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émanant des établissements d’enseignement et de
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Résumé

Ce travail présente l’application aux composites fibrés d’une nouvelle théorie de plaque. Ce modèle destiné aux plaques
épaisses et anisotropes utilise les six inconnues statiques de la theorie de Kirchhoff-Love auxquelles sont ajoutées six
nouvelles inconnues représentant le gradient du moment de flexion. Nommé théorie Bending-Gradient, ce nouveau modèle
peut être considéré comme une extension aux plaques hétérogènes dans l’épaisseurs du modèle de Reissner-Mindlin ; ce
dernier étant un cas particulier lorsque la plaque est homogène. La théorie Bending-Gradient est appliquée aux plaques
stratifiées et comparée à la solution exacte de Pagano [1] ainsi qu’à d’autres approches. Elle donne de bonnes prédictions
pour la flèche, pour la distribution des contraintes de cisaillement transverse ainsi que pour les déplacements plans dans
de nombreuses configurations matérielles.

Abstract

This work presents the application to laminated plates of a new plate theory for out-of-plane loaded thick plates where the
static unknowns are those of the Kirchhoff-Love theory, to which six components are added representing the gradient of
the bending moment. The Bending-Gradient theory is an extension to arbitrarily layered plates of the Reissner-Mindlin
theory which appears as a special case when the plate is homogeneous. The new theory is applied to multilayered plates
and its predictions are compared to full 3D Pagano’s exact solutions and other approaches. It gives good predictions of
both deflection, shear stress distributions and in-plane displacement distribution in many material configuration.

Mots Clés :Theorie de plaque, Modèle d’ordre supérieur, Plaque stratifiée, Plaque composite

Keywords : Plate theory, Higher-order models, Laminated plates, Composite plates

1. Introduction

Laminated plates are widely used in engineering applications. For instance angle-ply carbon fiber
reinforced laminates are commonly used in aeronautics. However, these materials are strongly aniso-
tropic and the plate overall behavior is difficult to capture. The simplest plate theory is Kirchhoff-Love
plate model. However, this theory does not enable the derivation of accurate transverse shear stress
distribution.
In recent decades many suggestions have been made to go further than Kirchhoff-Love model. Two
main approaches can be found : asymptotic approaches and axiomatic approaches. The first one is
mainly based on asymptotic expansions in the small parameter h/L [2, 3]. However, it leads to more
complex models than Reissner-Mindlin model which is commonly used by engineers. The second
main approach is based on assumingad hocdisplacement or stress 3D fields. These models can be
“Equivalent Single Layer“ or ”Layerwise“. Equivalent single layer models treat the whole laminate
as an equivalent homogeneous plate. However, when dealing with laminated plates, most of these
models lead to discontinuous transverse shear stress distributions through the thickness as indicated
by Reddy [4]. In Layerwise models, all plate degrees of freedom are introduced in each layer of the
laminate and continuity conditions are enforced between layers. The reader can refer to Reddy [4]
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and Carrera [5] for detailed reviews of kinematic approaches and to [6, 7, 8] for static approaches.
Layerwise models lead to correct estimates of local 3D fields. However, their main drawback is that
they involve a number of degrees of freedom proportional to the number of layers.
In [9, 10] we revisited the use of 3D equilibrium in order to derive transverse shear stress as Reiss-
ner [11] did for homogeneous plates. Thanks to standard variational tools, this led to an Equivalent
Single Layer plate theory which takes accurately into account shear effects and does not require any
specific constitutive material symmetry : the Bending-Gradient theory. This plate theory is identi-
cal to the Reissner-Mindlin plate theory in the case of homogeneous plates. However, for laminated
plates, shear forces are replaced by the gradient of the bending momentRRR=MMM⊗∇∇∇. Hence, this theory
belongs to the family of higher-order gradient models. The mechanical meaning of the bending gra-
dient was identified as self-equilibrated static unknowns associated to warping functions in addition
to conventional shear forces.
The purpose of the present work is to present the applicationof the Bending-Gradient theory to
highly anisotropic laminated plates. The paper is organized as follows. In Section 2 notations are
introduced. In Section 3, the Bending-Gradient plate theory is shortly detailed. Then it is applied to
fibrous laminates under cylindrical bending in Section 4 andcompared with approximations based on
Reissner-Mindlin theory.

2. Notations

Vectors and higher-order tensors are boldfaced and different typefaces are used for each order : vectors
are slanted :TTT,uuu. Second order tensors are sans serif :MMM, eee. Third order tensors are in typewriter style :
ΦΦΦ, ΓΓΓ. Fourth order tensors are in calligraphic styleDDD, ccc. Sixth order tensors are double strokedFFF,WWW.
When dealing with plates, both 2-dimensional (2D) and 3D tensors are used. Thus,̃TTT denotes a 3D
vector andTTT denotes a 2D vector or the in-plane part ofT̃TT. The same notation is used for higher-
order tensors :̃σσσ is the 3D second-order stress tensor whileσσσ is its in-plane part. When dealing with
tensor components, the indexes specify the dimension :ai j denotes the 3D tensorãaa with Latin index
i, j,k.. = 1,2,3 andaαβ denotes the 2D tensoraaa with Greek indexesα,β,γ.. = 1,2. The identity for
in-plane elasticity isiαβγδ = 1

2

(
δαγδβδ +δαδδβγ

)
, whereδαβ is Kronecker’s symbol. The transpose

operationt• is applied to any order tensors as follows :(tA)αβ...ψω = Aωψ...βα. Three contraction

products are defined, the usual dot product (ãaa·b̃bb= aibi), the double contraction product (ãaa : b̃bb= ai jb ji )
and a triple contraction product (AAA ∴ BBB = AαβγBγβα). Einstein’s notation on repeated indexes is used
in these definitions. It should be noticed that closest indexes are summed together in contraction
products. The derivation operator∇̃∇∇ is also formally represented as a vector :ãaa · ∇̃∇∇ = ai j ∇ j = ai j , j is

the divergence and̃aaa⊗ ∇̃∇∇ = ai j ∇k = ai j ,k is the gradient. Here⊗ is the dyadic product. Finally, the

integration through the thickness is noted〈•〉 :
∫ h

2

− h
2

f (x3)dx3 = 〈 f 〉.

3. The Bending-Gradient plate theory

Summary of the plate model

We consider a linear elastic plate of thicknessh which mid-plane is the 2D domainω⊂R2 (Figure 1).
Cartesian coordinates(x1,x2,x3) in the reference frame(ẽee1,ẽee2,ẽee3) are used. The local stiffness tensor
Ci jkl (x3) is assumed to be invariant with respect to translations in the (x1,x2) plane and the plate is
loaded exclusively with the out-of-plane distributed force p̃pp= p3ẽee3.
The membrane stressNNN, the bending momentMMM, and shear forcesQQQ are related to the actual 3D local
stress by the following equations :

Nαβ (x1,x2) =
〈
σαβ

〉
, Mαβ (x1,x2) =

〈
x3σαβ

〉
, Qα (x1,x2) = 〈σα3〉 (Eq. 1)

Moreover, we introduce the gradient of the bending momentRRR=MMM⊗∇∇∇. The 2D third-order tensorRRR
comply with the following symmetry :Rαβγ = Rβαγ. It is possible to derive shear forcesQQQ fromRRR with :
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Fig. 1. The Plate Configuration

QQQ = iii ∴ RRR. The full bending gradientRRR has six components whereasQQQ has two components. Thus,
using the full bending gradient as static unknown introduces four static unknowns. More precisely we
have :R111 andR222 are the cylindrical bending part of shear forcesQ1 andQ2, R121 andR122 are the
torsion part of shear forces andR112 andR221 are linked to strictly self-equilibrated stresses.
Equilibrium equations and boundary conditions involving stress fields are gathered in the set of stati-
cally compatible fields :





NNN ·∇∇∇ = 000 onω (Eq. 2a)

MMM⊗∇∇∇−RRR= 0 onω (Eq. 2b)

(iii ∴ RRR) ·∇∇∇ =−p3 on ω (Eq. 2c)

NNN ·nnn=VVVd on∂ωs (Eq. 2d)

MMM=MMM
d on ∂ωs (Eq. 2e)

(iii ∴ RRR) ·nnn=Vd
3 on∂ωs (Eq. 2f)

where∂ωs is the portion of edge on which static boundary conditions apply : ṼVV
d

is the force per unit
length andMMMd the full bending moment enforced on the edge. This set of equations is almost identical
to Reissner-Mindlin equations where shear forces have beenreplaced by the bending gradientRRR.
Generalized stressesNNN,MMM, andRRR work respectively with the associated strain variables :eee, the conven-
tional membrane strain,χχχ the curvature andΓΓΓ the generalized shear strain. These strain fields must
comply with the following compatibility conditions and boundary conditions :






eee= iii : (∇∇∇⊗UUU) on ω (Eq. 3a)

χχχ = ΦΦΦ ·∇∇∇ onω (Eq. 3b)

ΓΓΓ= ΦΦΦ+ iii ·∇∇∇U3 on ω (Eq. 3c)

ΦΦΦ ·nnn=HHH
d on ∂ωk (Eq. 3d)

ŨUU = ŨUU
d

on ∂ωk (Eq. 3e)

whereŨUU is the average through the thickness of the 3D displacement of the plate andΦΦΦ is the generali-
zed rotation.ΓΓΓ andΦΦΦ are 2D third-order tensors with the following symmetry :Φαβγ = Φβαγ. Moreover,

∂ωk is the portion of edge on which kinematic boundary conditions apply :ŨUU
d

is a given displacement
andHHHd is a symmetric second-order tensor related to a forced rotation on the edge. These fields are al-
most identical to Reissner-Mindlin kinematically compatible fields where the rotation pseudo-vector
is replaced by the generalized rotationΦΦΦ. AssumingΦΦΦ= iii ∴ϕϕϕ in Eq. 3 lead to a Reissner-Mindlin like
kinematic.
Finally, for constitutive material following local monoclinic symmetry with respect to(x1,x2) plane
(uncoupling betweenRRR and(NNN,MMM)) the Bending-Gradient plate constitutive equations are written as :






NNN=AAA : eee+BBB : χχχ (Eq. 4a)

MMM= t
BBB : eee+DDD : χχχ (Eq. 4b)

ΓΓΓ= fff ∴ RRR, where (III−fff ∴FFF) ∴ ΓΓΓ= 0 (Eq. 4c)3
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where conventional Kirchhoff-Love stiffnesses are definedas : (AAA,BBB,DDD) =
〈(

1,x3,x2
3

)
ccc(x3)

〉
and

ccc(x3) is the local plane-stress stiffness tensor. The generalized shear compliance tensorfff is a sixth
order tensor :fff= ∫ h

2

− h
2

(∫ x3

− h
2

(t
bbb +zddd

)
: ccc(z)dz

)
·SSS(x3) ·

(∫ x3

− h
2

ccc(z) : (bbb +zddd )dz

)
dx3 (Eq. 5)

where(aaa,bbb,ddd ) are the Kirchhoff-Love compliances andSSS = Sαβ = 4Sα3β3 is the out-of-plane shear
compliance tensor (SSS = CCC−1). Sincefff is not always invertible, we introduced Moore-Penrose pseudo
inverse for the shear stiffness tensorFFF :FFF= lim

κ→0
(fff ∴ fff+κIII)−1

∴ fff
whereIII is the identity for 2D sixth-order tensors following the generalized shear compliancefff minor
and major symmetries (Iαβγδεζ = iαβεζ δγδ). The solution of the plate model must comply with the three
sets of equations (Eq. 2, Eq. 3, Eq. 4). The compliancefff is positive. However whenfff is not definite,
there is a set of solutions, up to a self-stress field.

Fields localization

Once the plate model is solved, it is possible to recover an approximation of local 3D fields using
plate unknowns. The local stress is derived as :

σ̃σσBG
= s̃ss

(N) :NNN+ s̃ss
(M) :MMM+ s̃ss

(R)
∴ RRR (Eq. 6)

where 




s
(N)
αβεζ(x3) = cαβγδ(x3)

(
aδγεζ +x3 bζεγδ

)
ands

(N)
i3εζ = 0 (Eq. 7a)

s
(M)
αβεζ(x3) = cαβγδ(x3)

(
bδγεζ +x3 dδγεζ

)
ands

(M)
i3εζ = 0 (Eq. 7b)

s
(R)
α3ηζε(x3) =−

∫ x3

− h
2

cαηγδ(z)
(

bδγεζ+zdδγεζ
)

dz , s
(R)
αβηζε = 0 ands

(R)
33ηζε = 0 (Eq. 7c)

The in-plane displacement field is :

uuuBG=UUU −x3∇∇∇U3+υυυ(R)
∴ RRR (Eq. 8)

where
υ(R)

α =
∫ x3

− h
2

Sαζ(z)s
(R)
ζ3βγδ(z)dz+ k

(R)
αβγδ (Eq. 9)

and the fourth order tensorkkk (R) is an integration constant chosen such as
〈

u(R)α

〉
= 0.

4. Application to laminates

4.1. Plate configuration

We consider angle-ply laminates. Each ply is made of unidirectional fiber-reinforced material oriented
at θ relative to Directionx1. All plies have the same thickness and are perfectly bounded. A laminate
is denoted between brackets by the successive ply-orientations along thickness. For instance[0◦,90◦]
denotes a 2-ply laminate where the lower ply fibers are oriented in the bending direction. The consti-
tutive behavior of a ply is assumed to be transversely isotropic along the direction of the fibers and
engineering constants are chosen similar to those of Pagano[1] :

EL = 25×106psi, ET = 1×106psi, GLT = 0.5×106psi, GTT = 0.4×106psi,

νLT = νTT = 0.25

whereGTT has been changed to preserve transversely isotropic symmetry. L is the longitudinal direc-
tion oriented in the(x1,x2) plane atθ with respect tõeee1, T is the transverse direction.
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4.2. Cylindrical bending

Pagano [1] gives an exact solution for cylindrical bending of simply supported composite laminates.
We choose the same configuration for the Bending-Gradient model. The plate is invariant and infinite
in x2 direction. It is out-of-plane loaded withp3(x1) = −p0sinκx1. The plate is simply supported at
x1 = 0 andx1 = L with traction free edges.
NB : Pagano [1, 12, 13] derived exact 3D elasticity solution of this problem for a laminate loaded only
on the upper face and free on the lower face. In the present work we assume the plate is identically
loaded on its upper and lower face to comply with the plate model [9] : T+

3 = T−
3 = p3

2 whereT±
3 is

the normal traction on the upper and lower face of the plate.
Closed-form solutions using the Bending-Gradient and the Reissner-Mindlin model were derived. For
the latter, the work of Whitney [14] was used for deriving transverse shear stress distributions. Shear
correction factors were taken into account into the shear constitutive equation of the Reissner-Mindlin
plate model.
A comparison with a finite elements solution was also performed on ABAQUS [15]. Since the Bending-
Gradient is an Equivalent Single Layer theory, conventional shell elements were chosen (3 displace-
ments and 3 rotations). Transverse shear fields with shell elements in ABAQUS are derived using an
approach very similar to Whitney [14] where it is furthermore assumed that the plate overall constitu-
tive equation is orthotropic with respect to the main bending direction.S4, linear quadrangle with full
integration elements, were used. A convergence test was performed. This study enforced the typical
size of an elementlchar = h/5 whereh is the plate thickness. For instance when the slenderness is
h/L = 1/4 there are 20 elements. Finally, section integration is performed during the analysis.

4.3. Results

We consider first a symmetric cross ply[0◦,90◦,0◦,90◦,0◦,90◦,0◦,90◦,0◦] laminate. In this case, the
plate configuration fulfills the assumptions made for the finite elements approximation (orthotropic
laminate). In Figure 2, shear stress distribution atx1 = 0 in Direction 1 is plotted for the exact solution
from Pagano [1] :σσσEx, the Bending-Gradient solution :σσσ(R), Whitney’s shear distribution :σσσ(QQQ),W and
the finite elements solution :σσσ(QQQ),FE. The slenderness ratio is set toL/h = 4 as conventionally done
when benchmarking plate models. The three approximate solutions yield the same distribution. The
discrepancy with the exact solution is well-known and associated to edge effects.
In Figure 3 is plotted the in-plane displacement atx1 = 0 in Direction 1. The displacement is normali-
zed with the mid-span Kirchhoff-Love deflection,UKL

3 . The Bending-Gradient approximation follows
closely the exact solution.
In Figure 4 the mid-span deflection error is plotted versus the slenderness ratio for the Bending-
Gradient solution (BG), the finite elements solution (RM,FE) and the closed-form Reissner-Mindlin
solution (RM,WE). Kirchhoff-Love deflection is also plotted as reference. This error is defined as :

∆(U3) =
UEx

3 (L/2)−U3(L/2)
UEx

3 (L/2)
, whereUEx

3 (x1) is the plate deflection taken for the exact solution. The three

approximate solutions yield almost the same error.
Now we take the initial 9-ply configuration and simply rotateit 45◦ with respect to the bending direc-
tion. It becomes a symmetric and non-orthotropic[45◦,−45◦,45◦,−45◦,45◦,−45◦,45◦,−45◦,45◦]
laminate. This configuration does not comply with the assumptions made for the finite elements ap-
proach. In Figure 6 shear distributions are compared to the exact solution. The Bending-Gradient
solution remains close to the exact solution. However finiteelements and Whitney’s solution yield a
different distribution which is not as accurate as the Bending-Gradient. More precisely, in Direction 2,
the FE solution does not capture the change of slope associated to the change of ply orientation.
In Figure 7 is plotted the in-plane displacement in both directions. The Bending-Gradient approxi-
mation matches accurately the exact solution. Especially,in Direction 2 the distribution follows a
Zig-Zag shape. Thus the Bending-Gradient approximation isable to capture this well-known feature
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(σ23 = 0 : symmetry).
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(u2 = 0 : symmetry).
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RM,W :[14], KL : Kirchhoff-Love)

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Slenderness L/h

D
efl

ec
ti

o
n

er
ro

r,
∆

(U
3
)

 

 

BG
RM, FE
RM, W
KL

Fig. 5. Deflection error versus slenderness ratio for a
[45◦,−45◦,45◦,−45◦,45◦,−45◦,45◦,−45◦,45◦] laminate

of laminates displacement fields. In Figure 5 the mid-span deflection error is plotted versus the slen-
derness ratio. The Bending-Gradient solution is the most accurate one for conventional slenderness.

4.4. Discussion

We have numerically compared three approaches for derivingan approximation of the exact solution
for cylindrical bending suggested by Pagano [1, 12, 13] applied to a symmetric cross-ply configuration
in two bending directions.
The first main observation which comes out of this analysis isthe critical influence of the assump-
tion of orthotropy with respect to the bending direction. When this assumption is fullfilled, the three
approximations lead to almost identical results. Otherwise, both Whitney’s and Finite Element ap-
proximations lead to poor estimation of transverse shear stress distribution and deflection. In the case
of finite elements this is because we do not respect the assumption of the model. In the case of Whit-
ney [14], the main reason for this discrepancy comes from theassumption of cylindrical bending. This
assumption neglects the influence of the pure warping unknowns included in the bending gradient :
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Fig. 7. In-plane displacement distribution at x1 = 0 for a [45◦,−45◦,45◦,−45◦,45◦,−45◦,45◦,−45◦,45◦] laminate,
L/h= 4, a) u1 b) u2.

RRR112 andRRR221 and generates the difference in shear stress distribution and therefore in deflection.
The second observation is that a simple rotation of the platewith respect to the bending direction leads
to very different transverse shear stress distribution. This shows clearly the necessity to distinguish
between torsion and cylindrical bending components in the gradient of the bending moment. In most
plate models they are mixed into shear forces (Q1 = RRR111+RRR122) whereas the componentsRRR111 and
RRR122 lead to different transverse shear stress distributions. This explains the significant difference
when changing the bending direction. More generally, this raises the question of the relevence of
benchmarking plate models in configurations where only the cylindrical part of the bending gradient
is involved (assuming orthotropy with respect to the bending direction is a typical example) whereas
laminated plate engineering applications involves much more general configurations.
Finally, the Bending-Gradient solution was presented for aplate which follows mirror symmetry.
This model gives a very good approximation of both local and macroscopic fields at a rather low
computational cost (no post-process integration through the thickness and Reissner-Mindlin-like par-
tial derivative equations).
When the laminate is not mirror-symmetric, the Bending-Gradient gives less accurate results (details
are given in [10]) : the transverse shear distribution or therelated in-plane displacement might not
exactly converge to the exact solution but still leads to good approximation. Several explanations are
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currently under investigation. Especially, the contribution to the stress energy of the membrane stress
gradient,NNN⊗∇∇∇ was ignored when deriving the Bending-Gradient model. Neglecting this contribution
explains the discrepancy when the membrane stress in not zero, which occurs when the plate is not
mirror-symmetric.

5. Conclusion

In the present work we provided first applications using the Bending-Gradient plate theory. Closed-
form solutions for cylindrical bending were applied to laminates and compared to Reissner-Mindlin
and finite elements approximations. The main conclusion is that the Bending-Gradient gives good
predictions of both deflection and shear stress distributions in many material configuration especially
when the plate is mirror-symmetric.
Several outlooks are under consideration. First, this plate theory can be extended to periodic plates
such as sandwich panels [16, 17]. Second, the estimation of the influence of the membrane stress
gradient on the quality of the shear stress estimation will be studied in detail.
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