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Abstract The main focus of the present article is the development of a general solution

framework for coupled and/or interaction multi-physics problems based upon re-using ex-

isting codes into software products. In particular, we discuss how to build this software tool

for the case of fluid-structure interaction problem, from finite element code FEAP for struc-

tural and finite volume code OpenFOAM for fluid mechanics. This is achieved by using the

Component Template Library (CTL) to provide the coupling between the existing codes

into a single software product. The present CTL code-coupling procedure accepts not only

different discretization schemes, but different languages, with the solid component written

in Fortran and fluid component written in C++. Moreover, the resulting CTL-based code also

accepts the nested parallelization. The proposed coupling strategy is detailed for explicit and

implicit fixed-point iteration solver presented in the Part I of this paper, referred to Direct

Force-Motion Transfer/Block-Gauss-Seidel. However, the proposed code-coupling frame-

work can easily accommodate other solution schemes. The selected application examples

are chosen to confirm the capability of the code-coupling strategy to provide a quick de-

velopment of advanced computational tools for demanding practical problems, such as 3D

fluid models with free-surface flows interacting with structures.
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1 Introduction

The main thrust of this paper is geared towards the quick developments of computational

tools for currently interesting multi-physics problems, pertaining to coupling or interaction

of two or more traditional scientific domains. Of main interest for this work is how to pro-

vide the most efficient development of the corresponding software for this kind of problems,

by coupling the stand alone software products from each traditional domain. The latter are

often programmed by experts of a particular domain, with a strong preference to a partic-

ular discretization technique, programming language, or other special choices that provide

the optimal result. Such an optimal result can in general be produced only by the corre-

sponding domain experts, software designer and programmer, with a deep understanding

of both physical phenomena and of numerical analysis issues pertaining to this particular

domain. Hardly anybody can gain such level of expertise in many different domains. There-

fore, the current trends in engineering developments geared towards multi-physics problems

(e.g. fluid-structure interaction, thermomechanical coupling [48], mechanics and optimiza-

tion [39], mechanics and control [40]) are rather difficult to deal with, not only in terms of

theoretical formulations but also in terms of development of corresponding software tools.

One way to avoid this difficulty, as proposed and discussed in this work, is by coupling of

different software products, each produced by experts for a particular sub-problem.

This flexibility in problem formulation and tools development should not be penalized

with a severe lack of solution efficiency. Namely, we are interested in development of soft-

ware tools for solving the problems relevant to industrial applications, which implies using

fine discretization and mesh with many d-o-f; the examples of this kind are the problems

reaching the half a billion d-o-f from solid mechanics applications to bio-mechanics [1] or

the large CFD computations pertinent to meteorological prediction or climate change [28].

For the lack of efficiency, most symbolic interpreter software products, such as Matlab or

Octave, are not suitable for this class of problems. In fact, in order to ensure the required

level of computational efficiency in the context of fluid-structure interaction [3,5,10,15,17,

18,20,21,22,23,24,26,27,34,36,45,54,51,52,53,58,57,59,65,66,68,72,73,70,74,78,79],

large size problems are often tackled using dedicated software developments [60,72,71,73].

In this work, the large problems from fluid-structure interactionapplications are solved by

using existing fluid and structure solvers, along with the corresponding partitioned strat-

egy. The nested parallel computations, exploiting parallelization for both the fluid flow and

interface interaction, are used to ensure the computational efficiency.

Granted sufficient efficiency, the strategy of re-using the stand-alone software for par-

ticular sub-problems is likely to become the most efficient way in development of software

products for multi-physics applications. Indeed, in order to produce a reliable new software

(and a bug-free code), the testing and validation is often the most time consuming phase that

concerns not only the programmers and code developers but also the end-users. Namely,

only after extensive use of a particular software product (by end-users), can we count with

sufficient reliability of a particular software product. It is tacitly assumed that a reliable soft-

ware product will keep its reliability in a more general framework of multi-physics prob-

lems.

Therefore, the proposed strategy of re-using software products (or components) for solv-

ing multi-physics problems, is currently becoming one of the major trends in scientific com-

puting. The component-coupling framework described in this work, which allows to re-use

existing codes for the fluid-structure interaction, is based upon the middleware CTL (Com-

munication Template Library, see [62,56]) handling communication between components.

The main novelty for CTL implementation presented in this work concerns the use of nested
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parallelization for fluid-structure interactioncomputations, where the parallel communica-

tion is mastered by the CTL, and the call to a parallel component is transparent for the

client.

The outline of the paper is as follows. In the next section we give a description of the

space discretization methods used for structure and fluid; we combine herein geometrically

nonlinear models for structure discretized by Finite Elements [38] and a free-surface fluid

flow formulation (based upon the Volume-Of-Fluid strategy [7,30,55,75]) discretized by

the Finite Volume [25]. In Section 3 we describe how to provide the compatible space inter-

polations between two different discretizations on fluid-structure interface, and thus enforce

the corresponding interaction. It is also shown how the chosen method to ensure compat-

ibility of fields between the structure and fluid solvers can be implemented as a separate

CTL–component that can be coupled with a number of different codes (see also [46]). The

performance of parallel computations with fluid component and the CTL-based nested par-

allelization of fluid-structure interactionproblems is studied in Section 4. The numerical

simulations with a couple of large three-dimensional numerical examples, including large

number of d-o-f and application to free surface flows, are given in Section 4. The concluding

remarks are stated the last section.

2 Structure and fluid formulations

We start by giving the field discretization details typically used for solids and fluids, which

are important to understand.

2.1 Structure equations of motion

The structure motion is based on the Lagrangian description. Namely, we consider a struc-

ture domain Ωs with imposed displacements u on the Dirichlet boundary ∂Ωs,D and moving

under the loading of traction forces t on the Neumann boundary ∂Ωs,N and a body force

b applied in the whole domain Ωs. This dynamic motion has to be computed in the time

interval [0,T ]. The Cauchy governing equation for the structure describes the momentum

conservation. The strong form of this equation can be written with respect to the deformed

configuration as follows; given u on ∂Ωs,D × [0,T ], t on ∂Ωs,N × [0,T ] and b in Ωs × [0,T ],
find: u ∈ Ωs × [0,T ] so that:

∇ · JσF−T

︸ ︷︷ ︸

P

+ρs

(
b−∂ 2

t u
)
= 0 in Ωs × [0,T ] (1)

where ρs denotes the material density of the solid domain, u its displacement field and

∂ 2
t u the accelerations. We indicated above that the Cauchy stress tensor σ in the deformed

configuration can be linked to the first Piola-Kirchhoff stress tensor P formulated in the

initial configuration through the gradient F of the deformation and its Jacobian J (see [38]).

To close this Partial Differential Equations system we will link the displacements (or

rather its derivatives) with the stresses through constitutive law. For instance, an elastic ma-

terial model based on St.-Venant-Kirchhoff constitutive equation is assumed that links the

Cauchy stress tensor σ and the Green-Lagrange strain tensor E through:

F−1JσF−T = C : E, E =
1

2

(
FT F− I

)
and F = I+∇u (2)
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where C denotes the constitutive fourth-order elasticity tensor1. Thus, it is a priori impos-

sible to find directly an exact solution to the problem defined above. The idea is to find

the best approximation of the solution in a finite-dimensional space where the solution can

be found numerically. The FEM approximation [9,80,38] derived from weak forms of the

equilibrium equation (1) and can be written for this problem as given t on ∂Ωs,N × [0,T ] and

b in Ωs × [0,T ], find u ∈ U such that, for all δu ∈ U0:

Gs(u;δu) :=
∫

Ωs

ρs∂
2
t u ·δu+

∫

Ωs

σ : ∇δu−
∫

Ωs

b ·δu−
∫

∂Ωs

t ·δu

= 0

where U and U0 are functional spaces for the solution and its variation.

The solid domain Ωs is then discretized in a finite number of sub-domains or elements

Th = (κe)e=1,...,nel
so that the whole space is covered with the finite elements that do not

intersect. The solution space associated with this approximation solution is restrained to the

space of continuous element-wise polynomial functions, which is denoted:

U
h = U ∩

{

u ∈ C
0 (Ωs)

∣
∣
∣u|κ ∈ P

p (κ) ,∀κ ∈ Th

}

(3)

where P p (κ) is the space of polynomials of order p on κ . The same restriction U h
0 holds

on the associated vector space. The semi-discretized FE problem is defined as given t on

∂Ωs,N and b in Ωs, find u ∈ U h such that, for all δu ∈ U h
0 :

Gs(u;δu) = 0 (4)

This semi-discrete problem can also be written in a matrix notation by using the real valued

vectors u ∈ ❘nd−o− f :

Rs(us;λ ) :=Msüs + f int
s (us)− fext

s (λ ) = 0 (5)

where M is the mass matrix, f int
s with a geometrically nonlinear problem, and fext

s the con-

sistent nodal forces. Here the λ represents the boundary forces computed from the fluid

flow problem and imposed on the fluid-structure interface. Each matrix and vector of this

semi-discrete equation are properly defined by assembling locally computed array in each

element with the polynomial basis Ne of P (κe):

Ms,e =
∫

κe

ρsN
T
e Ne

f int
s,e (ue) =

∫

κe

∇N : P(ueNe)

fext
s,e =

∫

κe

NT
e be +

∫

∂κe

NT
e te

(6)

In order to complete the discretization process, the time integration of the structure

problem can be carried out by using standard time-stepping schemes [8,37]. In particular,

the Generalized HHT-α method [12] is used herein. The time interval [0,T ] is discretized

1 We note in passing that the formulation developed herein for fluid-structure interaction problem would

also apply to more elaborate inelastic constitutive models (see [38])
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into a finite number of time steps tN such as t0 = 0 and tNmax = T . In a typical time step

∆ t = tN+1 − tN , the time derivatives of nodal displacement are approximated with:

uN+1 = uN +∆ tu̇N +∆ t2

[(
1

2
−β

)

üN +β üN+1

]

u̇N+1 = u̇N +∆ t [(1− γ)üN + γ üN+1]
uN+α f

= (1−α f )uN +α f uN+1

üN+αm = (1−αm)üN +αmüN+1

(7)

In the semi-discrete form of the solid equation of motion in Eq. (5), the acceleration

ü and the displacement u are evaluated at tN+α f
and tN+αm For the elastic linear case, it

is shown [12] that there are optimum values for the parameters β ,γ,α and α for a given

spectral radius ρ∞ ∈ [0,1].

β =
(1+αm −α f )

2

4
,γ =

1

2
+αm −α f ,α f =

1

1+ρ∞

and αm =
2−ρ∞

1+ρ∞

(8)

The spectral radius controls the numerical damping of the time integration scheme. The

damping decreases with smaller values of ρ∞ which is maximum for ρ∞ = 0. For ρ∞ = 1 the

method is the classic trapezoidal rule. Other time integration schemes can be easily derived

from this general formulation [35].

2.2 Fluid equations in a moving domain taking into account free-surface

We use here an Arbitrary Lagrangian-Eulerian description of a two-phase flow (taking into

account both water and surrounding air) discretized by Finite Volume (see [25]). In this

Volume-of-Fluid (V.O.F.) method, an indicator function (volume fraction, level set or phase-

field) is used to represent the interface; the main remaining issue is how to convect the inter-

face without diffusing, dispersing or wrinkling it.This problem has been addressed in [7,30,

55,75]: Volume of Fluid (V.O.F.) methods use precise convection schemes that reconstruct

the interface from the volume fraction distribution before advecting it.

For complex flows (with jets, cavitation and aeration in the sloshing wave) it is natural

to consider the Navier-Stokes equations for two immiscible and incompressible flows (wa-

ter and air for instance) occupying transient domains Ωi(t) so that the whole fluid domain

considered Ω f (t) = Ω1(t)∪Ω2(t). The interface between the both domains Ω1 and Ω2 is

denoted Γ . In space-time domain Ω f (t)× [0,T ], the Navier-Stokes equations formulated in

an ALE framework apply. For an arbitrary motion of the total fluid domain Ω f described by

a displacement field um, it can be written as:

ρ∂tv+ρ (v− u̇m)∇ · v−∇ ·2µD(v) = −∇p+ f Γ +ρg in Ω f (t)× [0,T ]
∇ · v = 0 in Ω f (t)× [0,T ]

(9)

where p denotes the pressure field, v the velocity. We also introduce g that depicts the gravity

field, f Γ the surface tension forces. It can be expressed as f Γ = σκδΓ , where σ is the

surface tension, κ the curvature of the free-surface (i.e. interface between Ω1 and Ω2) and

δΓ the mass distribution concentrated at the surface (equivalent to a Dirac distribution).

Fluid material properties are the dynamic viscosity µ and the density ρ . To write a unique

formulation in the whole domain Ω f (t) we express the local material property values as the

function of ι :

ρ = ιρ1 +(1− ι)ρ2 and µ = ιµ1 +(1− ι)µ2 in Ω f (t)× [0,T ] (10)
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where the characteristic function or fluid volume fraction ι is defined as:

ι(x, t) =

{
1, for x ∈ Ω1(t)
0, for x ∈ Ω2(t)

(11)

Let us note that when the whole domain is filled with one fluid (ι = 1 ∈ Ω f ), the classical

Navier-Stokes equations in ALE framework appear2. The fluid volume fraction ι and the

mass distribution δΓ are linked by the following relation:

∇ι = δΓ n (12)

To close the set of equations we have to write the conservation of ι . When no reaction

between phases occurs, the fluid volume fraction evolves only by advection:

∂t ι +(v− u̇m) ·∇ι = 0 (13)

The conservation equation system on the whole domain Ω f in d dimensions can be

written as a function of the 2d+2 unknowns: um, v, p and ι are the solution of equations (9)

and (10) are verified. Traditional Computational Fluid Dynamic programs solve the fluid

equations on a fixed (Eulerian) grid. This present a difficulty in fluid-structure interaction

problems because of moving domains at the fluid interface which follows the deformations

of the structure. The classical approach to overcome this difficulty is to consider the so-

called Arbitrary Lagrangian Eulerian (ALE) method where the whole grid is moved inside

the fluid domain, in trying to follow the movement of the boundary. However, this leads to

the difficulty of pertaining the quality and the validity of the fluid inner mesh for different

new shapes of the boundary This is solved by building a suitable map for the domain motion

given its interface displacement. The fluid displacement um is arbitrary inside the domain

Ω f , but on the boundary it has to fulfill the condition:

um = um on ∂Ω f (t)× [0,T ] (14)

Inside the fluid domain Ω f the fluid displacement is an arbitrary extension of um|∂Ω f
:

um = Ext

(

um

∣
∣
∣
∂Ω f

)

(15)

The latter is possible to construct by solving the Laplace smoothing equation:

∇ · (γ∇um) = 0 in Ω f (16)

This kind of Laplace smoothing equation is known to have some limitation when the defor-

mation of the fluid domain is governed by large rotations (e.g. see []). In our case it shows

sufficient quality performance when the diffusion coefficient is made spatially dependent

upon the distance to the fluid-structure interface.

The second major difference from solids concerns the favorite discretization technique

for fluid in terms of the Finite Volume Method. The latter will transform the weak form

of the continuous equations in (9) to (16) into a set of algebraic equations that can be

solved numerically. One of the goal of this work is to couple different codes, with dif-

ferent dicretization methods (FEM for solids and FVM for fluids). this keeping the main

trends of computational scientific software. Namely, as FVM, contrary to FEM, leads to

2 Note that the stability proof for coupled fluid-structure interaction problem given in Part I is for this

classical case



7

intrinsically conservative methods at the local stage they are often preferred in commercial

and non-commercial softwares (Phoenics, FLuent, FLow3D, Star-CD, Code Saturne, Open-

FOAM [44] are all FVM based). Moreover, there is a great number of reference books on

the subject, among them [63,25]. We are however aware that work is made in order to solve

fluid with Finite Elements (see for instance [18,29,27,54,36,65,72,73,69,79]).

The FV formulation can be written directly using an integrated form of the conservation

equation written in (9). Another possibility is to consider the restriction of the solution space

of weak form problems. For consistency with the structure sub-problem formulation we

chose to describe the FV strategy in latter framework. The weak form of the Navier-Stokes

equation can be written as [32], find (um, ι ,v, p) ∈ U ×I × V ×P , such that, for all

(δum,δι ,δv,δ p) ∈ U0 ×I0 ×V0 ×P0:

G f :=
∫

Ω f

∇ · (γ∇um)δum +
∫

Ω f

(∂t ι +(v− u̇m)∇ι)δι
∫

Ω f

ρ∂tv ·δv+
∫

Ω f

ρ∇(v− u̇m)⊗ v ·δv−
∫

Ω f

∇ ·µ f D(v) ·δv

+
∫

Ω f

p∇ ·δv+
∫

Ω f

∇ · vδ p+[B.C. in a weak form]

= 0

(17)

where U , I , V and P are suitable functional spaces for for the solution fields.

For this method, the whole volume Ω f is divided into a set of of discrete elements,

here called discrete volumes (κ f ,e)e=1,nel
covering the whole domain (Ω f = ∪

nel
e=1κ f ,e) with-

out overlapping (∩
nel
e=1κ f ,e = /0). For a Finite Element discretization, the solution spaces are

restricted to suitable spaces of piecewise polynomial functions over the set of discrete ele-

ments. For a Finite Volume discretization used herein, the test functions are chosen in the

space of characteristic discrete volume functions. For instance, the velocity can be approxi-

mated as:

V
h = V ∩

{

v

∣
∣
∣v|κ ∈ span(ικ),∀κ ∈ T

h(Ω f )
}

(18)

where ικ is the characteristic function of the element defined as:

ικ : Ω f −→ ❘

x −→

{
1 if x ∈ κ
0 if x ∈ Ω/κ

(19)

The same kind of restriction holds for the solution spaces of equation (17). Therefore, the

function are piecewise constant by elements, and with the restriction of the weak formulation

reduces to: find (uh
m, ι

h,vh, ph)∈U h×I h×V h×V h, such that,for all (δuh
m,διh,δvh,δ ph)∈

U h
0 ×I h

0 ×V h
0 ×V h

0 : G f ((u
h
m, ι

h,vh, ph);δuh
m,διh,δvh,δ ph) = 0 . The divergence terms in

equation (17) can be written in terms of flux at the boundary of volume controls using the

Gauss theorem. Hence, the weak formulation can be written as:

0 = ∑
κ

{∮

∂κ
dΓ · (γ∇um)

}

− [B.C.]

0 = ∑
κ

{∫

κ
∂t ι +

∮

∂κ
dΓ · (v− u̇m) ι

}

− [B.C.]

0 = ∑
κ

{∫

κ
ρ∂tv+

∮

∂κ
ρ dΓ · (v− u̇m)⊗ v−

∮

∂κ
dΓ ·µ f D(v)+

∮

∂κ
p dΓ

}

− [B.C.]

0 = ∑
κ

{∮

∂κ
dΓ · v

}

− [B.C.]
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where dΓ is the elementary surface vector. Note that there is no continuity requirement

for the solution (contrary to classical FE), and therefore the approximate solutions need

not to be defined at the interface. Their flux can be computed without being imposed by

the restriction of the solution space to the FV space. The only difficulty is now to build

an accurate representation of the fluxes at the boundaries from a piecewise constant field.

On each control volume, three levels of numerical approximations are applied to build the

boundary fluxes: interpolation to express variable values at the control volume surface in

terms of nodal values (depending on where the variable is stored); differentiation to build

convective and diffusive fluxes the value of the gradient of the quantity of interest – or at

least its approximation – is required; integration to approximate surface and volume integral

using quadrature formulæ.

The semi-discrete form of the discretized fluid problem can be written in a matrix form

as follows. The fluid mesh motion considers that um is imposed by the motion of the interface

u:

Rm(um;u) := Kmum −Dmu= 0 (20)

where Dm is a projection/restriction operator and Km governs the extension of the boundary

displacement (see Eq. (16)). The volume fraction ι , the d components of velocity v and

pressure p are coupled through a set of non-linear equations. Written in a matrix forms, it

gives the following semi-discrete problem:

R f (ι ,v f ,p f ;um) :=





Mι ι̇ +Nι(v f − u̇m)ι
M f (ι)v̇ f +N f (ι ,v f − u̇m)v+K f (ι)v f +B f p f − f f (ι)

BT
f v f



= 0 (21)

where Mι and Nι are the matrices associated to the advection problem of the fluid volume

fraction, M f is a positive definite mass matrix, N f is an unsymmetric advection matrix,

K f is the conduction matrix describing the diffusion terms, and B f is for the gradient ma-

trix, whereas f f is the discretized nodal loads on the flow. This matrix form also takes into

account the boundary conditions; special care has to be taken concerning the discretiza-

tion of boundary conditions – and especially normal flux – when using the Finite Volume

Method [31].

One way to solve the flow problem is to consider a monolithic solver handling all equa-

tions simultaneously. Another way is to consider a split between the mesh motion, the vol-

ume fraction advection, the momentum and the continuity equations, and to use an operator

split-like procedure often referred to the segregated approach [63]. This approach is favored

for its computational efficiency compared to the monolithic scheme. Indeed, even with a

simple fixed point iteration strategy its cost is less important than that of the monolithic ap-

proach for large size problems [25]. In the work presented herein, the segregated approach

will be used because of its efficiency.

Let us note that for a given motion of the fluid domain, the coupling between the mesh

deformation and the Navier-Stokes equation is weak, in the sense that no variable like ve-

locity v or pressure p influences the fluid domain deformation under imposed boundary

displacements. The coupling between the mesh motion problem and the fluid momentum

equation can therefore be ensured explicitly.

The only remaining question is the choice of velocity variation in the time step ∆ t =
tN+1− tN . As the mesh motion is arbitrary and does not rely on any physical phenomenon, it

is a priori possible to take any velocity evolution on the window [TN ,TN+1] so that the initial

mesh deformation is equal to um,N and the final mesh deformation is equal to um,N+1.
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The Geometric Conservation Law demands a numerical scheme to reproduce exactly

and independently from the mesh motion a constant solution. This condition can be found

in the literature for ALE formulation discretized either by the Finite Volume [16] or the

Stabilized Finite Element methods [26]. It is proved [19] that the velocity of the dynamic

mesh needs to be computed for all first and second-order time integration schemes (like

implicit Euler or Crank-Nicholson):

u̇m =
um,N+1 −um,N

∆ t
(22)

The volume fraction function is supposed to be sharp at the interface between water and

gazs, and therefore, standard FV discretization that can be strongly diffusive cannot be ap-

plied, as they would smear the interface. One way to guarantee a sharp and bounded solution

is by using a numerical scheme designed for the multi-dimensional advection equation [55].

We will not enter into the details of such a treatment, but let us note that, in our case, the

treatment of the volume fraction requires time sub-cycles, since an explicit treatment re-

ferred to as MULES (Multidimensional Universal Limiter with Explicit Solution) is used

(see [75,7]).

For the coupling between the pressure equation and the momentum equlibrium, strat-

egy based upon ACM (Artificial Compressibility Method) [11], or pressure correction tech-

niques such as SIMPLE (Semi-Implicit Method for Pressure Linked Equations) [64,76] or

PISO (Pressure Implicit with Splitting of Operators) [42,43] are traditionally used in CFD.

They often rely on the use of suitable relaxation parameters [25] in order to reach conver-

gence for the stiff coupled problem. In [67], a comparison between ACM and pressure-

correction techniques is given and in [4], a comparison of two pressure-correction algo-

rithms showed the overall better performances of PISO algorithms over SIMPLE ones.

In this work, PISO algorithms are used to solve our CFD problem. The semi-discrete

form of the Navier-Stokes equation is discretized in time using implicit integration schemes

(the Euler implicit, or the second order Crank-Nicholson scheme). The discretized momen-

tum Eq. (21) is split into the following way when an implicit integration scheme is used:

A f (vN+1)vN+1 −H f (vN ,vN+1) =−B f pN+1 (23)

where A f stands for time derivative terms in a cell (and is therefore diagonal) and H f takes

into account all neighboring velocity and source terms in elements. The incompressibility

condition can be re-written in a discrete form using the previous split as:

BT
f

1

A f (vN+1)
B f pN+1 −BT

f

1

A f (vN+1)
H f (vN ,vN+1) = 0 (24)

For the PISO algorithm, the coupling between the incompressibility condition and the

momentum equilibrium parts of the Navier-Stokes equation is assured in an iterative way.

It is not fully implicit, as corrective term of the velocity is introduced explicitly. Hence, in

the correction step, it is supposed that the influence of the transported term is negligible

compared to the pressure gradient correction terms. Therefore, even with an implicit time

integration scheme, the stability of the PISO algorithm remains conditional, and when the

Courant Number becomes too large (meaning that the transport due to the flow over a cell

is not well captured) the PISO algorithm fails to converge.
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3 Space interpolation between solvers

The use of different discretization and time-integration schemes, for the fluid and the struc-

ture part, do not provide in general a matching mesh at the interface. This feature is taken

into account in the nonlinear stability analysis performed in the Part I of this paper by in-

terpolation matrix in the contraction parameter α . Furthermore, even for matching meshes,

as the geometries of the domains are not the same on both sides of the interface, an op-

timal numbering of the nodes can lead to different orders for the interface nodes. In the

example proposed herein, only this latter point is of interest. Last but not least, different

discretization techniques (Finite Element versus Finite Volume) or different order p of the

polynomials can be used for constructing solution to fluid-structure interaction problem. In

the domain of FE applied to mechanical engineering, extensive literature can be found on

how to build a consistent interpolation for both sub-problems at the interface [22]. For the

fluid-structure interaction problems, an interesting review can be found in [14]. For the sake

of simplicity, the use of Dirac functions has often been proposed [41,33].

In our approach, it was decided not to favor any particular mesh-based representation

at the interface, and even allow that the fluid problem can also be solved by a meshfree-

based method [61,13]. Namely, an interpolation strategy relying on radial basis function

is chosen herein. As suggested in [6], this method fits well with the current work where,

both sides of the problem are based on different approximation techniques. First, for the

structure we employ the FE approximation that requires values imposed at the nodes and

gives in return nodal values as answers. Second, in the FV discretization for the fluid part,

the fields at the interface are defined at the center of the cells, and not at the nodes as it

is done for FE. However, as the client has no reason to know the connectivity table of the

coupled component nor the faces centers coordinates, it was decided to interpolate the fields

internally in ofoam-2 and to set or get them at the points of the interface.

The Steklov-Poincaré operators for the fluid and the structure (described in Part I of this

paper and based on the FE and FV solvers) request imposed boundary values at the nodes

placed interface, and provide the values, for potentially different nodal points x f and xs.

The interpolation step from fluid to structure consist in solving a linear system as explained

subsequently.

Let us consider that the displacement vector at the Ns solid nodes (xs,i)i=1...Ns is given

as (us,i)i=1...Ns . We want to build the interpolation of this displacement field at the N f fluid

nodes in order to impose the fluid mesh motion as needed in ALE fluid computations. An

interpolation for each scalar field of the projected displacements in one of the Cartesian

directions has then to be built. This scalar field is denoted as ui = u(xs,i) at each points, and

the interpolation has to be performed d times for each vector field of dimension d.

Then the interpolation at a point x takes the form:

u(x) =
Ns

∑
i=1

ciΦ(x− xs,i) (25)

where Φ is a fixed basis function which is radial with respect to the Euclidian distance, i.e.:

Φ(x) = Φ(‖x‖2) = Φ(

√
√
√
√

d

∑
i=1

x2
i ) (26)
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The coefficients ci are determined by the interpolation condition:

u j =
Ns

∑
i=1

ciΦ(xs, j − xs,i) (27)

Thus, for interpolation of any field to interpolate, the coefficients ci have first to be

computed as the inverse of the following relation:

Mi jc j = u j (28)

where the interpolation matrix entries are computed as:

Mi j = Φ(xs, j − xs,i)

The last step is to compute the interpolated field by using the expression given in Eq. (25).

The choice of the radial basis function is governed by the requirement that the influence

of a center has to be smaller when the distance to an evaluation node increases. Elsewhere,

the global character of the radial basis function tends to smooth out all local effects. Another

desirable property is to use the functions with compact support which results with a sparse

interpolation matrix. In [6], a comparison between different smooth compact radial basis

functions for field transfer at the interface is given. In this work, global radial basis function

are used in the exponential form:

Φ(x) = exp−
‖x‖

h
(29)

where h is a characteristic distance between points.

The Interpolator implementation is described in [46]. The advantage of the compo-

nent use is the possibility to plug-in any interpolation software to the fluid-structure inter-

action framework that matches the Component Interface. The inverse problem of the full

matrix Mi j is here relying on the lapack or the Intel Math Kernel Library; the cost of such

an operation is around N3, but as the interface d-o-f are by far less than number of d-o-f

for each subproblem, in general this cost cannot be the bottleneck of the computations. One

of the advantages of the proposed approach is that the interpolation is exact for matching

nodes. It can be used without any lack of precision in a generic way for matching meshes

where the ordering is not the same for both subproblems.

4 COupling the software COmponents by a Partitioned strategy (cops) and parallel

computations

4.1 Software coupling applied to fluid-structure interaction

Coupling a fluid code and a structure code in order to produce the code for solving the

fluid-structure interaction problem is carried by master coupling approach, where a master

code sends request and receive data from the coupled software. Traditionally this approach

is quite intrusive, and imposes new developments inside the software. However, the use of

component technology with the middleware CTL (see [62]) eliminates the difficulties in the

master coupling approach. We will here insist on two points: the development of a compo-

nent based upon an existing code requires a very good understanding of its architecture, and

a deep knowledge of the physics behind. However, once the component is developed, it can

actually be used as a black box.
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The COupling COmponents by a Partitioned Strategy (cops) provides a generic imple-

mentation of the explicit and implicit DFMT-BGS algorithms for fluid-structure interaction.

The key idea is to re-use existing codes, here FEAP for structures and OpenFOAMfor fluids, as

elementary bricks to build upon the CTL components.

We note that cops itself is a component and has been successfully re-use in [2] for

sequential multi-scale approach to solving fluid-structure interaction problem. Dependency

graph of cops component is presented by a general overview of its architecture given in

UML syntax in Fig. 1.

The interface, defined in a .ci file, is realized by a C++ class named cops. The main

routine calls the coupling component, providing the path where the control file associated to

cops lies. The coupling component cops instantiates two sub-solvers, the one of coFeap for

the structure and another of ofoam-2 for the fluid problem and with a partitionedSolver

binding the two subproblems. PartitionedSolver is a template class that couples any com-

ponent matching a SimuCI or a CFDSimuCI where method is necessary to build the Steklov-

Poincaré operators, and optionally goback in time if sub-iterations of one subproblem in

implicit computations is asked for.

The PartitionedSolver instantiates a Picard method that is in charge of one Picard

iteration upon the coupled subproblem. One Picard iteration allows to determine the new

residual needed to check the convergence of the DFMT-BGS solver. The Picard class itself

relies on a template SteklovPoincare class.

4.2 Performance Comparison between system calls and file reading/writing for the fluid

component

In its first implementation (see [50]), the ofoam component architecture was based on file

reading and system calls. Behind the CFDSimu.ci interface is implemented a class that reads

output files from OpenFOAM and uses system calls in order to perform computation. This

implementation has the advantage of being not intrusive at all, since the component depends

neither on header files nor on OpenFOAM libraries. However, the slow execution speed for this

kind of implementation makes it prohibitively expensive for any large scale computations.

The second implementation described herein above concerns a component directly linked

to OpenFOAM, and it has the major advantage of working than the first. In order to evaluate

the performance gain obtained with the new implementation, we compare the CPU time

required by the call of methods of each component (ofoam-1 – based on file reading – and

ofoam-2 – the wrapper class and component build around OpenFOAM) on the same test case.

The latter concerns a Newtonian flow in a cylinder for fully 3D case. The chosen di-

mensions of the cylinder: diameter 1m and length 10m. The velocity on the inlet is imposed

as being uniform (10m.s−1), whereas at the outlet, the pressure gradient is set to 0. Perfect

wall conditions (zero velocity) are applied to tube walls. We consider following values for

material properties: density ρ = 1.0kg.m−3 and dynamic viscosity µ = 0.01m2.s−1. The

numerical simulations spans time interval from t = 0s to t = 0.01s. The discretization in

space is carried out by second order Finite Volume approximation. For time discretization,

the implicit Euler scheme with dt = 0.001s is applied. The algorithm chosen to handle the

computations with incompressibility constraint is based on PISO [25]. At each time step,

two outer corrections are performed to ensure the pressure velocity coupling. The solvers

for the fluid velocity and pressure fields are based on PBiCG and PCG respectively.

The computations are performed for meshes with 9×103, 72×103 and 576×103 cells

(the number of d-o-f equals roughly 4 times the number of cells). The velocity field magni-
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Fig. 1 A simplified UML class diagram for cops

tude for the final time step is represented in Fig. 2, indicating that the parabolic profile that

is expected away from the inlet is well represented.
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Fig. 2 Velocity field magnitude in the cylinder in m.s−1

cells 9×103 72×103

version ofoam-2 ofoam-1 ofoam-2 ofoam-1

m
et

h
o

d
s

init 5.03×10−01 5.50×10−01 3.96×10+00 3.79×10+00

getnodes 1.44×10−04 1.75×10−02 3.10×10−04 1.34×10−01

set 5.07×10−05 5.27×10−04 8.92×10−05 1.46×10−03

solve 6.10×10−01 9.66×10−01 1.60×10+01 1.73×10+01

get 2.00×10−04 3.48×10−02 6.29×10−04 2.68×10−01

total 1.17×10+00 1.89×10+00 2.00×10+01 2.19×10+01

cells 576×103 4608×103

version ofoam-2 ofoam-1 ofoam-2 ofoam-1

m
et

h
o

d
s

init 4.52×10+01 4.13×10+01 5.79×10+02 5.50×10+02

getnodes 8.81×10−04 1.10×10+00 3.18×10−03 8.41×10+00

set 2.06×10−04 4.74×10−03 6.33×10−04 1.78×10−02

solve 1.89×10+02 1.98×10+02 1.87×10+03 1.94×10+03

get 2.22×10−03 2.09×10+00 8.64×10−03 1.77×10+01

total 2.35×10+02 2.44×10+02 2.45×10+03 2.53×10+03

Table 1 Performance comparison between ofoam and ofoam-2 in terms of CPU time for each method given

in seconds; the latter has been measured using the CTL profiler (CTL Profile).

The overall performance of ofoam-1 and ofoam-2 components as expected (see Table 1).

The ofoam-1 component based on file reading will be intrinsically less efficient for methods

that require intrinsically a lot of data exchange compared to the computation cost (meth-

ods get nodes, pressure and velocity and set velocity and mesh displacements), since the

speed of access to data by opening and reading files written on the hard drive cannot com-

pete with a direct access to the memory. However, for all the methods that require a lot of

computations, the performances of ofoam-1 and ofoam-2 implementations are comparable

and mainly depends on the implementation of OpenFOAM itself, as the time spent in data

exchange is very small compared to the one spent in the computation, especially for a huge

number of d-o-f.



15

In Fig. 3, the bottleneck of a fluid computation pertains, as expected, to the problem

solving (matrix inversion for any method used). Note that the solve method is a bit faster

for ofoam-2 implementation since there is no need for the software to reload data before

performing computation. Thus, the slight advantages offered in terms of CPU time does not

alone justify the choice of building a new component ofoam-2. Rather the possibility of

reusing any class developed in the OpenFOAM project provides a better argument in favor of

the new implementation

4.3 Parallel CFD Component Performance and nested parallelization

For most fluid-structure interaction problems, the bottleneck of performances are flow com-

putations. For instance, in the problem presented in this article, where the fluid domain

surrounds the structure, more than 95% of the computational time is spend in the fluid com-

putation. Therefore, even if the parallelization of the coupling algorithm is of interest, this

can result in sufficient increase of efficiency only in the case if the fluid and the structure

computations require the same CPU time. For all other cases we will used the nested paral-

lelization, where the parallel coupling algorithm can accommodate parallel fluid computa-

tion. The implementation of nested parallel coupling algorithms can then be accomplished

with CTL in a quite straightforward manner by using a certain number of instance of the

ofoam-2 component controlled by the CTL.

The performance of the parallel version of the ofoam-2 component is tested on the same

problem of flow in a cylinder. For space discretization and the chosen mesh is handled by

METIS [47] in each sub-domain with the same weight (Fig. 4). In each computation, the

bottleneck is computation of the flow evolution between two time steps. The computational

time reported in this section is the average time T CPU required to solve one time step of

the given problem and to write the associated results. The initialization time is therefore not

taken into account.

We consider the main indicator to measure the performance of the nested parallelization

to be the speed-up χ defined as:

χ =
T CPU

1

T CPU
N

(30)

where T CPU
1 is the computational time for the problem solved on one processor and T CPU

N

for N processors. A linear speed-up: it means that taking N processors, one expects to divide

the computational time by N, cannot be obtained with ofoam-2. Namely, the communication

between processes, that is highly linked to size of interfaces, has to be taken into account.

For this reason, the notion of efficiency can be introduced in hoping to have it close to 1:

ξ =
T CPU

1

N ×T CPU
N

(31)

We tested the nested parallel computations on the same multi-processor machine or on

a cluster architecture where computers communicate throughout a network, and we report

both set of results. We underline that the given results are empha priori different from the one

obtained comparing the parallelization of OpenFOAM, as the communication is made between

CTL components.
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Fig. 3 Performance comparison between some ofoam and ofoam-2 methods for different mesh refinements.
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Fig. 4 Cylinder meshed with 9×103 cells split via METIS in 8 sub-domains for parallel runs

4.3.1 Parallelization on the same multi-processor machine

For this case we consider a rather coarse mesh with 72× 103 cells (≃ 216× 103 d-o-f).

Computations are run with the same parameters as the one used for the comparison between

ofoam-1 and ofoam-2 (see Sec. 4.2). The CPU time results are given in Table 2.

number of method solve method init

processor N T CPU
N in (s) T CPU

N in (s)

1 5.18×100 9.57

2 2.92×100 10.75

3 2.34×100 10.17

4 1.74×100 9.52

5 1.46×100 9.24

6 1.16×100 10.15

7 1.03×100 9.86

Table 2 CPU Time for two methods handled by ofoam-2 component parallelized on the same machine with

2 Intel Quad cores at 3.0Ghz.
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Fig. 5 Parallel speed-up on a multi-processor machine
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The graphic illustration of the results is given in Fig. 6, showing that efficiency of nested

parallel computing is maintained around 0.7, even with 7 processors. Similarly, in parallel

computation we 7 processors one can observe a Speed-up (Fig. 5) of around 5 times.
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Fig. 6 Parallel efficiency on a multi-processor machine

However, the question of the representative value of this computation can be raised, as

the mesh size is maybe not big enough and compared to the time spend in the solving, the

communication cost between processes may not be negligible.

number of reference compact transfer standard transfer

cells T CPU
1 in (s) T CPU

6 in (s) T CPU
6 in (s)

9×103 3.91×10−1 1.38×10−1 4.52×10−1

30375 1.54×100 5.27×10−1 7.39×10−1

72×103 5.18×100 1.16×100 1.27×100

243×103 2.84×101 8.14×100 6.97×100

576×103 1.07×102 4.13×101 3.17×101

4608×103 1.66×103 8.42×102 7.13×102

Table 3 CPU Time for the solve for different meshes 3.0Ghz with standard and compact transfer

For that reason, we compute the flow in a cylinder problem for different mesh refine-

ments – from 27×103 to roughly 18×106 d-o-f – on one processor, and then repeat parallel

computations on 6 processors. Here is represented the computational time spent for the solve

method with direct and compressed transfers between the processes. In compressed transfer,

each double is converted into a float, leading to a small loss of accuracy.

These results are illustrated in Fig. 7 in terms of efficiency of the parallel computation on

6 processors as a function of number of cells for different mesh refinement. One observes a

decrease in the performance for coarser grids, as for these cases the communication between

processes is not negligible. This is even more noticed for standard transfer when one chooses

not to compress the double into float.

Moreover, we also observe a decrease in the performance for finer meshes. This is the

consequence of imposing the incompressibility conditions, which requires more iterations

in a parallel than in a serial run. Namely, it is known that state solver convergence is affected

by running in parallel as the preconditioning and smoothing operations in the cells adjacent

to the boundaries are less effective, and lead to a small increase in the number of iterations.

Moreover, in any such case, decreasing the accuracy when the values between processes are

transmitted with compact transfer is not a good choice, since the gain obtained on the com-
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Fig. 7 Parallel computation performance for different mesh sizes

munication process (especially on the same machine) does not justify the loss of precision

and result instead in an increase of the number of iterations.

Finally, for the finest meshes, the performance of the parallel computation drops sig-

nificantly. This phenomenon seems to be due to the architecture of one cluster node where

not only the processor velocity but also the bus communication speed for exchanging data

between processors limit the overall performance, especially when huge transfer of data

is required. This difficulty can be overcome with parallel computations on a cluster with

several machines, as shown in the next section.

4.3.2 Parallelization on a cluster and network communication

For the parallel computations on several nodes (machines) of a cluster, we only consider the

finer grid with 4.608×106 cells (roughly 18×106 d-o-f). Each node is linked with the other

via a fast network, and possesses 8 Intel processors with a 3.0GHz frequency. Computations

are run on eleven nodes of the cluster. The load of each node is maintained at the same level

as much as possible3. The results obtained for the solve method are presented in Table 4.

The time spent for other methods like initialization is not presented, as the result in Table 2

has shown that the parallelization is of little influence for these methods.

number of method solve

processor N T CPU
N in (s)

1 1.55×103

2 7.10×102

4 3.85×102

8 2.33×102

16 1.31×102

32 9.64×101

64 8.26×101

Table 4 CPU Time for the solve method parallelized on 11 cluster nodes.

Fig. 8 represents the real speed-up observed to solve one time-step against the theoret-

ical linear speed-up. The latter is shown to confirm that almost linear speed-up is observed

until more than 4 processors of each node are loaded. The same value was observed in the

3 For instance, for the parallel computing on 32 processors, the first ten nodes were loaded on 3 of their

processors whereas those on the last one two processors were used.
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previous section, when the parallelization was done on the processors of the same machine,

thus indicating some limitation of the architecture of the cluster nodes.
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Fig. 8 Parallel computation speed-up for runs on different cluster nodes

The efficiency of the parallel computing, as shown in Fig. 9 remains around optimum

value of 1 before it starts decreasing. Note that the efficiency for parallel computation in a

small number of cluster nodes is above the theoretical optimum. This is due to the fact that

less data need to be handled by the memory on each nodes. It is also of interest to compute

the CPU time for the same range of mesh size as the one given in Table 5.
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Fig. 9 Parallel computation efficiency for runs on different cluster nodes

We also computed the efficiency obtained for different mesh sizes and present the results

in Fig. 10. For this computation, each grid is split into 6 sub-domains, then solved on 6

different machines. Contrary to the phenomenon observed for parallel runs on the same

machine (Fig. 7), the expected gain in efficiency is observed with increasing number of d-o-

f and parallel computation on different machines. In other words, the bigger is the mesh, the

more efficient is the parallel computation, since the communication between components

then remains small compared to the time spent for solving the problem.

Handling data transfer with compacting the exchanged values from double to float for

is not advantageous for all computations of the studied flow case. Namely, the speed-up in

communication for compact transfer is diminished by the loss in accuracy that leads to more

iterations to smooth the values and precondition the solvers, especially near the sub-domain

boundaries.



21

number of reference standard transfer compact transfer

cells T CPU
1 in (s) T CPU

6 in (s) T CPU
6 in (s)

9×103 3.83×10−1 2.74×10−1 3.33×10−1

30×103 1.55×100 5.44×10−1 6.38×10−1

72×103 4.38×100 1.16×100 1.29×100

243×103 2.45×101 4.02×100 4.58×100

576×103 8.11×101 1.28×101 1.57×101

4608×103 1.55×103 2.59×102 2.90×102

Table 5 CPU Time for the solve for different meshes with standard and compact transfer
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Fig. 10 Parallel computation performance on six different cluster nodes for increasing mesh sizes from 216×
103 to 18×106 d-o-f

5 Application examples

5.1 Three-dimensional flag in the wind

This problem was recently introduced in [77], as a 3D generalization of the oscillating ap-

pendix problem discussed in Part I of this work. It can be thought of as a simplified three-

dimensional model for the interaction of a flag with an incompressible viscous flow. All di-

mensions and the geometry of the problem, defined in Fig. 11, are given in cm. The material

properties for the fluid are: the mass density ρ f = 1.18×10−3kg.cm−3 and fluid kinematic

viscosity ν f = 0.1542cm.s−2.

The fluid problem is discretized with FV method, and then split in 6 sub-domains by

METIS software tool in order to performs parallel computations (see Fig. 12). The chosen

boundary conditions, specified in Fig. 11. are as follows: for lateral walls of the fluid domain,

the velocity boundary condition allows for slipping; at the inflow, a constant velocity is

imposed with v = (100cm.s−1,0,0); Zero gradient pressure is specified at the outflow.

In order to smooth the first steps of the fluid-structure interaction computations, we

do not start from the rest, but rather perform the fluid only computation from t = −2s

to t = 0s, with the inflow velocity increasing in a smooth way the velocity according to:
1
2

(
sin

(
π
(

t+1
2

))
+1

)
The fluid-structure interaction will start at t = 0s. All the points of the

fluid mesh will move in the ALE strategy, with their motion governed by a smoothing pro-

cess based on the Laplacian operator and a diffusivity coefficient whose value depends on

the distance to the appendix. The fluid discretization techniques and solvers are equivalent

to the one used in the two-dimensional example.

In the previous computation of this problem achieved in [77], the discretization of the

structure problem is performed by shell finite elements. Three-dimensional elements with

quadratic shape functions are used herein, with each elements therefore containing 27 nodes.
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Fig. 11 Flag in the wind: geometry and boundary conditions

(a) Fluid domain decomposed (b) Zoom on the deformed mesh

Fig. 12 Flag in the wind: Decomposed fluid domain and zoom on the structure

Two mesh grading are used: the coarse mesh with 663 nodes, and the fine mesh with 2475

nodes. The material properties used for the solid are: a elastic material with Young’s modulus

Es = 2× 106Pa and Poisson’s coefficient νs = 0.35 and a density ρs = 2.0kg ·m−3. The

model can undergo finite elastic deformation with St.-Venant–Kirchhoff constitutive model

(see Eq. 2 and [38]). The time integration is handled by a generalized-α scheme with: ρ∞ =
1
2
;β = 4

9
;γ = 5

3
; and α = 2

3
. At each iteration, the linearized system of solid equations of

motion is solved by a direct solver for real value non-symmetric system matrix.

fluid solid time

Discretization cells d-o-f nodes d-o-f steps

Coarse 37×103 149×103 663 1989 6×103

Fine 290×103 1159×103 2475 7425 6×103

Table 6 Number of d-o-f for coarse and fine discretization of the three-dimensional oscillating appendix
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The total number of d-o-f for the coupled problem is given in Table 6 for both coarse

and fine mesh. The computation is carried out with a coupling time step of 1× 10−3s for

each mesh. The coupling scheme used is DFMT-BGS with Aitken’s relaxation. The initial

relaxation parameter is ω = 1.0. The chosen value of the residual tolerance for coupled sim-

ulation is: ‖r
(k)
N ‖2 ≤ 1×10−7. In this work, only fluid-structure computations with implicit

DFMT-BGS coupling algorithm are performed. However, it should have been possible to

consider explicit coupling, as for the two-dimensional version of this problem as presented

in Part I, since the convergence of implicit scheme with the predictor of second order is fast

and requiring no more than 4 to 5 iterations per time step.

T
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T
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Fig. 13 Flag in the wind: motion of the structure and stream-tube snapshots for some time steps.

It is rather difficult to select the most pertinent result for tri-dimensional flow problems,

and even more for fluid-structure interaction problems. Hence, in order to obtain a qualitative

picture of computed results, in Fig 13 represent the stream-tubes going through the two lines

(x = 6.0,y,z = 3.0) and (x = 6.0,y,z = 7.0) along with corresponding the deformed shape

of the flag.

The displacement of the points at the free-end represented in Fig. 14, show that the mo-

tion of the flag corresponds to the first flexural mode. It is hard to predict the exact solution

for such a complex three-dimensions flow in with a relatively high Reynolds number. It is

interesting to note that the results in [77] indicate that, after a certain time, some torsion
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coupling FEM for structure and stabilized FEM for fluid).

Fig. 14 Displacement of structure extremity

modes occur in the flag, that could not be confirmed here at the same Reynolds number.

Consequently, the motion amplitude presented herein is around 4 times bigger than the one

obtained in [77]. Our results are more in agreement with the ones provided for 2D version

of the same problem (see [18,58,78]) with a flexible appendix.

5.2 Three-dimensional sloshing wave impacting a flexible structure

In [49], we have studied and validated our coupling framework in application free-surface

flow in interaction with non-linear structures. The problem presented herein emphasize the

3D capacities of our approach as well as the possibility to deal with complex flow. This

example is a simplified representation of a dam-breaking event that brings about the sloshing

wave impact on a flexible structure standing in its way, as presented in Fig. 15. At initial

time t = 0s, a three-dimensional water column starts falling down under the gravity loading.

Spreading further at a later time, it hits the obstacle which is a slender plate-like solid body

made of elastic material that can undergo large deformations. The dimension of the problem

and the imposed boundary conditions are given in Fig. 15.

In order to prevent that the water will bounce-back and again hit the structure after

breaking on the walls, only the left and bottom planes of the fluid domain are defined as

non-slipping walls, while the others are defined with atmospheric boundary condition for

the pressure.

The material properties are chosen as follows: for the high density fluid (the water)

the density and the kinematic viscosity are ρ f ,1 = 1×103kg.m−3 and ν f ,1 = 1×105m.s−1,
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Fig. 15 Three-dimensional wave impacting an obstacle: geometry and boundary conditions

whereas for the low density fluid (the air in the remaining part of the domain) ρ f ,2 = 1kg.m−3

and ν f ,2 = 1×106m.s−1 . The mesh motion problem is solved using a Laplacian smoothing

material where the diffusion coefficient is a quadratic inverse function of the distance to the

interface between structure and fluid.

The fluid domain is discretized with Finite Volume cells covering always the complete

domain either by one phase or by the other. The computations are performed for two dif-

ferent meshes with the chosen discretization and the number of cells given in Table 7. An

explicit-implicit algorithm is used to compute the two phase flow evolution from the corre-

sponding the Navier-Stokes equations. In the Volume of Fluid (V.O.F.) method used herein

(see [30]), an indicator function (volume fraction, level set or phase-field) is used to repre-

sent the phases; leaving only the remaining issue on how to convect the interface without

diffusing, dispersing or wrinkling it. This is particularly troublesome when the volume frac-

tion is chosen as an indicator function because the convection scheme has to guarantee that

the volume fraction stays bounded, with the values that remain within its physical bounds

of 0 and 1. We here follow the idea proposed in [7]: Volume of Fluid (V.O.F.) method using

convection schemes that reconstructs the interface from the volume fraction distribution be-

fore advecting it. The equation associated with the characteristic function is solved with an

explicit time integration scheme whereas the remaining terms are solved with implicit time

integration schemes (see [75,7]). The fluid is handled by second order space discretization

with a Van Leer limiter used for the advection terms, and the implicit Euler time-integration

scheme. Note that small time steps are required for the explicit solution of the phase function
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indicator equation, as well as the half-implicit nature of the coupling between the momen-

tum predictor and the pressure corrector. At this scale of modelling it is not required to

consider surface tension between the two fluids.

The structure model is constructed by using three-dimensional elements with quadratic

shape functions, where each element has 27 nodes. The material properties used herein cor-

respond to a neo-Hookean elastic material with Young’s modulus Es = 1×106Pa, Poisson’s

ratio νs = 0, and a density ρs = 2500kg ·m−3, The chosen model an represent finite de-

formation. The time integration is carried out by a Generalized-α scheme with the chosen

parameters as ρ∞ = 1
2

β = 4
9
, γ = 5

3
and α = 2

3
. The total number of d-o-f given in Table 7

for both the coarse and fine discretization.

fluid solid number of

Discretization cells d-o-f nodes d-o-f time steps

Coarse 13×103 63×103 363 1.1×103 1×105

Fine 104×103 520×103 2205 6.6×103 1×105

Table 7 Number of d-o-f for coarse and fine discretization of the three-dimensional dam-breaking problem

The computation of the coupled problem is carried out by an iterative scheme. The

results of fluid and structure computations are matched for a time step of 1× 10−4 for the

coarse and 2× 10−5 for the fine discretization. The coupling scheme is DFMT-BGS with

Aitken’s relaxation with the initial parameter ω = 0.25 and the predictor of order 1. The

absolute tolerance for coupled computation is equals to:

‖r
(k)
N ‖ ≤ 1×10−6 (32)
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Fig. 16 Number of iterations in order to make the DFMT-BGS algorithm converge for the three-dimensional

dam-breaking problem

The number of iterations required to reach the convergence criteria is given in Fig. 16.

Note that there is no coupling iteration before the water hits the structure (the effect of

air flow can almost be deemed negligible with respect to the structure). During the water-

structure contact the number of iteration depends on chosen the discretization density. In

reaching the opposite wall, the water does not rebound on the wall but simply flows away,

which again does not require any iteration.

In Fig. 18, the water or high density fluid domain is represented, as well as some part

of the fluid mesh and the structure displacement. The first 0.1s of the simulations, the water
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column falls under the gravity loading. There is no effect whatsoever on the structure until

the high density flow reaches its bottom. The maximum amplitude of the motion is obtain at

t = 0.25s, before the solid comes back to free-vibration phase.
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Fig. 17 Three-dimensional dam break example: obstacle displacement measured at the center of the top face

In Fig. 17 the motion of the free-end of the obstacle is plotted. Contrary to the two-

dimensional version of this example presented in [49], small drops of high density fluid are

not interacting with the obstacle after the main shock. Therefore, the motion of the solid part

remains rather well described even with the coarsest grid.

6 Conclusion

We propose in this work a solution approach to fluid-structure interactionproblems that al-

lows coupling different space discretization methods, such as FE for structures and FV for

fluids. As illustrated by numerical results, the proposed strategy is applicable to demanding

problems of this kind that deal with complex free-surface flows interacting with geometri-

cally non-linear structures. The proposed strategy can also employ different time integra-

tion schemes, and interface matching conditions between fluid and structure in the spirit

of implicit analysis and chosen interface field representation. The stability in this nonlinear

context is demonstrated by numerical examples, confirming the proof from mathematical

analysis provided in Part I of this paper).

The key idea of this work pertains to producing the final software tools for complex FSI

problems by coupling the existing software products that were developed (and tested) pre-

viously for either structure or fluid. The code-coupling strategy is capable of dealing with

full 3D models, where the computational efficiency is of paramount interest. The latter is

ensured by the nested parallelization, where the parallelization is carried out not only for

coupling of fluid and structure through interface matching condition, but also for flow com-

putations that are the most expensive task. Both code-coupling and nested parallelization are

handled by the CTL, with the latter as its new feature.
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2004.

23. Carlos A. Felippa, K. C. Park, and J. A. de Runtz. Stabilization of staggered solution procedures for

fluid-structure interaction analysis. In Computational methods for fluid-structure interaction problems,

pages 95–124, 1977.
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