T^) - 1^1 >

+
J

.° < x^(t) - C^(t)x(t), Q^(t)[x(tF|t- Cj#)X(t)] > dt

o

^T

J
°<u(t),R^(t)u(t) >dt, (lii^n),

where

the matrices A(t) and B(t) are mxm and sxm respectively, contiru-

ous on ft ,T 1

,

^ o o-*

s
the control u: [t ,T ] -> R is integrable,

the vectors |. € R and the siymmfetf'f^-ic matrices W, €R are constant,
***

ED
the functions x. : ft .T,"! • R are continuous for some T, 3p T ,

1 - o l-" 1 o*

the matrices C, (t) are mxm and continuous on ft ,T,T.
i - o* 1-"

the matrices Q (t) and R. (t) are continuous and symmetric, and

the R.(t) are positive definite on [t ,T.].

In this paper we study optimal control problems, stated in terms of

(1.1) - (1.3).
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2. Statement of the problems . An efftclent point u** over a claaa

of controls if. is a control u € 6- such that for no ther u € IS

f^(u) ^ f^(u*) 1 i i < n

with at least one strict inequality.

The class o£ controls B in the above definition will be taken

here as one of the following two classes.

L * (t T ) - the space of controls u with
j

° Iu(t)| dt < ai, where
i;^

I I

denotes the Euclidean norm.

Vb - the class of measurable controls with |u(t)| s 1 a.e. on

[t ,T ].
>- o* o-*

The following two efficient point problems will be studied here:

2 s
E Find all efficient points over L ' (t ,T ).

Ej Find all efficient points over \L

.

For the bicriterion case n = 2 we study two other optimal control

prob lems

2 s
M. Maximize min{£. (u) .f^(u)| subject to u gL ' (t ,T )

M Maximize hTf , (u) .f»(u)1 subject to uflL*
2

where h: R - R is continuous and non-decreasing in each of its argu^

2
Dents on the non-negative orthant R , and quasiconcave over the interior

2
of R . We further assume that

|u(t)j s 1 a.e. on [t^^.T^l => f.(u) > 0, i » 1,2, which is guaraateed,

for example J if W are positive definite and |x j is sufficiently large.

We o^aeeve that the objective functionTo£!J. is.a special case

ef the ..^object ivet«ievi«crt:^iv;!fa; (X^||} of VL, other examples axe

h(x,y) « x^y
; p >

or





3.

h(x,y) - c^x^l,+ 025^2 ; c.^yC^,^^,^^^ 0.

(For other examples see e.g. [2] p. 40)

3. Solution of E. . In what follows let the vector

0/ " (aj.a2»'*'><^n^ satisfy

Q

(3.1) T aj^ - 1 and
ttjL s 1 ^ i s n. 4

i-1

For each such a we define the following single criterion- analog o£ E •

P^ Ifextintgre y aj^f (u) subject to u..€ L^'^(t^,T^)

i«l
First we require:

Lemma 3.1 . There exists a constant N > such that if T - t s N

2 8
then each f is strictly concave and bounded above over L * (t ,T ).

Proof . Concavity follows from negativity of the second Gateaux

derivatives of the f
,

, verified as in [1], Section 8.4, by using the

Holder inequality. Boundedness is similarly proved.

The following Theorem established existence and uniqueness for

solutions of P?'.

Theorem 3.1 . There exis ts a constant N > ^uch that if T -t s N ,—————— —-—_-—-_-_-__-_____«__—_ __________^____ o o

then for each ex satisfying (3,1) the problem ?^ has a unique solution .

n 1

Proof . Let f^ ") a.^^. By Lemma 3.1. if T -t :gN then the^ "i i • * o o

condition

(3.2) ~ f°'(u^ -f Ar) = at e - for any v eL^'^(t^,T^)

is necessary and sufficient for u*^ to be the unique solution of ?^.

We recall that for each u a uniqii€*;«oi4*q^«» to (1.1) - (1.2) is determine *•-

(3.3) x(t)>» S(t,t )x + 1^ S(t,ff ) B(a)u.(cr) do





4.

where S(t,a) is the fundamental solution of x = A(t)x. Using (3.3)

It follows that (3.2) can be written in the form .

(3.4) u« = A-^u*

where A^' is an operator mapping C '"(t ,T ), the space of continuous

R^- valued functions on (t ,T ) with the sup cotja, into itself. It[.
O O ',

can then be shown that there exists a constant N > such that T -C^ ^ M
o o

guarantees that each possible A*^ in (3.4) is a contraction.

The problems E^ and P9' are related by following Theorem.

Theorem 3.2 . Let T -t ^ minJN.N \.-^————— —— o o ' '

Then

(i) If the vector a satisfying (3.1) is positive ( i.e. if a^ > 0»

Is is n), then the solution u*^ of ?^ is an efficient point over L * (t ,T ).

(ii) If u ° is an efficient point over L * (t ,T ) then for some a

satisfying 3.1, u is the solution of p9'o .

Proof , (i) is obvious, (ii) is proved as in the finite dimensional

case, see e.g. [3], Section 7.4.

A method for approximating a solution of P'? is suggested by

Theorem 3.1-namely, u '^' in (3.4) is the uniform limit of a sequence

of successive approximations. Another approach for solving V^, the

"synthesis" or "feedback" approach (see e.g.[l] Section 8.6 or [4]

Section 5.2) uses a Riccati matrix differential equation whose solution

is then used to express u*^. •

4. Solution of E-. For (ji
satisfying (3.1) we define the following

single criter log., analog of E :

n 2

P? Maximize y gf(u) subject to u^lM
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AlthoughXtis not a compact subset of L ' (t ,T ), the consistency
o' o'

of JP^I Is guaranteed by the following Theorem.

Theorem 4.1 . Le t T - t ^ N where K is as In Lemma 3,1« Then
0!

each problem P- has a unique s olutionis

The relations between E- and v'?, studied in Theorem 3.2, hol<i^

also for £„ and P2:

Theorem 4.2 . Let T - t ;^ N where N is as in Lemma 3.1 . Then ;

(1) If the vector , (y satisfying (3.1) is positive , then the solution

of P? is an efficient point over Zl.

(ii) If_ u is an efficient point over'Uthen u° is the solution of P9^

for some a satisfying (3.1).

Using the penalty function approach of [5], a computational scheme

for approximating the solutions of ?^ will now be outlined.

Let 5|»(u) denote the Euclidean distance between a vector u f R and

the unit ball |u: luj s: l{ in R . For any < g s 1 and a satisfying

(3.1) define the function
Tq

f^in) = f°^(u) - M P ^u(t)) dt

owhere

Let

and

1=1

c* = sup f°'(u)

c% = sup f2(u)

u^L^'^t T^)
o o
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The following Theorem can then be proved using Fillipov's Lenana

and Holder's inequality.

Theorem 4.3. Let T - t s N.
'

. o o

Then c^ decreases to c*^ as h -* 0.
€

,

For any positive integer k we define the following function in

L^'^(t ,T )
o' o ™

fj(u) « f^(u) - J^iu(t)i21^dt

and

c^ - sup f^(u). .
'

Theorem 4.4 . c^ converaes to c^* as k -» w

Finally, under the simplifying assumption R,(t) =• I, 1 s i Sn, we

can prove

:

Theorem 4.5. If T -t t? rainlN.N } then for each a and k as above———————— —— o O I ' ) __________ — -~

there is a unique u^ ^ L ' (t ,T ) at which the supremum of f^ is attained .

Furthermore

f^(u^) ^i^iu°'), 1 ^ i ^ n,

wheire. -o°^ is the unique element at which the supremom of f*^ over fX. is

attained .

The proof of Theorem 4.5 exhibits each u?f as a solution of

(4.1) Mj^(u^) = TjrM^(uJ)l

g g
where the map R : R ^ R is given by

Mj^(u) = 2(1 +k|u|^^"^)u

and T^ is an operator mapping C * (t ,T ) into it3elf, determined by

the stationarity condition

H 2 s
•^ f^^"^ + € v) - at € = for any v€L *

(^o»'^o^*
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Each t'^ is a contraction If T - t^ < N . A successive approximation
k

procedure for solving equacions like (4.1) is found in [5], Section 5.

5, Solution of M and M^ . The following results are proved

similarly to the corresponding results in [2], >

Leauna 5.1. If T - t ^ K, tnen M, and tt, have ontimal solutions,
' - O O —.~

- ][ -—- "2 '

'

^————
and at least one solutlcjn of each in efficlfcnt.

Theorem 5.1 . Let T -t^ ^ N.—————— —— o

Then the following function of a .

hCf^Cu^'), f2(u^)]

fj^ unimodal on [0,1].

Using the customary search techniques for finding the supremum of

a unimodal function, Theorems 3.1, 3.2, Lemma 5.1 and Theorem 5.1 con-

stitute a procedure for approximately solving M, , while Theorems 4.2,

4.5, Lemma 5.1 and Theorem 5.2 similarly constitute ta procedure for

approximately solving M^.
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