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ABSTRACT

This study investigates the stability of urban spatial structure bv

first using a Goldfeld and Quandt's F-statistic to test the existence of

heterogeneous residuals in estimating the relationship between population

density and distance. Secondly an FHMs shifting regression technique is

used to detect the possible change in the structure of an urban area.

Finally, a generalized random coefficient technique is used to simultaneously

detect the possible structural change and stochastic behavior of an

urban area. Data for 50 United States SMSA's are used to do Che empirical

analyses.





THE STABILITY OF URBAN SPATIAL STRUCTURE:

AN EMPIRICAL INVESTIGATION

I . Introduction

Kau and Lee (1976a) have theoretically shox^m that the functional

relationship between population density and distance in an urban area

is not negative exponential unless the production function is Cobb-

Douglas and the price elasticity of demand for housing services is

a negative one.

Based upon the generalized functional form technique developed by

Box and Cox (1964), Kau and Lee (1976b, 1976c) have empirically demon-

strated that the functional relationship between population density and

distance is not negative exponential for approximately 50% of the United

States cities. Furthermore, Kau and Lee (1977) have used the random

coefficient method to show that the density gradient of an urban area

is generally stochastic instead of deterministic. These findings imply

that the degree of stability for the density gradient should be empiri-

cally studied.

Most recently, Brueckner (1980, 1981) has theoretically and empiri-

cally developed a vintage model of urban growth. His theoretical and

empirical results indicate that a growing city generally has a sawtooth-

shaped spatial contour of building ages, a feature which in turn yields

strikingly discontinuous contours for structural and population density.

Brueckner' s findings have further indicated that it is necessary to

empirically investigate the stability of urban spatial structure.

The main purpose of this paper is to investigate the stability of

urban structure by using three alternative econometric techniques.
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This study will shed more light on the stability of the density gra-

dient and provide new econometric techniques for researchers in urban

economics. This will also supply guidelines to future researchers in

using density gradients in urban planning and location theory.

The second section uses Goldfeld and Quandt's (1965) F-statistic to

detect the possibility of heterostochastic behavior of the residuals.

In the third section, Farley, Hinich and McGuire (1975, FHM) shifting

regression technique is used to detect the possibility of structural

changes in the density gradient within an urban area. In the fourth

section Singh, Nagar, Choudhry and Raj (1976) generalized random coef-

ficient method, referred to in this paper as SNCR, is used to detect

the stochastic behavior and the possible structural changes in the den-

sity gradient within an urban area. This procedure would capture any

changes due to population shifts or transportation routes. The fifth

section discusses possible implications of the empirical results.

Finally the results are summarized.

II. The Existence of Heterogeneous Residuals

Based upon the negative exponential function, the empirical rela-

tionship can be defined as

log D.(u) = Yg - YU^ +
^i

(1)

where D.(u) = population density per square mile for each i tract,

U. = the distance from the CBD to each tract, and

£ = a random error term.

To estimate Y» the density gradient, sample data was collected for each

D.(u) and U. in an urban area. One of the necessary conditions to11
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obtain an efficient density gradient estimate is that the residual

errors (e.) be homogeneous. A Goldfeld and Quandt's F statistic is used

to test for heterosadasticity for 50 U.S. urban areas. The Goldfeld

and Quandt method can briefly be described as

(1) order the observations (log D.(u), u) by increasing values of u

(2) omit two control observations and run separate OLS regressions

to the first (n/2-1) and the last (n/2-1) observations of (log D^(u), U)

(3) using the sum of squares from each regression compute the F-

statistic as F .
= So ./Si ..

The F-statistics for the 50 urban areas are listed in Table 1. It

was found that 31 out of 50 areas had heterogeneous residuals. There-

fore, the OLS estimated density gradient for these 31 urban areas are

not efficient.

The implications of heteroscedasticity fall into three possible

areas: (i) possible inefficient estimators, (ii) a misleading tendency

to fail to reject the null in hypothesis testing, and (iii) coefficient

2
of detemnination (R ) is understated. First, since the estimators do

not have the smallest variance in a class of unbiased estimator, they

are inefficient. Thus, the estimators may miss the mark for any urban

area more than they would if heteroscedasticity were not present.

Johnston (1972, 216-217) indicates that, for a specific example the OLS

estimators in the presence of heteroscedasticity were only 56-83 percent

as efficient as the GLS estimators. This tendency may imply that the

density gradient for some urban areas tend to be unstable over distance.

Secondly, the estimated covariance matrix for estimating regression

parameters is biased in the presence of heterosceadsticity. If large

variances tend to be associated with large value of distance, U, then
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the bias will be negative and the estimated variance will be smaller,

leading to narrower confidence intervals [see Kmenta (1971, p. 256)].

Consequently, hypothesis tests about the estimators will be made with a

higher type I error than the assumed value. Finally, Kmenta (1971, pp.

259-264) has shown that the presence of heteroscedasticity will reduce

2 2
the R of OLS regression. The effect of reducing R is to understate

the role of distance in explaining populations distribution.

III. Structural Shifts of Population in an Urban Area

To test for possible shifts of the density gradient within an urban

area the Farley, Hinich and McGuire (FHM) method is used. The FHM model

is defined as

log D.(u) = ctQ - a^U^ + a2Z(u) + e^ (2)

1 2
where Z(u) = iu and i = — , — , . . .1, (3)

n n

n = sample size.

If the estimated a„ is significantly different from zero, it implies

that there exists some shifts of the density gradient. This indicates

that the density gradient is not smooth and that other variables are

important in explaining changes in the density gradient. The regres-

sion coefficients (a.) for the 50 urban areas are listed in Table II.

It was found that 20 urban areas had density gradients with structural

shifts.

Possible explanation of the structural shift of the density gradient

are: (i) multi-centers of an urban area and (ii) different vintage

characteristics of an urban area as demonstrated by Brueckner (1980,
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1981). FMH's method does give us an objective technique to detect the

possible shift of urban density gradients. However, FMH method does

not explicitly specify the distance variable into the functional rela-

tionship and take possible randomness of estimated y into account. To

reduce the above-mentioned weakness, a generalized random coefficient

model will be used in the next section to simultaneously consider the

randomness and the stationarity of an estimated density gradient.

IV. A Generalized Random Coefficient Model for Examining
the Density Gradient

The possible stochasticity of the density gradient was investigated

by Kau and Lee (1977) using Theil's (1971, 622-627) random coefficient

model. However, Theil's method cannot take the structural shifts of

the density gradient into consideration. Therefore the interpretation

of Kau and Lee's results do not take into account the possible structural

changes of urban areas into account.

SNCR's (1976) generalized random coefficient method is used in this

paper to simultaneously correct for possible stochastic behavior and

structural shifts in the density gradient. The spatial structure model

2
IS represented as

log D^(u) = a - Y(i)U^ + e^ (4)

where y(u) = V + a T + n(i). (5)

ri(i) represents the stochasticity of the density gradient with i

being the order of magnitude of the independent variable, distance (u )

.

This approach is similar to SNCR's time ordering in examining the

possible structural shifts of the consumption function.
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The estimation procedure for estimating the parameters of equations

(4) and (5) is now discussed. Substituting equation (5) into equation

(4), the following is obtained:

log D.(u) = a - yU. + ST.U. + [Ti(i)U. + e.]
1 ^111 11

(gj

= a - yU^ + ST.U. + 0)..
1 11 1

For simplicity, equation (6) can be expressed in matrix notation as:

D = Ze + tu, (7)

where D is a nxl vector of observation on the dependent variable D (u);

and

Z = [U U*],
'

(8)

U and U* are nx2 and nxl matrices of regressors, [1 U.] and T U
,

respectively; and

0' = [A- e'], (9)

where A and 3 are colume vectors such that A' = [a y] is a row vector.

The distribution of o) is assumed to be

E(u)) = 0, and (10.2)

E(a)aj) = E(Urin'U') + E(ee')

= UAU' + a"I
e

= n. (10.1)

To estimate 0, the following is first obtained:

0) = Moj, (11)



-7-

where M is a symmetric, iderapotent matrix such that:

M = I - Z(Z'Z) ^Z. (12)

Next, OLS is applied to:

A * *

a)=MU + e=GA + e, (13)

where u, M, and U are the vector and matrices of the squared elements

of u>, M and U, respectively; and e is a vector of random error. The

estimator is thus:

A = (G'G)~-'-G'uj. (14)

With A estimated, ^ can be constructed following equation (10.2).

Finally, the generalized least square estimator for can be written as:

9 = (Z* a~^Z)~^Z' a~h, (15)

with the variance-covariance matrix:

Var(9) = (Z'Q~h)~^. (16)

Based upon the estimation procedure discussed in this section, the

GLS empirical results are estimated and listed in Table III. Included

2
in the Table are the OLS density gradients Y-,. GLS y, GLS a . a^ which

indicates significant structural shifts for 17 cities and a which^ n

demonstrates that 28 cities have significant positive random density

gradients. From Table III it is demonstrated that there exists some

systematic impacts of distance on density gradient. This is determined

by the t statistic associated with ct listed in Table IV. From the
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estimated a , the standard deviation of the random fluctuations asso-
n

elated with density gradient are determined. It was found that the

random coefficient approach is important for analyzing the density gra-

dient as pointed out by Kau and Lee (1977).

The generalized random coefficient model as indicated in equations

(4) and (5) allow us to decompose the OLS density gradient into three

components, (1) pure density gradient, (11) structural shift component

and (ill) random component. Conceptually, only the first component in-

dicates the relationship between population density and distance (or

transportation cost). The second and the third components represent

the impacts of other urban characteristics for the population density

of a particular city tract. Results of Table III indicate that there

are 48 out of 50 OLS density gradient estimates are negatively signifi-

cant different from zero. However, there are only 20 GLS y estimates

that are negative and significantly different from zero. These results

imply that the OLS estimates have misleaded researchers and planners on

the importance of distance in determining population distribution in an

urban area.

To our best knowledge, this is a first meaningful application of

generalized random coefficient model in economic research since this

3
model was developed.

V. Implications

Previous studies [Latham and Yeates (1970), McDonald and Bowman

(1976) and Mills (1970)] of spatial structure have not accounted for

heteroscadasticlty or structural shifts in the estimation procedure.

This may lead to seriously biased and inefficient estimates leading to
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misgulded policy conclusions. Especially, the Impact of distance on

the population density has been over-estimated by the traditional OLS

density gradient estimates. The density gradient model has been used

often by regional planners and urban economists. The results of this

study suggest that other variables such as race, various amenities,

school districts, mass transit and their interactions must be taken

into account. A recent paper by Johnson and Kau (1980) demonstrate by

using a varying coefficient model the relevance of including other

variables in explaining populations shifts. Harrison and Kain's (1974)

study of the influence of past development suggests that the principal

differences in urban structures are due to differences in the timing of

development. Many studies [All and Greenbaura (1977) and Kemper and

Schmenner (1974)] have used density gradient specifications to obtain

estimates of population or employment patterns. If the applications of

the density model neglect the possible problems pointed out in this

study then their empirical results will be subject to bias. The results

of this paper are useful to give the researcher using this kind of

model some further insight into the problems.

VI. Summary

In this paper Goldfeld and Quandt's F-statistic has been used to

detect the existence of heterogeneous residuals in estimating the rela-

tionship between population density and distance. FHM's shifting

regressions technique has been used to detect the possible change in the

structure of the density gradient. SNCR's generalized random coeffi-

cient technique has been used to simultaneously detect the possible
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structural change and stochastic behavior of the density gradient. In

all cases significant structural shifts and bias was found. In general

the OLS density gradient estimates have over-estimated the impacts of

distance (transportation cost) on the population density of an urban

area and understated the importance of other urban factors.
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FOOTNOTES

1. There are several other methods which can be used to test the ex-

istence of heteroscedasticity. Goldfeld and Quandt's method and

Bartlett's method are two more popular methods. In addition,

Harvey and Phillips (1974) has found that Goldfeld and Quandt

method's power is similar to other methods.

2. Alternatively, y.(.n) = Y + ctu. + n(i) can be estimated. The results

are similar, however SNCR have shown that the estimators obtained

from this specification is not consistent.

3. Lee and Chen (1981) have successfully applied this generalized

coefficient model to determine the stock rates-of-return generating

process.
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TABLE I

Goldfeld and Quardt F-Statistic for Heteroscadasticity
F = S^/S^

City

1. 6.366* 13. 2.124* 25. 2.855* 38. 1.838*

2. 1.744* 14. 1.856* 26. 2.207* 39. 1.347

3. 6.427* 15. 4.661* 27. 0.505 40. 1.424

4. 2.108* 16. 2.053* 28. 2.949*
. 41. 3.288*

5. 1.305 17. 2.356* 29. 0.615 42. 0.778

6. 0.480 18. 2.259* 30. 1.518 43. 0.618

7. 2.041* 19. 0.710 31. 5.566* 44. 1.245

8. 2.104* 20. 0.767 32. 1.141 45. 6.168*

9. 0.699 21. 6.785* 33. 1.467 46. 7.399*

10. 1.391 22. 0.916 34. 2.893* 47. 2.475*

11. 3.119* 23. 1.215 35. 3.979* 48. 1.436

12. 2.913* 24. 2.430* 36. 3.569* 49. 3.919*

37. 3.394* 50. 3.056*

1. *Significant at the 10% significant level.



TABLE II

FHM Test for Structural Shifts In the Density Gradient

1. -0.0707 14. 0.0797 27. -0.1134 40. -0.1568

(0.186) (0.247)- (0.744) (0.968)

2. 0.2650 15. 0.160 28. 0.0978 41. -0.2862

(0.654) (0.927) (0.335) (1.440)*

3. 0.2660 16. -0.1641 29. -0.1063 42. 0.1694
(1.539)* (1.307)* (0.605) (0.635)

4. -0.2346 17. -0.1554 30. 0.7167 43. 0.4818
(1.640)* (1.076) (2.512)* (2.920)*

5. 0.0245 18. -0.0924 31. -0.2572 44. -0.1990

(0.099) (0.873) (2.343)* (1.540)*

6. -0.1554 19. -0.0045 32. -0.2774 45. 0.0357
(1.513)* (0.029) (0.986) (0.124)

7. 0.2076 20. 0.1525 33. -0.0734 46. 0.1206
(1.412)* (0.830) (0.497) (0.405)

8. 0.2369 21. -0.0814 34. 0.2365 47. 0.6946

(0.844) (0.505) (1.545)* (2.696)*

9. 0.2501 22. -0.0302 35. 0.3246 48. -0.00487

(1.167) (0.295) (1.015) (0.0170)

10. 0.1364 23. 0.2793 36. 0.0485 49. 0.1859
(1.518)* (1.585)* (0.325) (0.783)

11. -0.1641 24. 0.2247 37. -0.0459 50. 0.5306

(1.307)* (0.919) (0.322) (1.606)*

12. -0.1263 25. 0.4514 38. 0.1239
(1.291)* (1.906)* (0.950)

13. 0.3473 26. 0.2113 39. 0.2898
(1.354)* (1.078) (2.500)*

*Si2nificant at the 10% level for a one tail test.



TABLE III

Generalized Random Coefficient Model Results

OLS GLS GLS GLS GLS

Y Const. Y
"l

a

1 -0.,23 8. 926 0.094 -0.0063 0.0343
(4.,86)* (20 .58)* (0.26) (0.79) (1.52)*

2 -0.,19 10. 418 -0.390 0.00434 0.00059

(13,,12)* (20 .56)* (2.41)* (1.21) (0.94)

3 -0,,19 9. 832 -0.504 0.00685 0.004767

(6.,76)* (22 .37)* (3.12)* (1.92)* (2.44)*

4 -0,,12 9. 638 0.0268 -0.0056 0.00144

(2.,91)* (29 .30)* (0.17) (1.75)* (0.52)

5 -0.,24 9. 539 -0.289 0.00278 0.00622
(8.,27)* (12 .88)* (1.03) (0.53) (1.68)*

6 -0,.04 8. 939 0.158 -0.00361 -0.00116

(1.,64)* (14 .05)* (1.07) (1.36)* (1.02)

7 -0.,16 10. 139 -0.413 0.0054 0.00382
(4,,96)* (34 .51)* (2.81)* (1.65)* (1.30)

8 -0.,14 10. 342 -0.473 0.00536 -0.00264

(4.,08)* (19 .43)* (1.51)* (0.85) (0.12)

9 -0.,13 10. 943 -0.449 0.00582 -0.00264

(3..07)* (20 .66)* (1.74)* (1.13) (0.55)

10 -0..13 10. 164 -0.309 0.00351 0.00181
(4..56)* (37 .37)* (3.42)* (1.77)* (1.39)*

11 -0..18 10. 023 -0.390 0.00375 0.00942
(4,.64)* (32 .06)* (2.59)* (1.09) (2.19)*

12 -0..21 8. 729 0.239 -0.00719 0.00564
(5,.53)* (52 .60)* (3.88)* (4.37)* (5.29)*

13 -0,.07 9. 739 -0.366 -0.00041 0.0139
(4,.02)* (28 .40)* (1.09) (0.58) (4.96)*

14 -0,.38 9. 450 -0.367 -0.000402 0.00971

(7,.03)* (17 .95)* (1.09) (0.58) (1.69)*



TABLE III (continued)

OLS GLS GLS GLS GLS

Y Const. Y °1 a

15 -0.,06 8.:254 0.0248 -0.00209 0.00642

(2.,42)* (30 .64)* (0.19) (0.678) (3.48)*

16 -0.,15 8. 771 -0.0557 -0.00147 0.00487

(5.,94)* (22 .42)* (0.49) (0.58) (1.84)*

17 -0.,24 8. 798 -0.151 -0.00409 0.00717

(6.,79)* (34 .26)* (1.23) (1.42)* (1.94)*

18 -0.,10 9.:247 -0.151 0.000544 0.00549

(3.,54)* (29 .62)* (1.55)* (0.231) (2.43)*

19 -0.,02 8.'928 -0.116 0.00020 0.00217

(0.,96) (24 .43)* (0.71) (0.057) (0.723)

20 -0.,14 9.1082 -0.317 0.00355 -0.000710

(7.,16)* (15 .35)* (1.44)* (0.81) (0.49)

21 -0.,17 9. 534 -0.214 0.00099 0.00508

(6.,56)* (27 .37)* (1.30)* (0.27) (1.84)*

22 -0.,14 9.:206 0.00604 -0.000703 -0.00123

(6.,26)* (20 .10)* (0.045) (0.27) (1.21)

23 -0.,20 11.:277 -0.647 0.00805 0.00228

(6.,31)* (18 .37)* (3.07)* (2.08)* (1.58)*

24 -0.,27 10 .16 -0.771 0.00535 0.0069

(8..61)* (28 .12)* (4.05)* (1.02) (1.15)

25 -0.,51 9.:859 -0.718 0.00945 0.0037

(10.,79)* (22 .20)* (2.79)* (1.69)* (1.68)*

26 -0.,19 9. 252 -0.423 0.00652 0.0102

(4.,62)* (27 .05)* (2.43)* (1.72)* (2.03)*

27 -0.,17 9. 503 0.0496 -0.00264 -0.006001

(4.,00)* (19 .37)* (0.22) (0.62) (1.909)*

28 -0.,10 9.0754 -0.248 0.00264 0.00535
(2.,46)* (17 .83)* (0.82) (0.41) (0.54)

29 -0.,20 10 .28 -0.0768 -0.00247 -0.00241

(6..22)* (15 .99)* (0.37) (0.57) (0.89)



TABLE III (continued)

OLS

Y

GLS

Const.
GLS

y

GLS GLS

a

30 -0.10
(3.94)*

11.138
(18.86)*

-1.010
(2.90)*

0.1667
(2.59)*

-0.000394
(0.073)

31 -0.11
(2.50)*

8.680
(101.76)*

-0.0322
(0.616)

-0.00126
(0.82)

0.00786
(4.62)*

32 -0.14
(4.49)*

8.649
(14.38)*

0.08179
(0.278)

-0.00479
(0.76)

0.00184
(0.847)

33 -0.13
(4.46)*

9.012
(24.58)*

-0.0504
(0.314)

-0.00187
(0.56)

0.000225
(0.098)

34 -0.22
(6.80)*

9.262
(23.63)*

-0.433
(3.07)*

0.00484
(1.48)*

0.00712
(3.20)*

35 -0.35
(10.95)*

10.295
(20.82)*

-0.608
(1.85)*

0.00610
(0.81)

0.00959
(4.19)*

36 -0.12

(5.13)*
9.018
(30.74)*

-0.173
(1.31)*

0.00151
(0.48)

0.00327
(1.91)*

37 -0.13

(5.27)*
9.095
(34.35)*

-0.102

(0.75)

-0.00233

(0.78)

0.00578
(1.50)*

38 -0.13

(6.36)*
9.393
(32.22)*

-0.176
(1.46)*

0.00234
(0.92)

0.00288
(3.08)*

39 -0.05

(2.48)*
10.133
(25.66)*

-0.457
(3.67)*

0.0067
(2.59)*

0.000077
(0.06)

40 -0.01

(0.27)

8.744
(26.66)*

-0.00465
(0.031)

-0.00101

(0.31)

0.0075
(1.58)*

41 -0.13
(5.73)*

8.745
(142.2)*

-0.141
(2.20)*

-0.000043
(0.02)

0.0178
(3.67)*

42 -0.17

(7.75)*
9.227
(19.85)*

-0.335
(1.26)*

0.00452
(0.77)

0.00156
(0.438)

43 -0.25
(5.02)*

11.56
(18.55)*

-0.696
(3.39)*

0.01121
(2.76)*

-0.00190
(0.89)

44 -0.49
(15.63)*

9.375
(19.62)*

0.0248
(0.17)

-0.00399
(1.39)*

0.000702
(0.64)



TABLE III (continued)

OLS GLS GLS GLS GLS

r Const. Y
"l n

45 -0..13 8.739 -0.227 -0.000903 0.01189
(4..30)* (16.23)* (0.802) (0.141) (2.01)*

46 -0,.36 9.9945 -0.520 0.000510 0.00851
(8..27)* (30.59)* (1.68)* (0.069) (2.22)*

47 -0..13 10.099 -0.949 0.01615 -0.00118
(3.,41)* (24.76)* (3.30)* (2.71)* (0.27)

48 -0.,37 9.829 -0.320 0.00018 0.00221
(5.,70)* (21.28)* (1.12) (0.029) (0.311)

49 -0.,14 8.865 -0.346 0.00378 0.00698
(4.,08)* (17.88)* (1.38)* (0.72) (0.885)

50 -0.,29 10.294 -1.0622 0.0138 0.0128
(6.,17)* (23.61)* (3.11)* (1.89)* (1.36)*

1. t-values (absolute values) are in parentheses, *, significant
at the 10% level for a one tail test.



TABLE III (continued)

OLS GLS GLS GLS GLS

Y Const. Y
"l

a
n

30 -0,.10 11. 138 -1.010 0.1667 -0.000394
(3,.94)* (18 .86)* (2.90)* (2.59)* (0.073)

31 -0,.11 8. 680 -0.0322 -0.00126 0.00786
(2,.50)* (101 .76)* (0.616) (0.82) (4.62)*

32 -0,.14 8. 649 0.08179 -0.00479 0.00184
(4,.49)* (14 .38)* (0.278) (0.76) (0.847)

33 -0..13 9. 012 -0.0504 -0.00187 0.000225
(4,.46)* (24 .58)* (0.314) (0.56) (0.098)

34 -0,.22 9. 262 -0.433 0.00484 0.00712
(6,.80)* (23 .63)* (3.07)* (1.48)* (3.20)*

35 -0..35 10. 295 -0.608 0.00610 0.00959
(10..95)* (20 .82)* (1.85)* (0.81) (4.19)*

36 -0.,12 9. 018 -0.173 0.00151 0.00327
(5..13)* (30 .74)* (1.31)* (0.48) (1.91)*

37 -0.,13 9. 095 -0.102 -0.00233 0.00578
(5.,27)* (34 .35)* (0.75) (0.78) (1.50)*

38 -0..18 9. 393 -0.176 0.00234 0.00288
(6.,36)* (32 .22)* (1.46)* (0.92) (3.08)*

39 -0,,05 10. 133 -0.457 0.0067 0.000077
(2.,48)* (25 .66)* (3.67)* (2.59)* (0.06)

40 -0.,01 8. 744 -0.00465 -0.00101 0.0075
(0..27) (26 .66)* (0.031) (0.31) (1.58)*

41 -0.,13 8. 745 -0.141 -0.000043 0.0178
(5.,73)* (142.2)* (2.20)* (0.02) (3.67)*

42 -0.,17 9. 227 -0.335 0.00452 0.00156
(7.,75)* (19 .85)* (1.26)* (0.77) (0.438)

43 -0.,25 11 .56 -0.696 0.01121 -0.00190
(5.,02)* (18 .55)* (3.39)* (2.76)* (0.89)

44 -0.,49 9. 375 0.0248 -0.00399 0.000702
(15.,63)* (19 .62)* (0.17) (1.39)* (0.64)



TABLE III (continued)

OLS GLS GLS GLS GLS

r Const. Y
"l n

45 -0..18 8.739 -0.227 -0.000903 0.01189
(4..30)* (16.23)* (0.802) (0.141) (2.01)*

46 -0,.36 9.9945 -0.520 0.000510 0.00851
(8..27)* (30.59)* (1.68)* (0.069) (2.22)*

47 -0.,13 10.099 -0.949 0.01615 -0.00118
(3.,41)* (24.76)* (3.30)* (2.71)* (0.27)

48 -0.,37 9.829 -0.320 0.00018 0.00221
(5.,70)* (21.28)* (1.12) (0.029) (0.311)

49 -0.,14 8.865 -0.346 0.00378 0.00698
(4.,08)* (17.88)* (1.38)* (0.72) (0.885)

50 -0.,29 10.294 -1.0622 0.0138 0.0128
(6.,17)* (23.61)* (3.11)* (1.89)* (1.36)*

1. t-values (absolute values) are in parentheses, *, significant
at the 10% level for a one tail test.



TABLE IV

List of Sample Cities

1. Akron
2. Baltimore
3. Birmingham
4. Boston
5. Buffalo
6. Chicago
7. Cincinnati
8. Cleveland
9. Columbus

10. Dallas
11. Dayton
12. Denver
13. Detroit
14. Flint
15. Fort Worth
16. Houston
17. Jacksonville

18. Kansas City 35. Rochester
19. Los Angeles 36. Sacramento
20. Louisville 37. Salt Lake City
21. Memphis 38. San Antonia
22. Miami 39. San Diego

23. Milwaukee 40. San Jose
24. Nashville 41. Seattle
25. New Haven 42. St. Louis
26. New Orleans 43. Spokane
27. Oklahoma City 44. Syracuse

28. Omaha 45. Tocoma
29. Philadelphia 46. Toledo
30. Phoenix 47. Tucson
31. Pittsburgh 48. Utica
32. Portland 49. Washington, D.C
33. Providence 50. Wichita
34. Richmond
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