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Abstract

This paper deals with the sedimentation of highly concentrated sediment suspensions (co-
hesive as well as non-cohesive) and the beginning of the consolidation of cohesive sedi-
ments. Based on a comparison of existing empirical formulasand experimental data, the
particle Reynolds number was shown to be of importance for the behaviour of particularly
non-cohesive sediments. In addition it plays a role in determining whether one or two
interfaces develop during the sedimentation phase. In the case of cohesive sediments, the
estimation of the gelling concentration, although difficult, seems to be fundamental. Some
suggestions on the estimation of the permeability coefficient and total settling function
are then given in order to improve the modelling of the sedimentation and consolidation
behaviour for concentrations close to the gelling concentration.

Key words: sedimentation, consolidation, settling velocity, permeability, high
concentration, cohesive sediments, gelling concentration

1. Introduction

The interest in understanding physical characteristics ofcohesive sediment has in-
creased significantly during the last 30 years. Cohesive sediments play an important role in
river and estuary engineering because of their capability to bind pollutants. Another impor-
tant issue is the transport, sedimentation and consolidation of fine sediments in reservoir,
navigation channels or harbour basins.

Most of the research has been carried out on the settling of low-concentration mud
suspensions (Van Leussen, 1988; Dyer & Manning, 1999, amongothers) or on the con-
solidation regime (Gibsonet al., 1967; Been & Sills, 1981 among others). Few authors
(Winterwerp, 1999, Camenen, 2008) have studied hindered settling of cohesive sediments
where large concentrations of sediments do affect the settling velocity. Dankers & Win-
terwerp (2007) attempted to link the hindered regime with the consolidation regime intro-
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ducing a total settling velocity or settling function including permeability effects. It seems
however that many unknowns still exist about the behaviour of a mud suspension at the
onset of its gelling concentration (defined as the concentration for which the flocs form
a space-filling network, Winterwerp & Van Kesteren, 2004). In estuaries, wave induced
turbulence can strongly affect the hindered regime (Gratiotet al, 2005), which can create
highly concentrated fluid mud layer with concentrations close to the gelling concentration.
On the other hand, the mechanics of lutocline (interface where a sharp gradient in sedi-
ment concentration exists and generally maintained thanksto turbulence) and fluid mud
are also strongly affected by the hindered settling velocity of the sediments (Wolanskiet
al, 1989). Mehta (1991) also showed that erosion processes aredeeply influenced by the
state of the mud (fluid, non-consolidated, and consolidated). It is thus fundamental to
better understand the behaviour of cohesive sediments close to the gelling concentration.

A study on the effects of the choice of hindered settling formulas for the sedimentation
regime is presented in this paper using the Kynch theory (1952). Based on experiments
of sedimentation in a quiescent fluid (where turbulence is negligible), the ability of the
formulas to induce one or two interfaces depending on the particle Reynolds number is
emphasized. The second part of this paper establishes a permeability equation and a total
settling function that can be used in an advection-diffusion model.

2. 1DV equations for a sedimentation-consolidation model

2.1. Equation for sedimentation and consolidation

Assuming that solid particles are of the same size, shape anddensity (a1), that both
the solid particles and the fluid of the suspension are incompressible (a2), that the flow
is one-dimensional (a3), and that the settling velocity of particles in a dispersion and the
dissipation coefficient can be determined by the local particle concentrationonly (a4), a
general 1D equation for the sedimentation and consolidation regimes may be (Toorman,
1996, 1999) :

∂c
∂t
+
∂

∂z
[Wsk(c)c] +

∂

∂z

[

D(c)
∂c
∂z

]

= 0 (1)

whereWsk(c) is the total settling velocity function including permeability effects andD(c)
is the total dissipation coefficient, andc the volumetric concentration of matter. The total
dissipation coefficient is the sum of the molecular diffusion effects (Dm), consolidation
diffusion effects (Dc), and eddy diffusivity or turbulence effects (Dt). The molecular dif-
fusion Dm is generally negligible and the eddy diffusivity Dt may be estimated using a
k − ǫ turbulence model. However, for an experiment with no hydrodynamic constraints
(waves or current) and considering the flow is one-dimensional, the turbulence effects are
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negligible. A sedimentation consolidation experiment is thus represented by three main
regimes (Toorman & Berlamont, 1991; Dankers & Winterwerp, 2007;cf. Fig. 1) :

1. hindered regime, where the settling velocity is mainly driven by the concentration of
particles ( the total pressure minus the neutral pressure ofwater in pores or effective
stressσ′ = 0) ;

2. permeability regime, where the settling velocity function is mainly driven by the
permeability. This mode physically represents compression and expulsion of pore
water (σ′ ≈ 0) ;

3. effective stress regime, where particle deformation causes further compression (σ′ >
0; diffusion term due toDc, cf. Eq. 1).

The first regime corresponds to the sedimentation regime, whereas the two last regimes
correspond to the consolidation regime. However, the permeability regime may be mod-
elled in a similar way as the sedimentation regime,i.e. with D = 0.

crcmc

Φm

Ws= cΦ

maxφcrφmφ φ
ckcgelc

0
cmax

hindered regime

effective stress regime

permeability regime

0

Figure 1: Schematic view of the three different prevailing processes in a sedimentation consolidation exper-
iment from the flux curve (Φ = cWsk) as a function of concentrationc.

The following study will focus on the estimation of the totalsettling velocity function.

2.2. The Kynch model for the sedimentation of particles

Kynch (1952) developed a theory on sedimentation based on the batch experiment.
This experiment consists of an initially well-mixed suspension of particles with a concen-
tration uniformly initialized toc0 in a settling column subject to gravity only. This sus-
pension will separate into three different phases (one approaching the maximum packing
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particle concentrationc = cmax at the bottom of the container, one with a well-mixed sus-
pensionc = c0 in the middle of the container at the initial average concentration, and clear
water at the top of the container). Using the same assumptions as for Eq. 1 and adding
that solid particles are all small with respect to the settling column, the mass-balance of
the suspended sediments (Eq. 1) simplifies into the simple wave equation inz-direction,
known as the Kynch equation:

∂c
∂t
+
∂Φ

∂z
= 0 (2)

whereΦ = Wshc is the sediment flux or the Kynch batch flux density function, and Wsh,
the hindered settling velocity, which is assumed to be a function of c andWs0 (settling
velocity of a single particle) only.

3. Sedimentation and batch theory

The Kynch sedimentation experiment is a simple and interesting test to quantify and
calibrate the hindered settling velocity formulas, including the beginning of the perme-
ability regime for cohesive sediments. As larger uncertainties are observed for cohe-
sive sediments because of their stochastic characteristics (density, size and shape of the
population of sediments), the hindered settling velocity formulas were first tested against
non-cohesive data. The hindered settling formulas studiedin this paper were previously
presented and compared by Camenen (2008). Equations are reported in appendix A.

3.1. Non-cohesive sediments

In case of non-cohesive sediments, the Kynch equation (Eq. 2) is fully valid. Assuming
Wsh is a function of concentration only, Kynch (1952) showed that Eq. 2 may be rewritten
as follows:

∂c
∂t
+Ws0F(c)

∂c
∂z
= 0 (3)

wheref (c) = Wsh/Ws0 corresponds to any semi-empirical equation for the hindered effects
on the settling velocity, and

F(c) =
∂[c f (c)]
∂c

(4)

Eq. 3 may be solved by integrating along the characteristic linesdz/dt = Ws0F(c)
(method of characteristics). Concentration gradients increase when the characteristic lines
converge (Winterwerp & Van Kesteren, 2004). Moreover,F , and therefore∂Φ/∂c, may
have a minimum atc = ccr. For c < ccr, dF/dc < 0, and two interfaces (upper interface
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Figure 2: Schematic view of the development of two (a) or one (b) interfaces in the Kynch sedimentation test
with non-cohesive sediments depending on the initial concentrationc0 (the lines with an arrow correspond
to the iso-concentration lines withc0 < c1 < c2 < cmax).

corresponding to the settling front and lower interface corresponding to the bed front) will
develop (cf. Fig. 2a). Forc > ccr, dF/dc > 0, and only the upper interface develops (cf.
Fig. 2b).

The choice of the hindered settling formulas may significantly influence the results for
the Kynch theory, even if the formulas yield similar prediction for the settling velocity.
Indeed, if two hindered functionsfa and fb yield same result forc = c1 ( fa(c1) ≈ fb(c1)),
Fa(c1) = {∂[c fa(c)]/∂c}c=c1 may differ significantly fromFb(c1) = {∂[c fb(c)]/∂c}c=c1. It
results from the variability of the semi-empirical expressions for the hindered functions
(see appendix A). Thus, the prediction ofccr, which separate the two regimes or ofcm

for which the maximum flux densityΦ = cWs is reached may vary significantly with
the choice of the hindered settling formula asccr andcm correspond to the 1st and 2nd
derivatives of the functionF with respect toc, respectively.

The particle Reynolds numberRe∗ = Wsd/ν (ν is the kinematic viscosity of water),
which characterizes the flow regime around a settling particle, is a measure of the relative
weight of the inertial forces and frictional forces to the total drag forces. For a single
particle, the drag coefficient decreases with the particle Reynolds number. And for large
particle Reynolds numbers, the velocity of a particle may thus be less affected by the wake
of the surrounding particles. Based on experimental results, Richardson & Zaki (1954)
suggested the formulaf = (1− c)n where the indexn decreases with the particle Reynolds
number from 4.8 (Re∗ ≪ 1) to 2.2 (Re∗ ≫ 1). With this formula, the maximum of the
functionc f increases from 0.06 to 0.14 for largeRe∗; and, as a consequence, knowing that
d(cm f (cm))/dc = 0 and f (cmax) = 0, the curve steepens whenc > cm, and the coordinate
of the inflection point (c = ccr) also increases with the particle Reynolds number (see also
in Fig. 4). Using Rowe’s (1987) empirical fit forn, solutions may be obtained with the
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Richardson & Zaki equation as functions of the particle Reynolds numberRe∗ :

cm =
1

n + 1
=

1+ 0.175Re∗
3/4

5.7+ 0.586Re∗
3/4

(5)

ccr =
2

n + 1
=

2+ 0.35 Re∗
3/4

5.7+ 0.586Re∗
3/4

(6)

cm andccr are increasing functions ofRe∗ (0.18< cm < 0.30 and 0.36< ccr < 0.60).
Using a large data set from batch experiments (Oliver, 1961;Shannonet al., 1964;

Baldocket al., 2004), the flux density function (c f = Φ/Ws0) is plotted in Fig. 3 versus the
relative concentrationc/cmax with the particle Reynolds number emphasized. The general
behaviour of the Richardson & Zaki formula is confirmed by thedata. A hindered settling
formula should thus take into account the effect of the particle Reynolds number. Due to
the scatter in the data and relatively small number of data points, it is however difficult to
precisely identify the position of the critical concentration ccr (inflection point). Only an
analytical expression off (or a curve fitting of the data) can be used to estimateccr.
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Figure 3: Flux density function (Φ/Ws0 = c f ) as a function of the relative concentrationc/cmax for a range
of particle Reynolds numbersRe∗.

Expressions forc f and F are reported in the literature (cf. Camenen, 2008 for de-
tails). The Richardson & Zaki (1954), Souslby (1997, p.135-136), Winterwerp (1999)
and Dankers & Winterwerp (2007) formulas, as well as the modified Richardson & Zaki
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formula and Camenen formula based on mixture theory (Camenen, 2008) are plotted as
a function of concentration in Fig. 4 (see Appendix for the description of the formulas).
Following Camenen (2008), the modified Richardson & Zaki formula will be used as a
reference :

Ws

Ws0
= (1− c)n−1

(

1−
c

cmax

)cmax

(7)

(a) (b)
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Figure 4: Variation of the flux density functionsΦ = c f (a and c) andF (b and d) with the relative concen-
trationc/cmax using the different studied formulas for two different particle Reynolds numbersRe∗ = 0.1 (a
and b) andRe∗ = 100 (c and d).

The flux density functionc f using several formulas is plotted against the volumetric
concentration in Figs. 4a and 4c for two different particle Reynolds numbers (Re∗ = 0.1
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and 100, respectively). It is observed that the formulas yield quite different results for
the prediction of the hindered settling velocity. Consequently, the formulas also yield
large differences in the prediction ofcm, and especiallyccr. In Table 1, the results (cm,
cm f (cm), andccr) are presented for two different particle Reynolds numbers (Re∗ = 0.1 and
100, respectively) depending on the formula used, togetherwith an estimation based on
polynomial fits over experimental data. An estimation of theerror made on the estimation
of cm, cm f (cm), andccr is also provided.

Re∗ = 0.1 Re∗ = 100
cm/cmax Φ(cm) ccr/cmax cm/cmax Φ(cm) ccr/cmax

experimental data 0.29 0.06 0.52 0.38 0.10 0.75
±0.04 ±0.01 ±0.07 ±0.05 ±0.02 ±0.10

Richardson & Zaki 0.28 0.072 0.55 0.42 0.111 0.84
Souslby 0.28 0.071 0.55 0.41 0.117 0.81
Winterwerp 0.37 0.087 0.82 0.37 0.087 0.82
Dankers & Winterwerp 0.27 0.068 0.60 0.27 0.068 0.60
modified Richardson & Zaki 0.27 0.071 0.55 0.40 0.115 −

Camenen 0.27 0.073 0.55 0.41 0.116 0.81

Table 1: Estimation of thecm,Φ(cm) andccr values for non-cohesive sediments withRe∗ = 0.1 andRe∗ = 100
based on experimental data and using hindered settling formulas.

The Winterwerp (1999) and Dankers & Winterwerp (2007) formulas (obtained for co-
hesive sediments) seem inaccurate for non-cohesive sediments as they do not take into
account the effect of the particle Reynolds number, even though it clearly influences the
results. Even for small Reynolds number, the Winterwerp formula fails to predictcm or
ccr (see Tab. 1). The Dankers & Winterwerp formula yields betterresults whenRe∗ = 0.1
although it slightly overestimatesccr. Moreover, the Winterwerp and Dankers & Winterw-
erp formulas, as well as the Richardson & Zaki and Soulsby formulas, yield a flux density
functionΦ > 0 whenc = cmax, whereas it should be zero.

The Souslby formula (1997, p.135-136), modified Richardson& Zaki formula and
Camenen formula based on mixture theory (Camenen, 2008) yield very similar results, all
implying thatcm andccr do vary with the particle Reynolds number. They show, however,
different behaviour for large concentrations close tocmax: the Soulsby formula tends to
overestimate the flux as it yieldsΦ > 0 whenc = cmax; for relatively high particle Reynolds
number (Re∗ > 100,cf. Figs. 4d and 5), the modified Richardson & Zaki yields no value
for ccr, whereas for relatively low particle Reynolds number, it yields two values forccr (as
observed by Shannonet al., 1964); the Camenen formula yields a functionF = 0 when
c = cmax (c f tangential to the liney(c) = 0), which seems to disagree with experimental
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data.
In Fig. 5,cm andccr were estimated using the Richardson & Zaki, modified Richardson

& Zaki, Soulsby, and Camenen formulas as well as experimental data. Results based on
experimental data were obtained using polynomial fits over data points (cf. Fig. 3). For
small Re∗, cm is less than 0.3cmax, and increases to 0.4-0.5cmax at higherRe∗. The four
formulas are in good agreement with experimental estimations. A slight dispersion occurs
depending on the formula for large particle Reynolds numbers. For smallRe∗, ccr is less
than 0.55cmax, and increases to 0.9cmax at higherRe∗. The modified Richardson & Zaki
formula predicts a second value forccr (called ccr,2) for low Re∗ which decreases from
0.95 (Re∗ ≪ 1) to 0.85 at a critical particle Reynolds numberℜ∗,cr ≈ 50. Above this
critical value, no solution exist forccr, which means that the modified Richardson & Zaki
formula will always result in the occurrence of two interfaces in a settling suspension,
whatever the initial concentration. Again, the four formulas are in good agreement with
experimental estimations whenRe∗ < 200. ForRe∗ > 200, it is difficult to conclude as
there are large uncertainties on the experimental estimation; ccr was actually not always
observed depending on the polynomial fit.
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Figure 5: Concentrationscm andccr as a function of the particle Reynolds number using the Richardson &
Zaki (RZ), modified Richardson & Zaki (RZm), Soulsby, and Camenen formulas as well as experimental
results (cf. Fig. 3).

The study of the sediment flux functions for sedimentation experiment with non-
cohesive sediment showed interesting results about formulas performances. For the predic-
tion of typical parameters such ascm andccr, the Richardson & Zaki, modified Richardson
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& Zaki, Soulsby, and Camenen formulas yield the best results. The two latest formulas
also show a better behaviour for the sediment flux close to themaximum concentration
cmax.

3.2. Cohesive sediments
Batch theory is not exactly applicable to cohesive suspensions, because they corre-

spond to a population of sediments with varying size, density and shape. Moreover, as a
floc is made of sediment matter and water, the volumetric concentrationc does not prop-
erly describe the floc volumes. Assuming that this population may be represented by a
single particle with fixed characteristics, Kranenburg (1992) applied Eq. 2 to the volumet-
ric concentration of flocsφ (φ = (ρs − ρ)/(ρ f − ρ)c , whereρ, ρs, andρ f are the water,
sediment, and flocs densities, respectively), and rewrote the equation as follows:

∂φ

∂t
+Ws0F(φ)

∂φ

∂z
= 0 (8)

F(φ) =
∂[φ f (φ)]
∂φ

(9)

where f (φ) = Wsh/Ws0.
Eq. 8 may be solved by integrating along the characteristic linesdz/dt = WsF(φ) as

for the non-cohesive sediments case. In the same way as for the non-cohesive sediments,
the functionF may have a minimum atφ = φcr. Forφ < φcr, dF/dφ < 0, two interfaces
will also develop (cf. Fig. 6a). Forφ > φcr, dF/dφ > 0, only the upper interface is visible
(cf. Fig. 6b). One main difference with sand is that cohesive particles are deformable.It
explains whyφmax > cmax (cf. Camenen, 2008). First, water is ejected from pore space
only (0.6 . φ < φmax). When the gelling concentration is reached (φ = φmax ≈ 0.85
when c = cgel) and consolidation begins, the volumetric concentration of flocs ceases
to increase; the floc densityρ f increases, and so, the volumetric concentration of matter
increases (cgel < cbed,1 < cbed,2 < cbed,3 < cmax).

In Fig. 7, flux density functionsφ f andF are plotted versusφ/φmax using the formulas
considered earlier, and using a typical particle Reynolds number for cohesive sediments :
Re∗ = 0.1. For all of the following tests, a constant gelling concentrationCgel = 100 g/l (or
cgel = 0.038) was assumed, however, this value may also vary with the particle Reynolds
number. The maximum volumetric concentration of flocsφmax was set to 0.85. Following
Camenen (2008), the reference formula was the modified Richardson & Zaki. For cohesive
sediments, assuming the size and density of the floc to be constant, andn > 2, Eq. 7 may
be modified as :

Ws

Ws0
= (1− c)n/2 (1− φ)n/2−1

(

1−
φ

φmax

)φmax

(10)
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Figure 6: Schematic view of the development of one (b) or two (a) interfaces in the Kynch sedimentation
test with cohesive sediments depending on the initial concentrationφ0 (the lines with an arrow correspond
to the iso-concentration lines withφ0 < φ1 < φ2 < φmax, andcgel < cbed,1 < cbed,2 < cbed,3 < cmax).

This differs slightly from the original suggestion (Eq. 11 in Camenen, 2008), which had
a factor of (1− c)n−2 instead of (1− c)n/2; Because of buoyancy effects, one should have
(1− c)x with x ≥ 1 whereasn − 2 could be less than 1).
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Figure 7: Variation of the flux density functionsφ f (a) andF (b) with the relative concentrationφ/φmax

using various formulas and assumingRe∗ = 0.1 and a constant gelling concentrationCgel = 100 g/l for all
the tests.

In Table 2, the results (φm, φm f (φm), andφcr) are presented forRe∗ = 0.1 depending on
the formula used, together with an estimation based on polynomial fits over experimental
data. An estimation of the error made on the estimation ofφm, φm f (φm), andφcr is also
provided.
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φm/φmax Φ(φm) φcr/φmax

experimental data 0.40± 0.10 0.18± 0.10 0.75± 0.15
Richardson & Zaki 0.20 0.072 0.41
Souslby 0.20 0.071 0.40
Winterwerp 0.40 0.120 1.16
Dankers & Winterwerp 0.27 0.086 0.60
modified Richardson & Zaki 0.33 0.126 0.68
Camenen 0.32 0.121 0.66

Table 2: Estimation of theφm, Φ(phim) and phicr values for cohesive sediments withRe∗ = 0.1 based on
experimental data and using hindered settling formulas.

The Soulsby and the Richardson & Zaki equations yield similar results as both equa-
tions include the effect of the hindered settling velocity using a coefficient (1− φ)n with
n ≈ 4.7 for smallRe∗. These minimizeF atφcr = 2/(n + 1) (cf. Eq. 6),i.e. φcr ≈ 0.4φmax

for fine sediments, which appears to be too low. Both equations underestimateΦ-values
as they underestimate the settling velocity (Camenen, 2008). The Winterwerp, modified
Richardson & Zaki and Camenen relationships behave similarly for the function f at low
volumetric concentrations (φ/φmax < 0.5). As the Winterwerp formula does not take into
account the possibility thatφmax < 1 (the assumptionφmax = 1 is stated), it yields a larger
flux for large concentrations. However, a different calibration ofCgel for the Winterwerp
formula would produce estimates similar to Richardson & Zaki and Camenen relation-
ships. On the other hand, it does not yield any minimum for thefunctionF, and thus will
always predict the existence of two interfaces in a settlingsuspension. Dankers & Win-
terwerp proposed a modification that improved this behaviour and derived a minimum for
the functionF. However, this modification significantly decreased the magnitude of the
density function.

To confirm these results, experimental data obtained with cohesive sediments were
analysed (Thorn, 1981; Ross, 1988; Wolanskiet al., 1989, 1992; Moryet al., 2002; Gra-
tiot, 2004; and Dankerset al., 2005). All of these studies used natural mud with the
exception of the Wolanskiet al. (1989) and Dankerset al. (2005) data sets (kaolinite)
and one data set from Moryet al. (2002) where the mud was pretreated. In the case
of cohesive sediments, large uncertainties occur as the size and density of the floc can-
not be measured accurately and because these values represent a statistical measure of a
population. In dilute suspensions, the size (and the density) of the floc varies with the con-
centration (due to flocculation). It is assumed that the floc characteristics (size and density)
did not change during the sedimentation experiments, and were identical to the flocs at the
maximum concentration, below which hindered effects were not observed (C ≈5 to 10
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g/l). The assumption of a constant mean floc size may be justifiedsince the flocculation
effects (increase of the mean size of the flocs with concentration) may be balanced by
the concentration effects (decrease of the mean size of the flocs with concentration due
to floc breakup). The density of the floc is then calculated using the estimated gelling
concentration,i.e. ρ f = ρ + (ρs − ρ)cgel/φmax (with φmax = 0.85). This latter was evalu-
ated to maximize the fit to experimental data points (Cgel varying from from 30g/l to 90g/l
depending on the data set), with the exception of the Dankerset al. data set, where the
gelling concentration (Cgel ≈ 85 g/l) was estimated experimentally.

In Fig. 8, the flux density function (Φ/Ws0 = φ f ) is plotted versus the relative con-
centrationφ/φmax using the data collected for cohesive sediments, with particle Reynolds
numberRe∗ emphasized. The results show a lot of scatter due to experimental uncertainties
(including estimation of gelling concentration) and the variability in floc characteristics,
as they were assumed constants. The data corresponding toφ > φmax should correspond to
the consolidation regime. As data points are based on volumetric concentration of matter
c, physically unrealistic values ofφ are observed in Fig. 8 whenc > cgel asφ should be
lower thanφmax. Whenc > cgel, φ = φmax but the floc density increases as water is expelled
from the floc. It is difficult to determine the influence of the particle Reynolds number from
these experimental results, because of the scatter in the data and also because they cover a
narrow range of particle Reynolds numbers (2× 10−2 < Re∗ < 2). Using polynomial fits
over data sets,φm andφcr were approximated (see also Tab. 2 and Fig. 9) and a rough es-
timation ofφm andφcr may be suggested : 0.2 < φm/φmax < 0.4 and 0.6 < φcr/φmax < 0.8,
which confirms the results from the modified Richardson & Zaki, Camenen, and Dankers
& Winterwerp formulas. Using a particle Reynolds numberRe∗ = 0.2 (median values of
the collected data) andCgel = 100g/l, the curves obtained from the modified Richardson
& Zaki, Camenen and Dankers & Winterwerp equations are plotted together with the data
in Fig. 8. As observed before, the Dankers & Winterwerp formula seems to underestimate
values for flux density.

The Winterwerp and Dankers & Winterwerp formulas also yielda constant value for
φm andφcr, no matter what the particle Reynolds number is (see Tab. 2).Dankerset
al. (2005) found from observations in their settling column (where Cgel = 85 g/l and
Re∗ = 3 × 10−2) and by comparing the rising bed in the concentration time series, that
the settling behaviour changed for 0.53 < φcr < 0.55, which meansφcr/φmax ≈ 0.68.
These values are consistent with results of the modified Richardson & Zaki and Camenen
equations (φcr ≈ 0.6-0.7φmax, cf. Tab. 2).

In Fig. 9,φm andφcr were estimated using the Richardson & Zaki, modified Richard-
son & Zaki, Soulsby, and Camenen formulas as well as experimental data. Results based
on experimental data were obtained using polynomial fits over data points when possible
(cf. Fig. 8). Theφm andφcr values vary significantly among empirical formulas. The sen-
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Figure 8: Flux density function (Φ/Ws0 = φ f ) as a function of the relative concentrationφ/φmax using the
collected data for cohesive sediments with the particle Reynolds numberRe∗ emphasized.

sitivity to the particle Reynolds number is therefore not asstrong as for the non-cohesive
sediments. If the Richardson & Zaki and Souslby formulas yield similar results as for non-
cohesive sediments (the differences only correspond to the ratiocmax/φmax), the modified
Richardson & Zaki and Camenen formulas yield much larger values (50% larger for both
φm andφcr). Experimental data although scattered indicate that the Richardson & Zaki and
Souslby formulas significantly underestimate theφm andφcr-values. The sensitivity to the
gelling concentration (Cgel = 50 g/l, Cgel = 100 g/l, Cgel = 200 g/l andCgel = 500 g/l were
tested for a fixed particle Reynolds number) appears to be negligible for the relationship
betweenφm or φcr andRe∗. An increasing gelling concentration tends to slightly decrease
φm, φm f (φm), andφcr. This may be explained as all these equations, as well asφm or φcr,
are mainly function ofφ, independantly ofCgel, and are plotted versusφ. In the same way
as for non-cohesive sediments, no solution is found for the modified Richardson & Zaki
and Camenen formulas fordF/dc = 0 (φcr) whenRe∗ > 70 andRe∗ > 200, respectively
(cf. Fig. 9b). For typical cohesive sediments whereRe∗ < 1, φm andφcr do not vary
significantly with the particle Reynolds number. The Winterwerp formula thus yields co-
herent results forφm (φm = 0.390φmax). The Winterwerp formula, modified by Dankers &
Winterwerp also estimates reasonable values forφcr andφm, although they appear slightly
underestimated (φm = 0.270φmax andφcr = 0.600φmax).

The study of the sediment flux functions for sedimentation experiment with cohesive
sediment showed interesting results about formulas performances although experimental
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Figure 9: Concentrationφm (a) andφcr (b) as a function of the particle Reynolds number using the Richard-
son & Zaki (RZ), Souslby, modified Richardson & Zaki (RZm), and Camenen formulas.

results do not allow any conclusion on the influence of particle Reynolds number. For
the prediction of typical parameters such asφm andφcr, the modified Richardson & Zaki,
Dankers & Winterwerp, and Camenen formulas yield the best results.

4. Permeability regime

As proposed by Toorman (1996, 1999) and also Winterwerp (1999), the initial phase
of the consolidation regime (ejection of pore water) may be included in the 1D equation
for sedimentation through the total settling velocity function Wsk (cf. Eqs. 1 and 2). The
difficulty lies in determining the permeability of mud.

4.1. Estimation of the permeability

Many relationships have been proposed to estimate permeability. Permeability is often
a function of the void ratioevr = 1/c−1. Among others, Townsend & McVay (1990) used a
power law relationship (cf. Eq. 11) whereas Bartholomeeusen (2003) used an exponential
function (cf. Eq. 12) :

k = Akpevr
Bkp (11)

k = Ake exp(Bkeevr) (12)

Both formulations, however, require the calibration of twocoefficients. It should also be
noted that these relations (Eqs. 11 and 12) are mainly empirical and derived from data
where effective stress are expressed in kPa or even MPa (far from the permeability regime
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defined in section 2.1). Merckelbach (2000) and Merckelbach& Kranenburg (2004) sug-
gested a fractal approach to estimate permeability, and their formulation includes the effect
of sand content :

k = Ak f

(

cmud

1− csand

)− 2
3−n f

(13)

wherecmud and csand are the volumetric concentrations for mud and sand, respectively
(cmud = (1− psand)c andcsand = psandc wherepsand is the sand content (in %) andc is then
the total volumetric concentration of matter), andn f ≤ 3 is the fractal dimension. When
sand content is negligible,cmud/(1− csand) ≈ c. The degree to which permeability depends
on concentration may be indicated byn f . The coefficient Ak f (Akp or Ake) remains to be
determined.

Bartholomeeusenet al. (2002) made a prediction exercise (named “Sidere”), using
a batch of sediments from the river Scheldt (Antwerpen, Belgium). The grain size dis-
tribution were given approximately by the parametersd10, d50, d90, equal to 6, 70, and
210 µm, respectively, with a specific gravity equal tos = 2.72. Different experiments
were performed with an initial density 1300< ρmix,init < 1550kg/m3 greater than the
structural density, which corresponds approximately to a gelling concentrationcgel ≈ 0.1-
0.15. Several scientists (Bartholomuseeusen, Carrier, Lin & Penumadu, Masada & Chan,
Merckelbach, Van Kesteren, Winterwerp, and Znidarcic;cf. Bartholomeeusenet al., 2002
for details) calibrated their own model using the same experimental data (cf. Fig. 10).
Though large differences were observed for the calibration of the coefficients “A” and “B”
depending on the specific formulations used (Eq. 11, 12 or 13,see also Bartholomeeusen
et al., 2002), similar results were observed when 0.2 < c < 0.5, i.e. cgel < c < 4cgel,
which corresponds to the limit of validity of the present model (consolidation included as
a sedimentation effect). However, one can observe in Fig. 10 that all these formulas yield
a large variability in the results whenc ≈ cgel.

To fit Eqs. 11,12, and 13 to the data requires the estimation oftwo coefficients with
significant risks of disconnection with the settling characteristics of the sediment. One way
to estimate the permeability coefficients may be to use the hindered settling characteristics
of the sediment since the permeability function readsWk = (s−1)kc (wheres = ρs/ρ is the
relative density of matter). Eq. 13 withpsand = 0% givesk = AkcBk (with Bk = −2/(3−n f )).
Fixing Bk, it is possible to find a concentrationc = cgel/χ (with χ a fixed parameter to be
calculated,χ > 1) such that the slope of the hindered velocity function is the same as the
permeability function,i.e. d{log(Wsh)}/dc = d{log(Wk)}/dlog(c) = Bk + 1. The parameter
Ak is determined from the relationshipWk(c = cgel/χ) = (s − 1)k(c = cgel/χ)cgel/χ. Then,
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Figure 10: Estimation of the permeabilityk as a function of the concentrationc using various empirical
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for c > cgel/χ, we obtain :

k =
Wsh(c = cgel/χ)

(s − 1)cgel/χ

[

c
cgel/χ

]Bk

(14)

4.2. Total settling function

As hindered settling functions yieldWs = 0 whenc ≥ cgel and permeability functions
(Eqs. 11,12, and 13) cannot be linked to the settling velocity whenc ≤ cgel, Winterwerp
(1999) suggested defining a fitting function to obtain an unique equation forWsk :

Wsk = Wsh +
(s − 1)kc

1+ ξ(s − 1)kc
(15)

with ξ ≈ 104-105 being a heuristic parameter to obtain a smooth transition between the
descriptions for the hindered settling regime and the permeability regime (cf. Fig. 11).

Using Eq. 14, a second method to compute the total settling function may be sug-
gested :

Wsk =



























Wsh if c ≤
cgel

χ

Wk = Wsh(c = cgel/χ)

[

χc
cgel

]Bk+1

if c >
cgel

χ

(16)

17

Author-produced version of the article published in Continental Shelf Research, vol. 31, p. 106-111.
The original publication is available at http://www.sciencedirect.com/ - doi:10.1016/j.csr.2010.07.003



(a) (b)

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

c

W
sk

 (
m

/s
)

exp. Wolanski
W

sk
, Eq. 16

W
sk

, Eq. 17
hindered settling (W

sh
)

permeability (W
k
)

0.01 0.02 0.03 0.05 0.07 0.1
10

−6

10
−5

10
−4

10
−3

c

W
sk

 (
m

/s
)

exp. Dankers & Winterwerp
W

sk
, Eq. 16

W
sk

, Eq. 17
hindered settling (W

sh
)

permeability (W
k
)

Figure 11: Estimation of the total settling velocity functionWsk (based on Eq. 15 or on Eq. 16) compared to
experimental data (a) from Wolanskiet al. (1989;Cgel = 70g/l, Ak = 7× 10−9, Bk = 3.4, andξ = 1× 104)
and (b) from Dankers & Winterwerp (2007;Cgel = 85g/l, Ak = 4× 10−9, Bk = 3.5, andξ = 3× 104).

Estimates of the total settling velocity functionWsk are presented in Fig. 11 and are
compared to experimental data (a) from Wolanskiet al. (1989) and (b) from Dankers
& Winterwerp (2007). For both cases, Eq. 10 has been plotted versus data (after an
estimation ofWs0 andcgel) as well asWk based on Eq. 13 (withpsand = 0%) and fitted with
the experimental data (fit of the coefficientsAk and Bk). The total settling functionWsk

was then plotted using Eqs. 15 and 16. For Eq. 16, a second equation for the permeability
function was estimated by using Eq. 14 with the same slopeBk as forWk.

If Wk > Wsh ∀c (cf. Fig. 11b), both equations yield unsatisfactory results. The Winter-
werp method tends to overestimate results for the hindered settling regime. On the other
hand, the present method tend to underestimate results for the permeability regime. On
the other hand, if theWk function intersects theWsh function (cf. Fig. 11a), both equations
yield satisfactory results. Eq. 15 does however induce a discontinuity in the slopedWsk/dc
at c = cgel which seems to be unrealistic. Indeed, in reality, because of the variability of
the cohesive particles in the suspension, the consolidation regime may start locally before
the concentration reaches its gelling point (which is defined globally). As shown in Fig.
11, data points present a smooth transition between the hindered regime and the perme-
ability regime , which is not reproduced by Eq. 15. Moreover,Eq. 15 needs to fit three
parameters (Ak, Bk, andξ) whereas Eq. 16 needs to fit only one parameter (Bk).

It is important to realize how the use of the total settling velocity function influences
sedimentation dynamics. In Fig. 12, the flux density functions F (calculated using total
settling velocity functionWsk based on Eq. 15 or on Eq. 16 fitted with the experimental
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data of Dankers & Winterwerp, see also Fig.11) have been plotted versus the relative
concentrationφ/φmax. It appears that Eq. 16 induces a slight decrease of the valuefor φcr

compared to the original formula for the hindered settling (Eq. 10). On the other hand,
Eq. 15 yields a discontinuity in the functionF for φ = φmax = φgel with a change in the
sign ofdF/dφ. Following the study of Concha & Bürger (2002), it yields an interface for
φ = φmax = φgel, which does not seem to be physically realistic.
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Figure 12: Variation of the flux density functionF with the relative concentrationφ/φmax. The flux density
function is calculated using total settling velocity function Wsk based on Eq. 15 or on Eq. 16 fitted with the
experimental data of Dankers & Winterwerp, see also Fig.11b)

5. Conclusions

The effect of the hindered settling formula on predicting sedimentation has been pre-
sented. For non-cohesive sediments, the particle Reynoldsnumber strongly affected esti-
mates of the critical concentrationscm, where the flux reaches a maximum, andccr, above
which only one interface will be observed during a batch experiment (if c0 > ccr). For
cohesive sediments, as the particle Reynolds number is generally smaller than 1, the ef-
fect of Re∗ was not as significant. One main difficulty remains in determining the gelling
concentration. The modified Richardson & Zaki formula suggested by Camenen (2008)
appeared to yield the best overall results among the studiedformulas compared to the ex-
perimental data, i.e. the best representation of the density function for both non-cohesive
(cm, Φ(cm), andccr) and cohesive (φm, Φ(φm), andφcr) sediments. However, the valida-
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tion with cohesive experimental data remains difficult because of the uncertainties and the
inherent variability of cohesive sediments.

Several propositions for the estimation of permeability were also discussed for con-
centrations two to three times larger than the gelling concentration. A fundamental issue,
which is the link between the hindered regime and the permeability regime, was discussed.
It appeared preferable to obtain a relationship forWsk that remains smooth atc = cgel to
avoid prediction of a physically unrealistic interface at this concentration. A solution was
suggested using a permeability function that is tangentialto the hindered settling function.

Many uncertainties remain in the description of cohesive sediments, hindered settling
velocities and consolidation of cohesive sediments :i.e. the influence of organic con-
tent and flocculation, the interaction between particles ofdifferent sizes (as muds often
have a large particle size distribution), and sediment history for consolidation. The model
proposed in this paper suggests some improvements comparedto the existing literature.
Some efforts are still needed to better understand the dynamics of suspensions close to the
gelling concentration, and to be able to represent them in a relatively simple way hat could
be applicable in engineering models.
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Appendices
A. Settling functions

The following settling functions were used in the paper. They are written for cohesive

sediments; in case of non cohesive sediments,φ = c.

• Richardson & Zaki (1954) :f = (1− φ)n;

• Souslby (1997) :f =
[10.362 + 1.049(1− φ)4.7d∗

3]1/2 − 10.36

[10.362 + 1.049d∗
3]1/2 − 10.36

whered∗ = [(s − 1)g/ν]1/3d andd grain diameter;

• Winterwerp (1999) :f =
(1− φ)(1− c)

1+ 2.5φ
;

• Dankers & Winterwerp (2007) :f =
(1− φ)2(1− c)

1+ 2.5φ
;
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• Camenen (2008) :f =
νmix

ν

√

(A/B)2/N/4+ (4/3d∗mix
3/B)1/N − (A/B)1/N/2

√

(A/B)2/N/4+ (4/3d∗
3/B)1/N − (A/B)1/N/2

whereA, B, andN are coefficients for the settling formula, which are function of

the grain shape and roundness (see Camenen, 2007; for natural sands,A = 24.6,

B = 0.96, andN = 1.53; for flocs,A = 27, B = 2.1, andN = 1.2) and subscriptmix

yields that the kinetic viscosity and density were calculated for a mixture (water+

sediments).

B. Table of notation

The following symbols are used in this paper :
A, B [−] : coefficients

c [−] : volumetric concentration of matter

cbed [−] : volumetric concentration of matter in the bed for a batch ex-

periment

cmud, csand [−] : volumetric concentration of matter for mud and sand, respec-

tively

C [gl−1] : mass concentration of matter (C = ρsc)

d [m] : sediment grain diameter

dk [m] : sediment grain diameter for which k% of the grain by mass

is finer

D [m2s−1] : total dissipation coefficient

Dm [m2s−1] : dissipation coefficient due to molecular effects

Dc [m2s−1] : dissipation coefficient due to consolidation-diffusion effects

Dt [m2s−1] : dissipation coefficient due to turbulence effects

evr [−] : void ratio (evr = 1/c − 1)

f [−] : function corresponding to the hindering effects (f =

Wsh/Ws0)

F [−] : function corresponding to the hindering effects (F =

∂( f c)/∂c)
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k [ms−1] : permeability

n [−] : index introduced by Richardson & Zaki (1954)

n f [−] : fractal dimension (n f ≤ 3)

N [−] : coefficients

psand [−] : sand content (%)

Re∗ [−] : particle Reynolds number (Re∗ = Wsd/ν)

s [−] : sediment relative density (s = ρs/ρ)

t [s] : time

Ws [ms−1] : settling velocity

Ws0 [ms−1] : settling velocity of a single particle in a dilute suspension

Wsh [ms−1] : hindered settling velocity

Wsk [ms−1] : total settling velocity function

z [m] : vertical coordinate

χ [−] : parameter (χ > 1)

ξ [−] : heuristic parameter (ξ ≈ 104-105)

ν [m2s−1] : kinematic viscosity of water

ρ [gl−1] : water density

ρ f [gl−1] : floc density

ρm [gl−1] : density of a mixture (sand and mud)

ρs [gl−1] : sediment density (ρs ≈ 2650)

φ [−] : volumetric concentration of flocs (φ = (ρs − ρ)/(ρ f − ρ)c)

Φ [ms−1] : sediment flux or density function (Φ = Wsc)

σ′ [Pa] : effective stress

The following subscripts are used in this paper for the volumetric concentrations (c or

φ) :

0 : initial value (t = 0);

m : critical value for which the sediment flux is maximum;

mix : value calculated for a mixture (water+ sediments -sand, mud-);

cr : critical value above which only one interface will be observed during

a batch experiment;
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gel : value corresponding to the space-filling network formed by the par-

ticles andWsh = 0 (in case of non-cohesive sedimentscgel = cmax; in

case of cohesive sedimentsφ = φmax whenc = cgel);

k : hypothetical value (ck) corresponding to the end of the permeability

regime;

kp, ke, k f : suspcripts liked to the type of empirical function used to estimate the

permeability (power lawa, exponential law, fractal approach);

max : maximum volumetric concentration (cmax ≈ 0.65 for undeformable

particles,φ ≈ 0.85 for deformable particles,cf. Camenen, 2008);
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