-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by HAL-Ecole des Ponts ParisTech

archives-ouvertes

Recovering missing data on satellite images

Isabelle Herlin, Dominique Béréziat, Nicolas Mercier

» To cite this version:

[sabelle Herlin, Dominique Béréziat, Nicolas Mercier. Recovering missing data on satellite
images. Heyden, A. and Kahl, F. SCIA 2011 - Scandinavian Conference on Image Analysis,
May 2011, Ystad Saltsjobad, Sweden. Springer Verlag, 6688, pp.697-707, 2011, Lecture Notes
in Computer Science. <10.1007/978-3-642-21227-7_65>. <inria-00612328>

HAL 1d: inria-00612328
https://hal.inria.fr /inria-00612328

Submitted on 14 Oct 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/48347968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00612328

Recovering missing data on satellite images

Isabelle Herlin''2, Dominique Béréziat®, and Nicolas Mercier!?

! INRIA
2 CEREA, join laboratory ENPC-EDF R&D — Université Paris-Est
3 Université Pierre et Marie Curie — LIP6

Abstract. Data Assimilation is commonly used in environmental sci-
ences to improve forecasts, obtained by meteorological, oceanographic
or air quality simulation models, with observation data. It aims to solve
an evolution equation, describing the dynamics, and an observation equa-
tion, measuring the misfit between the state vector and the observations,
to get a better knowledge of the actual system’s state, named the ref-
erence. In this article, we describe how to use this technique to recover
missing data and reduce noise on satellite images. The recovering pro-
cess is based on assumptions on the underlying dynamics displayed by
the sequence of images. This is a promising alternative to methods such
as space-time interpolation. In order to better evaluate our approach, re-
sults are first quantified for an artificial noise applied on the acquisitions
and then displayed for real data.

1 Introduction

Satellite acquisitions are commonly contaminated during the acquisition process:
images display noise of various extent. Moreover, part of the data are covered
by clouds. These structures are considered as occlusions in case of ocean images.
The issue of recovering noisy and missing data has been extensively studied by
the scientific community, in order to allow a better visualization and under-
standing of the information. A first class of methods groups the interpolation
techniques [1,8]. Interpolation is used to convert data acquired on an irregular
grid to a regular one. B-splines are frequently chosen as they allow a good com-
promise between the adequacy to input data and the regularity of the result.
If interpolation is applied to the issue of recovering missing data, regions can
be recovered with multi-scale B-splines [10]. Another possibility is to use a nor-
malized convolution [9] applying only on valid pixels. The kernel convolution,
usually chosen Gaussian, can be driven by the local image gradient orienta-
tion [12]. However, if the surface of missing data is too large, these techniques
become insufficient. A second class of methods concerns the so-called “inpaint-
ing” approaches, which make use of oriented diffusion processes. Using the local
orientation of image gradient, it becomes possible to close interrupted lines [6],
and even, to recover large regions by diffusing the image texture in the direction
of the image gradient [4,5,7,11,14]. However, these methods are either spatial
or space-time techniques, with time only considered as an additional dimension:



they do not use any knowledge on the underlying dynamics that is visualized by
the image sequence. In this paper, we propose an alternative and design a new
data assimilation method to recover missing data, based on assumptions over
the dynamics.

Section 2 briefly summarizes the weak formulation of variational data assimila-
tion, that is applied in the paper. Section 3 describes its application to the issue
of recovering missing data while Section 4 displays results and quantifies them
on artificial data.

2 Variational Data Assimilation

Let us first summarize the principles of variational data assimilation.

2.1 Mathematical setting

Let X being a state vector depending on the spatial location x (x = (x,y) for
2D images) and time ¢. X is defined on A = 2 x [0, T], §2 being the bounded
spatial domain and [0, T] the temporal domain.

We assume X is evolving in time according to:

%(x, t) + M(X)(x,t) = Em(x,t) (1)
M, named evolution model, is supposed differentiable. As IM describes approxi-
mately the effective evolution of the state vector, based on assumptions, a model
error &, is introduced to quantify the deviation in space and time.
Observations Y (x,t), which are satellite image acquisitions in this paper,
are available at location x and date ¢ and linked to the state vector through an
observation equation:

Y(x,t) = H(X(x,t)) + Eo(x,1) (2)

The observation error Eo simultaneously represents the imperfection of the ob-
servation operator H and the measurement errors.
We consider having some knowledge on the initial condition of the state
vector at ¢t = 0:
X(x,0) = Xp(x) + Ep(x) (3)

with X; named the background value and &, the background error.
Em, €o and &, are assumed to be Gaussian and characterized by their co-
variance matrices @, R and B [13].

2.2 Variational formulation

In order to solve the system (1), (2), (3) with respect to X having a maximal
a posteriori probability given the observations, the functional (4) is defined and



has to be minimized. This is called “weak formulation” of 4D-Var, because the
first term corresponds to a non perfect model.

E(X) :% /A (%’f + ]M(X)) (x,)Q "1 (x,t) ((Z{ + ]M(X)) (x, t)dxdt
+ / (Y - HX)" (x,t) R~ (x, 1) (Y — H(X)) (x, t)dxdt (4)
A
+/ (X(x,0) — Xb(x))TBfl(x) (X(x,0) — Xp(x))dx
2

Em, €o and &, are assumed to be independent with no correlation between two
space-time location and the functional E represents the log-density of the joint
probability law [2]. The minimization is carried out by solving the associated
Euler-Lagrange equation with an auxiliary variable A, named adjoint variable:

BB (Y e
X(x,0) = BA(x,0) + X;(x) (7)
% + M(X) = QA(x,1) (8)

As the initial condition for A is given at time T (Equation (5)), A is computed
backward in time using (6). Equation (6) makes use of two adjoint operators

oM\ " oH\"™ oM
denoted by (3X) and (3X) that are formally the dual operators of X

and X Solving Equations (5-8), also named the Optimality System, is however

not straightforward: the state vector is determined from Equations (7) and (8)
using the adjoint variable and the adjoint variable is determined from Equations
(5) and (6) using the state vector. To break this deadlock, an incremental method
is applied, that is fully described in [3].

3 Recovering of missing data

To recover the missing data, we define the quantities described in Section 2.1
in the following way. X is defined as (W q)7: W = (u v)7 is the motion
vector, and q is a tracer that is compared to the image observations during the
assimilation phase.

In Equation (1), M is equal to (Mw Mgq)7, with My and Mg, respectively,
the evolution models of W and q. A stationary assumption is used for the
velocities and M reduces to 0. This simple heuristics is acceptable for a large
range of marine processes if the velocity is less than 0.1 to 0.5 meters per second.
The evolution of q is modeled with its transport by the velocity W and Mq =



Vqr'W. Moreover, we assume that &, reduces to its component on the evolution
of q.

As the quantity q, which is compared to the image data, is one component
of X, H is a projection and Equation (2) reduces to:

I(x,t) =q(x,t) +&o (9)

The variance R of the Gaussian noise £o is chosen so that R71(x,t) (used in
Equation (2)) is almost infinitesimal, on noisy pixels. These are then discarded
from the computation.

The background value X, depends on the available knowledge. A null value
is given for the background of motion W, and the first observation is taken as
background of the tracer qp.

4 Results

The approach, described in Section 3, is applied on satellite acquisitions and
compared with state-of-the-art methods. First, an artificial noise is added to the
original data, in order to quantify results. Second, our approach is used on a
sequence displaying missing data, in order to illustrate its potential to recover
information on satellite acquisitions.

4.1 Artificial noise

A sequence of satellite Sea Surface Temperature (SST) images has been acquired
by NOAA-AVHRR over the Black Sea in July 2005 (see Fig. 1).

In a first experiment, a noise has been added to the second image as a black
square (10 x 10) (see Fig. 2). Data assimilation is then applied as explained in
Section 3. Bertalmio et al [4] and Tschumperlé et al [14] are also used on the
same data. Results are displayed on Fig. 2. Their quality is quantified, in Table 1,
by the mean, minimum and maximum of the difference between the recovered
image and the original image whose grey level values over the whole sequence
range from 23.428595 to 25.71952.

[ Method | Mean  Min Max
Our approach |-0.001010 -0.215643 0.382748
Bertalmio et al |-0.004595 -0.254509 0.145491

Tschumperlé et al|-0.000339 -0.299999 0.299999
Table 1. Statistics on the recovered images.

In a second experiment, the noise is a 50 x 50 square added to the second
image (see Fig. 3). The same methods are again applied and results are displayed

4 Data have been provided by E. Plotnikov and G. Korotaev from the Marine Hy-
drophysical Institute of Sevastopol, Ukraine.



Fig.1. NOAA-AVHRR images.

a) Noisy image ) Our approach
) Bertalmio et al d) Tschumperlé et al

Fig. 2. Recovering of the noisy data.



on Fig. 3. Statistics are given in Table 2. We also provide the correlation value
between recovered and real data.

These experiments demonstrate that our approach is ahead of state-of-the
art techniques as the size of the noisy region increases. First order statistics,
correlation and visual results are much more better with our approach in the case
of the 50 x 50 square. This demonstrates the usefulness of dynamics information
in the process.

| Method | Mean Min Max Correlati0n|
Our approach [0.008273 -0.543972 0.769663 0.702
Bertalmio et al |0.023610 -0.867842 0.950588 0.482
Tschumperlé et al|0.026362 -0.799999 1.000000 0.572

Table 2. Statistics on the recovered images.

(a) Noisy image (b) Our approach

(c) Bertalmio et al (d) Tschumperlé et al

Fig. 3. Recovering of the noisy data.

In a third experiment, noise is added on all images, except the first one (see
Fig. 4). Our approach is applied and results are displayed on Fig. 5. Table 3
provides statistics (Mean, Min, Max) of the three corrupted frames, over the
10 x 10 squares, for the original, result and difference data.



¥4 0

Fig. 4. Noisy sequence (squares are 10 x 10).

4 i

Fig. 5. Recovering of the noisy data.



[Frame| Stat. | Original | Result |Difference|

Mean|24.652100(24.563805(-0.001706
2 Min (23.415665(23.415922|-0.482744
Max |25.715666(25.716354| 0.220243
Mean |24.652100(24.652100| 0.001935
3 Min |23.642063|23.642063|-0.461876
Max |26.042063(26.042063| 0.151356
Mean|24.652100(24.652100| -0.00124
4 Min |23.543968|23.543968|-0.361067
Max [26.143969(26.143969| 0.250856
Table 3. Error statistics.

These three experiments demonstrate that our approach successfully recover
missing or noisy data of limited extension.

4.2 Real noise

A sequence of six SST acquisitions acquired by NOAA-AVHRR over the Black
Sea in May 2005 is displayed on Fig. 6. Noise is mainly due to clouds. Using
metadata linked to the image, a null radiometric value is given to these noisy
pixels that are displayed in cyan. A specific value is given to ground pixels, which
are displayed in black. This is the case for region at the left corner.

Fig. 6. Satellite acquisitions.



Using Bertalmio et al [4], a pre-processing is applied on the first image (see
Fig. 7) in order to fill in the missing data (excepted ground pixels).

Fig. 7. First frame: original data and result of preprocessing.

Our approach is applied. The comparison between the original and result
data is displayed on Fig. 8. This demonstrates the potential of our approach.

5 Conclusion

In this paper, we describe an approach to recover missing data on a sequence of
satellite images, based on the underlying dynamics. This is an alternative to the
use of spatial properties as commonly done in the state-of-the-art. The method
relies on an evolution equation, describing the dynamics, and a variational data
assimilation algorithm that solves the evolution equation with constraints from
the observations. Given an image sequence, the data assimilation method com-
putes a tracer q and a velocity field W on the space-time domain. The resulting
q(x,t) is the recovered image value.

We quantify the relevance of our approach on satellite data, corrupted by
an artificial noise and provide comparisons with state-of-the-art methods. Our
approach has also been tested on satellite images displaying natural missing
data.

In order to improve the quality of results, alternative evolution equations
should be considered. For instance, shallow water equations are known to cor-
rectly describe the surface velocity of SST acquisitions. Their use should allow
a better recovering process. Moreover, the illumination change, due to various
acquisition times over the sequence, should be better modeled in the evolution
equation.
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(d) Results: frames 4, 5 and 6
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