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ABSTRACT

This paper shows that serious analytical errors may occur in expected

utility theory when Taylor series approximation methods are used with-

out careful attention to underlying mathematical assumptions. Recent

studies have developed theory incorporating skewness of return into

expected utility calculations based on a Taylor series approximation.

It is apparent that 'this theory is invalid if assumptions for application

of a Taylor series cannot be met. Errors may occur if returns fall out-

side the region of convergence of the utility function or if the partial

sums of the Taylor series provide poor approximations to the utility

function. Stylized examples are presented to illustrate miscalculation

of utility when the various assumptions are violated. These examples

are motivated by the new spectrum of financial securities which allow

investors to create almost any desired expected return distribution.





Asset Preference and the Measurement of

Expected Utility: Some Problems

Under certain assumptions about the investor's utility function,

U, or a portfolio's return distribution, it is possible to calculate

investor utility using the first two or three terms of a Taylor series

expansion. However, if these assumptions are violated, deletion of

higher moment terms seriously alters calculated utility and may lead

to erroneous conclusions about asset preference.

Portfolio theory was developed using quadratic utility functions

and return distributions which can be fully characterized by their

first two moments (e.g., normal, binomial or uniform). Such utility

functions and distributions permit solution for expected utility by a

quadratic Taylor series approximation. Deficiencies in using only the

first two moments have been noted by Arditti [1], Jean [7], Levy [11],

Simkowitz and Beedles [20], Beedles [2], and Kraus and Litzenberger

[10] who advocate the importance of skewness for evaluating investor

utility. Francis [5] and Friend and Westerfield [6] have presented

contrary evidence.

Scott and Horvath [19] developed a mathematical theory of preference

for higher distribution moments in spite of the lack of economic inter-

pretation (see Kaplanski [9]). Optimal expected utility based on a

return distribution's first three moments has been derived by Conine

and Tamarkin [4] and Kane [8] who use a truncated Taylor series of the

first three distribution moments to approximate expected utility for

stylized utility functions.
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Assumptions for the use of a Taylor series to calculate E(U) are

outlined in [2] and recent papers [4,8] have developed theory strongly

dependent on these assumptions. It is apparent that the theory is

invalid if these assumptions cannot be met. Potential errors can result

if: (1) returns, R, fall outside of the region of convergence of the

utility function U(R) (where the Taylor series of utility function does

not coverge) or (2) the quadratic and/or cubic partial sums of the

Taylor series provide poor approximations to the utility function. The

second error is likely to occur with highly skewed distributions. It

can be expected that the controversy about proper specification of

expected investor utility will continue because the listed options and

futures markets enable investors to create portfolios with distinctive

highly skewed expected return distributions [15].

Loistl [13] has warned of problems that may occur if truncated

Taylor series approximation methods are used in utility analysis. How-

ever, his work deals primarily with the normal and lognormal (continuous)

return distributions, and does not analyze the mean-variance-skewness

approximations used in current finance literature [4,8].

Our study will focus on the problems inherent in two and three

moment Taylor series expected utility approximations and discrete

return distributions. Part I describes the traditional Taylor series

approximation for E(U) while part II defines and illustrates problems

identified in the use of a Taylor series to determine E(U). Part III

relates the impact of these problems on the results of recent studies.

Part IV presents the implication of this research to future works about

asset preference.
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I. Taylor Series Approximation of Utility Functions

Let W be the initial investor wealth, R a random variable repre-
o r

senting relative return on investment and U(RW ) a utility function

quantifying the utility to an investor of the relative return R on initial

wealth W . Let U- denote the mean of the random variable R. If the
o R

utility function U is analytic in a region containing all possible values

of the random variable R, we may expand U in a Taylor series for any

resulting single period wealth W R. It is most useful to expand around
o

V
- U

(n)
(W V )(W R-W V )

n

U(W R) = Z ° R
,

9 St-*— (1)

n=0
n!

For the widely used utility functions U(R) = ln(R) and U(R) = W RP (pa

fixed number in the interval (0,1)), the effect of initial wealth WQ can

be "separated out" and one need only analyze:

- u(n)(v
U(R) = S ~S_ (R-p )

n
(2)

n=0
n! R

where U (u ) denotes the nth derivative of the utility function at the
K

point jjl.

For simplity, we restrict our analysis to the "separated" expansion

(2) . Since the coefficient of (R-lO is merely a constant, a , the
R n

terms can be further simplified by writing:

a — ,

n n!

and rewriting (2) as :

00

U(R) = I a (R-u D )

n
(4)

n=0
n R
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A. Use of Taylor Series Approximation to Find EfU(R))

The following sequence of steps is employed in the literature to

provide an approximate formula for E(U(R)).

51 . Take expected values of each side of (1), to obtain:

00

E(U(R)) = I a E(R-y_)
n

(5)
n=0

n R

Since E(R-y ) is the n central moment of the distribution of R

(denoted by y ) and y = E(R-y ) = 0, we obtain:

00

E(U(R)) = a
Q
+ a

2y^
+ a y* + Z ay* (6)

n=4

52 . To obtain an approximation to E(U(R)), discard all terms in-

volving moments higher than 2 or 3, obtaining equations (6a) and (6b):

E(U(R)) = a
Q
+ a

2y£
= a

Q
+ a^ (6a)

E(U(R)) = a
Q
+ a

2
y2 + a

3
y^ = a

Q
4- a

2
a* + ^ yj (6b)

Equation (6a) describes an investor whose expected utility analysis

is based only on the mean (a_ = U(y )) and variance. The condition

U" < is usually imposed. This will force a. < 0, and make the investor

risk averse.

Equation (6b) describes an investor who also is influenced by the

third moment and thus considers skewness. Strict consistency of pref-

erence (Scott-Horvath [19]) will force a > 0, in which case the investor

is considered to have a positive skewness preference .

Although these approximations in (6a) and (6b) may give reasonable

results under various conditions concerning the decrease or disappearance
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of coefficients or moments, it should be clear that each approximation

is subject to error in situations where the discarded tail of the series

is large. The following are among the problems that may arise in the

use of the above steps even in the simple case in which the return

distribution is discrete and finite and the utility function U is

analytic.

B. Some Problems Identified in the Taylor Series Approximation

PR1. The series expansion represents U(R) only over the region

of convergence of the series, while the distribution of R may extend

beyond this region of convergence. Consider, for example, U(R) = ln(R)

with y = 1.2 (a relatistic value for options). The series obtained for
K

00

ln(R), I a (R-1.2) n , diverges outside the interval (0,2.4). Thus an

n=0

R of 5 (quite possible for options) cannot be substituted into the series

—

the full series Ea (5-1. 2)
n diverges. PR1 says that equations (l)-(4)

n

are not valid over the full range of relative returns.

PR2 . Taking expectations of both sides of (4) will not be valid

if the right side of (4) does not converge for some actual values of

the random variable, R. This problem states that equations (5) and (6)

cannot be derived with validity under the circumstances described in PR1.

?R3 . Even if problems PR1 and PR2 are not encountered, it is possible

that the discarding of higher order terms in (6) may lead to so much

error that (6a) and/or (6b) are seriously inaccurate. Examples in which

this is the case are given below.
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II. Illustration of Problems PR1-PR3 for a Stylized Utility Function

The above problems are best understood if discussed in the context

of specific stylized examples. The simplicity of these examples should

indicate that some caution is required in the general use of series

approximations

.

Consider the case in which U(R) = ln(R) and u_ = 1.2 (approxi-
K

mately the 6 month mean holding period return determined for out-of-the

2
money options [15])

.

Figure 1 displays graphs of ln(R) and the quadratic and cubic

approximations obtained by using the first three (quadratic) or four

(cubic) terms of the infinite series.

Note that the actual function ln(R), diverges substantially from

the cubic or quadratic approximations for R _> 2.4, but that the approxi-

mations work well for analysis of risky assets which do not range too

far from u = 1.2. For an investment in which R ranged from 1 to 1.4,

the approximating curves would give much the same utilities as ln(R)

itself. However, it is also clear that for risky assets with large

variance, problems will occur. If an asset return varies from R = 2

to R = 5.2, for example, the cubic and quadratic functions will give

significantly different approximations for some values of ln(R) . Actual

numerical values of ln(R) and its cubic and quadratic approximations

(with relative error) are given in Table I.

Insert Table I

The cubic approximation curve has an inflection point at R = 1.6.

At this point an investor whose true utility function is ln(R) is
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Cubic
Approximation

ln(R)

Series representation fails for R > 2,

Quadratic

FIGURE 1. Graphs of ln(R) and cubic and quadratic approximations



-8-

seriously misrepresented by use of the cubic approximation, since the

cubic utility function implies that the investor is a risk lover for

R > 1.6. The quadratic approximation attains a maximum at R = 2.4, and

begins thereafter to seriously misrepresent the investor as having negative

marginal utility of wealth.

PR2&3 . If the utilty of various returns, R, is seriously misrep-

resented by the use of series approximation, expected values obtained

from those utilities may also be wildly incorrect (or correct only if

the investment is restricted in range). This is illustrated by four

different investments for which the acutal values of E(ln(R)) and the

cubic and quadratic approximations for E(ln(R)) are given in Table II.

Note that restriction of the range of R to keep it in the region of

Figure 1 where the curves closely approximate each other appears to be

much more important than symmetry of distribution.

Insert Table II

Block IA in Table II illustrates the optimal case—restriction to

a region of close approximation in Figure 1 along with symmetry of

distribution. Block IB shows that symmetry of distribution does not

prevent error. Block IC shows that a skewed distribution with restricted

range may be well analyzed using a cubic approximation, while Block ID

shows that highly skewed investments (e.g., options) should not be

analyzed (for U(R) = ln(R)) by cubic approximation.

In a sense, cubic and quadratic approximations actually change an

investor from one whose utility function is U(R) = ln(R) to one whose
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utility function is a very different cubic or quadratic, as Table III

illustrates. No matter what the shape of the original utility function,

by discarding higher moments the investor's utility function is transformed

into a quadratic or cubic.

Insert Table III

III. Applications to Recent Studies Assets with Skewed Distributions

A. Optimal portfolio size

Conine and Tamarkin [4] assert that preference for skewness will

cause an investor to hold a limited rather than fully diversified port-

folio under certain conditions. They use cubic approximations of E(U(R)),

and their analysis assumes a homogeneous security universe. The following

stylized example for a homogeneous securities universe satisfying their

assumptions shows that the result of limited diversification may fail

to hold for the actual utility function U(R) = ln(R) while holding for

the cubic approximation (and thus misleading the analyst). We first

note the following theorem.

Theorem : In a securities universe in which all assets have the

same mean return, E(ln(R)) is maximized by an asset A with variance

in its returns R,

.

A

Proof : Consider a risky asset with possible returns R , ...,R ,
1 n

where the probability of R. is p(R.) = 1/n.

ln(R-)+ln(R,)+...+ln(R ) ln(R . »R»...R )

ECln(R)) = ~ — = ^—T — (7)
n n

Since n is fixed, we need only maximize the product (R. *R ...R ) subject

to the constraint R-+...+R = a constant (implied by identity of mean
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return of all assets). By using the method of Lagrange multipliers, the

solution R. R_ « . . . = R can be derived. (This easily can be gener-

alized to a distribution of the form p(\) = P< » Ep^. =1« The distribution

is given in a form similar to what would be obtained from historical

return analysis) . Equality of returns yields variance.

Example . Consider a homogenous securities universe consisting of

5 securities each of which has the distribution:

p(R. = 5.2) = .2 P(R - .2) = .8

The joint distribution is given using the notation:

P(R
1

- av R
2

= a2> R
3

= a3> R
4

= a^, R
$

- a
5
)

= P\a i > 3jj 3_, a,, a_)

The joint distribution is:

P(5.2, .2, .2, .2, .2) = .2

P(.2, 5.2, .2, .2, .2) = .2

P(.2, .2, 5.2, .2, .2) — .2

P(.2, .2, .2, 5.2, .2) = .2

P(.2, .2, .2, .2, 5.2) = .2

P(any other joint event) =

Under this distribution, in any given year exactly one security will

have R = 5.2, and all others will have R = .2. A five year series of

returns might appear as given in Table IV.

Insert Table IV

In this homogeneous universe, all securities have common mean,

2 T
yR

= 1.2, variance, a = 4, and skewness, u =12. Covariances and

coskewnesses are identical for distinct pairs of securities. According

to the preceding theorem, an investor with utility function l!(S.) = ln(P.)
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should seek variance in return. This can in fact be attained if one

buys an equally weighted market portfolio, for which P(R = 1.2) = 1 —

the investor can obtain a constant unvarying return of 1.2. Use of the

cubic approximation to E(ln(R)) gives the misleading idea that the

investor attaches higher utility to the risky venture of holding only

one security, as Table V indicates. The quadratic approximation is

inexact, but does identify the optimal utility portfolio.

Insert Table V

For the investor's actual utility function U = ln(R), complete

diversification is optimal. Use of the cubic approximation makes the

riskiest asset appear to be of highest expected utility, when in fact

it is only of highest expected utility to a cubic risk lover. The

approximation has treated the investor as a cubic risk lover.

B. Premium Calculuation

Kane [8] uses series truncation to calculate the relative risk

premium p for a risky asset, taking skewness into account. The premium

is defined by the equation:

U(W(l+y-p)) = E{U[W(l+y)l} (8)

where W denotes initial wealth, y represents return on investment and

y the mean of y. Using a three moment approximation, the following

formula is obtained.

pm
= | R(W)o

2
- | S(W)E(y

3
) (9)
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where:

ogj, - W
2
U"'(W) , . -WU"(W)

s(w) " u'(w) '
R(w)

u'Twy <10 )

Kane is careful to state assumptions on the series. The following

example only shows that his locally correct formula must be applied

with the same care.

Example Consider an investment such that p(y=3) = 1/3, p(y=0) = 2/3.

Then y = 1. If U =ln(R) and W =1, the equation for the true premium is:

ln(2-p) = E(ln(l+y)) = .462 (11)

Solving equation (11) for p gives a value of .41. However, if the

formula for pm
(equation (9)) with W = 1, is used, then: U(R) = ln(R)

,

S(W) = 2, R(W) = 1, a
2

= 2 and E(y
3
) = 9, and one obtains p = -2. The

m

approximate formula for premium is seriously in error when inappropriately

used for a highly skewed asset. (Kane notes that plunging may Become

evident if the approximation is applied to highly skewed investments.

This may be attributed to the fact that the three term Taylor series

approximation to ln(l+y) changes the utility function to one of a cubic

risk lover)

.

C. Expected utility with a normal distribution of returns

One justification given (somewhat loosely) for use of only a

quadratic approximation (MV) approach is that stock returns are nearly

normally distributed and the normal distribution is determined by u
' R

2
and o£. However, as shown in equation (12) the full series for E(U(R))

n
clearly requires more moments than a , even when one drops odd moment

R

terms which are 0:
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«"») - «V 2T-
5

" t I "WT^R > <12)

The MV formula for E(U(R)) contains only the first two terms—a potentially

serious truncation. However, it is true that a qualitative description

of investor behavior based on expected utility can be validly derived

using only the first two terms. This occurs because the higher moments

yR
are related to a^as shown in equation (13).

(2n)!(aV

pf
= -A- (13)

R
(2
n
)n!

If U(R) is any utility function displaying strict consistency of preference,

all derivatives U will be >_ (Scott-Horvath [19]). Thus the investor

is truly averse to all higher moments. However, if the investor lowers

2 2
variance, a , this will also diminish all higher moments with a . The

ft ft

2
aversion to a alone implied by the MV approach actually forces the

ft

aversion to all higher moments required by the full series, so a correct

qualitative description of investor behavior is obtained using the MV

approximation. However, the MV approximation to E(U(R)) will overestimate

the actual quantitative value of E(U(R)). It is not inconceivable that

this could create problems in a theoretical calculation such as the risk

premium calculation just completed.

III. Conclusions

The broadening spectrum of financial securities which allow investors

to create almost any desired expected return distribution motivates the

study of the effect of higher distribution moments on investor utility.

The purpose of this article is to emphasize certain precautions which
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must be observed when solving for expected utility using a two or three

moment Taylor series approximation.

Three problems were identified if a Taylor series is used to solve

for expected utility. First, returns with high variability may fall

outside the region of convergence of the Taylor series. Examples

presented indicate that the analysis may be applied to skewed return

distributions having return values in the region of convergence, but

may be incorrect for normal distributions with large variance in

returns. Second, series for utility functions with an infinite series

of derivatives may not coverge as desired. Discarding the terms beyond

the second or third derivatives actually transforms the assumed utility

function to one which is cubic or quadratic, a perhaps undesirable

consequence. Finally, because the higher moments of non-symmetric

return distributions exist and are non-zero, the use of a truncated

approximation may seriously misstate expected utility.

The problems outlined above imply that optimization techniques

presented in recent articles may provide misleading results when asset

return distributions are non- symmetric. Future research should explore

other means for incorporating higher moments Into the preference structure

for risky assets.
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Footnotes

Utility functions which exhibit necessary and sufficient conditions
for portfolio analysis—separation, myopia [3,14] and Pareto Optimality
of linear sharing rules [16] include: the (1) exponential U(R) = 1 - e

(a > 0) , (2) logarithmic U(R) = ln(R) and (3) power U(R) = R (0 < b < 1)

.

"The logarithmic and power utility functions are most likely to

create problems in expected utility analysis. Approximation of the

exponential utility function by a truncated Taylor series is generally
reliable.

3
Table 2 indicates that Loistl's [13] conclusion must be care-

fully interpreted in light of his specific examples. For example,
Loistl states "the mean-variance approximation is not a good approximation
of the expected value of utility at all; however, it is more exact than
a Taylor series expansion including higher terms of any order". Contrary
to this statement, Blocks IA and IC of Table 2 show cases in which the

mean-variance approximation is nearly exact. As long as returns lie in

the region of convergence, it can be shown that adding more terms will
improve the Taylor series approximation. Loistl's results are based on
returns beyond the limt of convergence.
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TABLE I

Actual and Approximate Values of II = ln(R)*

Cubic Quadratic

R R-1.2 Actual ln(R) App roximation Cubic /In Approximation Quadratic/In

1.2 .18232 .18232 1 .18232 1 <

1.6 .4 .47000 .47245 1.00519 .46010 .97893

2 .8 .69315 .72553 1.04672 .62677 .90423

2.4 1.2 .87547 1.01565 1.16013 .68232 .77938

2.8 1.6 1.02962 1.41682 1.37613 .62677 .60874

3.2 2 1.16315 2.00331 1.72231 .46010 .39556

3.6 2.4 1.28093 2.84899 2.22415 .18232 .14234

4 2.8 1.38629 4.02844 2.90559 - .20657 - .14901

4.4 3.2 1.48160 5.61442 3.78942 - .70657 - .47689

4.8 3.6 1.56862 7.68232 4.89752 -1.31768 - .84003

5.2 4 1.64866 10.30580 6.25101 -2.03990 -1.23373

5.6 4.4 1.72277 13.55890 7.87040 -2.87323 -1.66780

^Tabular entries are computed via expansion about R = 1.2 where

U = ln(R) = a
Q
+ a

1
(R-1.2) + a

2
(R-1.2)

2
+ a

3
(R-1.2)

3

and

a
Q

= ln(1.2) = .18232

a. = 1/1.2 = .83333

a
?

= -1/2(1.2)2 = .34722

a
3

= 1/3(1.2)3 = .19290



TABLE II

Actual and Approximate Expected Utility for Stylized Investments

Return
Range Symmetric

2

°R
3

yR

E(I

Actual

J) = E(ln

Cubic
Approx.

CR))

Quadratic
Approx.

Error
Comparison

Cubic Quadrati
Actual Actual

A
p(R=1.2)=.6
p(R=l.l)=.2
p(R=1.3)=.2

.2 yes .004 .18093 .18093 .18093 1.00000 1.00000

B

p(R= .4) = .

2

p(R=1.2)=.6
p(R=2.0)=.2

1.6 yes .256 .06476 .09343 .09343 1.44267 1.44267

C

p(R=l.l)=.8
p(R=1.6)=.2

.5 no .04 .012 .17025 .16843 .17075 1.00293 .98933

D

p(R= .2) = .

8

p(R=5.2)=.2
5 no 4 12 -.95782 1.10825 -1.20657 -1.15705 1.25970

>



TABLE III

Taylor Series and Approximation formulas for
Expected Utility with u = 1.2*

R

U = f(R)

U = quadratic
Approximation

U = cubic
Approximation

|

Taylor Series

For U(R)

a +
a;L (R-1.2)

+a
2
(R-1.2)

2
+a

3
(R-1.2)

3

+a. (R-1.2)
4
+...

4

+a (R-1.2)
n
+...

n

a +
a;L (R-1.2)

+a
2
(R-1.2)

2

a +
a;L CR-1.2)

+a
2
(R-1.2)

2

+a
3
(R-1.2)

3

E(U(R))

(only valid

if R stays

in region of

convergence)

Va
l°
+a

2
a
R

+. . .4a u_+. .

.

n R

Wr-

/
a +a

2
a
R
+a

3
Vi

E(U(R))

discard

all moments

bUt V V yR

//

a +a
2
aR^//

//
/7

s'

E(U(R))

discard

all moments

1
but uR , y

R
2 A 3

u
R
and u

R

llZ

*The above holds for any utility function U = f(R) which can be expanded about u . The

a. are Taylor series coefficients for f (R)

.



TABLE IV

Typical Five Year Return Sequence

Security

Year

1 5.2 .2 .2 .2 .2
2 -2 5.2 .2 .2 .2
3 .2 .2 5.2 .2 .2
4 -2 .2 .2 5.2 .2
5 -2 .2 .2 .2 5.2



TABLE V

Exact and Approximate Expected Utility of E.eturn

Number of

Securities in

Portfolio

Return

Distribution

E(ln(R))
=Zp.ln(R.)

(Actual)

Cubic
Approximation

a +a
2
a
R
+a

3
U
R

Quadratic
Approximation

Comparison
Cubic Quadrat

Actual Actu™

1 p(5.2)= .2

P(.2)= .8

-.95782 1.10825 -1.20657 -1.15705 1.2591

2 p(2.7)= .4

p(.2)= .6

-.56836 - .19384 - .33851 .34043 .595!

3 p(1.86)= .6

P(.2)= .4

-.29628 - .09203 - .04916 .34175 .182!

4 p(1.45)= .8

P(.2)= .2

-.02464 .05935 .09552 -2.40888 -3.876?

5 p(1.2)=1.0 .18232 .18232 .18232 1 1
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