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Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, Mathieu Raffinot

To cite this version:
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An Algorithmi View of Gene TeamsMarie-Pierre B�eal� Anne Bergeron y Sylvie Corteelz Mathieu RaÆnotxAbstratComparative genomis is a growing �eld in omputational biology, and one of itstypial problem is the identi�ation of sets of orthologous genes that have virtually thesame funtion in several genomes. Many di�erent bioinformatis approahes have beenproposed to de�ne these groups, often based on the detetion of sets of genes that are\not too far" in all genomes. In this paper, we propose a unifying onept, alled geneteams, whih an be adapted to various notions of distane. We present two algorithmsfor identifying gene teams formed by n genes plaed on m linear hromosomes. The �rstone runs in O(mn log2 n) and uses a divide and onquer approah based on the formalproperties of gene teams. We next propose an optimization of the original algorithm,and, in order to better understand the omplexity bound of the algorithms, we reast theproblem in the Hoproft's partition re�nement framework. This allows us to analyze theomplexity of the algorithms with elegant amortized tehniques. Both algorithms requirelinear spae. We also disuss extensions to irular hromosomes that ahieve the sameomplexity. R�esum�eLa omparaison des g�enomes est un domaine roissant en biologie omputationnelleet l'un de ses probl�emes typiques est l'identi�ation d'ensembles de g�enes orthologuesqui ont virtuellement la même fontion dans plusieurs g�enomes. Plusieurs approhes bio-informatiques distintes ont �et�e propos�ees pour d�e�nir es groupes. Elles sont souventbas�ees sur la d�etetion d'ensembles de g�enes qui ne sont pas \trop �eloign�es" dans tousles g�enomes onsid�er�es. Dans et artile, nous proposons un onept uni�ateur, appel�e�equipe de g�enes, qui peut être adapt�e �a di��erentes notions de distanes. Nous pr�esentonsdeux algorithmes pour identi�er les �equipes de g�enes form�ees par n g�enes situ�es sur mhromosomes lin�eaires. Le premier a une omplexit�e en temps de O(mn log2 n) et utiliseune approhe \diviser pour r�egner" bas�ee sur des propri�et�ees formelles des �equipes deg�enes. Nous proposons ensuite une optimisation de et algorithme, et, a�n de mieuxomprendre la borne sur sa omplexit�e, nous repla�ons le probl�eme dans le adre d'unsh�ema de raÆnement de partitions de Hoproft. Cei nous permet d'analyser la om-plexit�e par des tehniques plus �el�egantes de omplexit�e amortie. Les deux algorithmesont une omplexit�e en espae lin�eaire. Nous onsid�erons �egalement des extensions au asdes hromosomes irulaires qui ont la même omplexit�e.�Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Cit�e Desartes, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, Frane. Marie-Pierre.Beal�univ-mlv.fr.yLaCIM, Universit�e du Qu�ebe �a Montr�eal, Canada. anne�laim.uqam.azCNRS - Laboratoire PRiSM, Universit�e de Versailles, 45 Avenue des Etats-Unis, 78035 Versailles edex,Frane. E-mail: syl�prism.uvsq.frxCNRS - Laboratoire G�enome et Informatique, Tour Evry 2, 523, Plae des Terrasses de l'Agora, 91034Evry, Frane. raffinot�genopole.nrs.fr 1



1 IntrodutionIn the last few years, researh in genomis siene evolved rapidly. More and more ompletegenomes are now available due to the development of semi-automati sequener mahines.Many of these sequenes { partiularly prokaryoti ones { are well annotated: the position oftheir genes are known, and sometimes parts of their regulation or metaboli pathways.A new omputational hallenge is to extrat gene or protein knowledge from high levelomparison of genomes. For example, the knowledge of sets of orthologous or paralogous geneson di�erent genomes helps to infer putative funtions from one genome to the other. Manyresearhers have explored this avenue, trying to identify groups or lusters of orthologous genesthat have virtually the same funtion in several genomes [1, 6, 5, 7, 9, 11, 13, 14, 15, 18℄.These researhes are often based on a simple, but biologially veri�ed fat, that proteins thatinterat are often oded by genes losely plaed in the genomes of di�erent speies. Withthe knowledge of the positions of genes, it beomes possible to automate the identi�ation ofgroups of losely plaed genes in several genomes. For a more omplete biologially orienteddisussion on these groups of genes, we refer the reader to [12℄.From an algorithmi and ombinatorial point of view, the formalizations of the oneptof losely plaed genes are still fragmentary, and sometimes onfusing. The distane betweengenes is variously de�ned as di�erenes between physial loations on a hromosome, distanefrom a spei�ed target, or as a disrete ount of intervening atual or predited genes. Thealgorithms often lak the neessary grounds to prove their orretness, or assess their om-plexity. This paper ontributes to a researh movement of lari�ation of these notions. Weaim to formalize, in the simplest and most omprehensive ways, the onepts underlying thenotion of distane-based lusters of genes. We an then make use of these onepts, and theirformal properties, to design sound and eÆient algorithms.A �rst step in that diretion has been done in [9, 19℄ with the onept of ommon intervals.A ommon interval is a set of orthologous genes that appear onseutively, possibly in di�erentorders, on a hromosome of two or more speies. This onept overs simplest ases of setsof losely plaed genes, but does not take in aount the nature of the gaps between genes.Common intervals an be de�ned on hromosomes with paralogous genes, that is, eah geneould have multiple loations on the hromosomes. However, the algorithms in [9, 19℄ aredesigned only for the ase where eah gene ours one on eah hromosome.In this paper, we extend this notion by relaxing the \onseutive" onstraint. We assumethat eah gene ours one on eah hromosome. We allow genes to be separated by gaps thatdo not exeed a �xed threshold. We develop a simple formal setting for these onepts, andgive two polynomial algorithms that detet maximal sets of losely plaed genes, alled geneteams, in m hromosomes. Note that we fous in this paper on the algorithmi part of thegene team onept. A omplete study validating this model from a biologial point of view isavailable in [12℄, an the results onerning the divide-and-onquer algorithm were announedin [3℄.The �rst algorithm re�nes the partitions indued by gene hains of two or more hromo-somes. It uses a divide-and-onquer approah based on the existene of small lasses of thepartitions. The apparent simpliity hides a omplex underlying problem that �rst appearedin the non trivial omplexity of this �rst algorithm.Next, in order to better understand the omplexity bounds, and analysis, of this algorithm,we reast the problem in the Hoproft's partition re�nement framework [10℄, whih overs awide range of appliations [8, 16℄. We develop a new algorithm based of the �rst Hoproft2



minimization algorithm, and show that the �rst algorithm desribed is a leverly disguisedHoproft-like algorithm. The lose links between the two algorithms allows us to derive anelegant omplexity analysis, based on amortized tehniques, whih is muh more intuitivethan the equational approah. Moreover, the fat that Hoproft-like algorithms have beenextensively studied on�rms the intrinsi diÆulties of the gene teams identi�ation problem.This paper is organized as follows. In Setion 2, we formalize the onept of gene teamsthat uni�es most of the urrent approahes, and disuss their basi properties. In Setion 3we present two algorithms that identify the gene teams of two hromosomes. The linksbetween Hoproft's partitioning framework and gene teams identi�ation are explored inSetion 4. Finally, in Setion 5, we extend our algorithms to m hromosomes, and to irularhromosomes. An extended abstrat of this paper appeared in [3℄.2 Gene Teams and their PropertiesMuh of the following de�nitions refer to sets of genes and hromosomes. These are biologialonepts whose de�nitions are outside the sope of this paper. However, we will assume someelementary formal properties relating genes and hromosomes: a hromosome is an orderingdevie for genes that belong to it, and a gene an belong to several hromosomes. If a genebelongs to a hromosome, we assume that its position is known, and unique.2.1 De�nitions and ExamplesLet � be a set of n genes that belong to a hromosome C, and let PC be a funtion:� PC�! Rthat assoiates to eah gene g in � a real numberPC(g), alled its position.Funtions of this type are quite general, and over a wide variety of appliations. Theposition an be, as in [14, 15, 11℄, the physial loation of an atual sequene of nuleotides ona hromosome. In more qualitative studies, suh as [1, 13℄, the positions are positive integersreeting the relative ordering of genes in a given set. In other studies [5℄, positions are bothnegative and positive numbers omputed in relation to a target sequene.The funtion PC indues a permutation on any subset S of �, ordering the genes of S fromthe gene of lowest position to the gene of highest position. We will denote the permutationorresponding to the whole set � by �C . If g and g0 are two genes in �, their distane �C(g; g0)in hromosome C is given by jPC(g0)� PC(g)j.For example, if � = fa; b; ; d; eg, onsider the following hromosome X, in whih genesnot in � are identi�ed by the star symbol:X =  � � e d a � b:De�ne PX(g) as the number of of genes appearing to the left of g. Then �X(; d) = jPX(d)�PX()j = 4, �X = ( e d a b), and the permutation indued on the subset fa; ; eg is ( e a).De�nition 1 Let S be a subset of �, and (g1 : : : gk) be the permutation indued on S ona given hromosome C. For Æ > 0, the set S is alled a Æ-hain of hromosome C if�C(gj ; gj+1) � Æ; for 1 � j < k. 3



For example, if Æ = 3, then fa; ; eg is a Æ-hain of X, sine eah pair of onseutiveelements in the permutation ( e a) is distant by less than Æ.We will also refer to maximal Æ-hains with respet to the partial order indued on thesubsets by the inlusion relation. For example, with Æ = 2, the maximal Æ-hains of X arefg and fa; b; d; eg. Note that singletons are always Æ-hains, regardless of the value of Æ.De�nition 2 A subset S of � is a Æ-set of hromosomes C and D if S is a Æ-hain both in Cand D. A Æ-team of the hromosomes C and D is a maximal Æ-set with respet to inlusion.A Æ-team with only one element is alled a lonely gene.Consider, for example, the two hromosomes:X =  � � e d a � bY = a b � � �  � d e:For Æ = 3 then fd; eg and f; d; eg are Æ-sets, but not f; dg sine the latter is not a Æ-hainin X. The Æ-teams of X and Y , for values of Æ from 1 to 4 are given in the following table.Æ Æ-teams Lonely Genes1 fd; eg fag; fbg; fg2 fa; bg; fd; eg fg3 fa; bg; f; d; eg4 fa; b; ; d; egNote that two gene teams an overlap. For instane, if X = a  b d, Y = a b � �  d andÆ = 2, then fa; bg and f; dg are two overlapping gene teams.Our goal is to develop algorithms for the eÆient identi�ation of gene teams. The mainpitfalls are illustrated in the next two examples.The intersetion of Æ-hains is not always a Æ-set. A naive approah to onstrutÆ-sets is to identify maximal Æ-hains in eah sequene, and interset them. Although thisworks on some examples, the approah does not hold in the general ase. For example, in thehromosomes: X = a b Y = a  � � b;with Æ = 1, the maximal Æ-hain of X is fa; b; g, and the maximal Æ-hains of Y are fa; gand fbg. But fa; g is not a Æ-team.Gene teams annot be grown from smaller Æ-sets. A typial approah for onstrutingmaximal objets is to start with initial objets that have the desired property, and lusterthem with a suitable operation. For gene teams, the singletons are perfet initial objets,but there is no obvious operation that, applied to two small Æ-sets, produes a bigger Æ-set.Consider the following hromosomes:X = a b  dY =  a d b :4



For Æ = 1, the only Æ-sets are the sets fag, fbg, fg and fdg, and the set fa; b; ; dg. Ingeneral, it is possible to onstrut pairs of hromosomes with an arbitrary number of genes,suh that the only Æ-sets are the singletons and the whole set. For example, onsider thefollowing hromosomes, in whih the genes are represented by numbers in order to illustratethe onstrution: X = 1 2 3 ::: ::: 2kY = 2 4 6 ::: 2k 1 3 5 ::: 2k � 1:For Æ = 1, any Æ-set larger than a singleton must ontain both odd and even genes beausethey alternate in hromosome X, but any Æ-hain in Y that ontains odd and even genes mustontain genes 1 and 2k, implying that the only team with more than one gene is the whole set.Instead of growing teams from smaller Æ-sets, we will extrat them from larger sets thatontain only teams. This leads to the following de�nition:De�nition 3 A Æ-league of hromosomes C and D is a union of Æ-teams of the hromosomesC and D.As the two last examples show, the ombinatorial properties of Æ-sets are not elementary,and we need to establish them in order to develop and prove our algorithms.2.2 Properties of Æ-sets and teams.The �rst ruial property of Æ-teams is that they form a partition of the set of genes �. It isa onsequene of the following lemma:Lemma 1 If S and T are two Æ-hains of hromosome C, and S \T 6= ;, then S [ T is alsoa Æ-hain.Proof: Consider the permutation indued on the set S [ T , and let g and g0 be two onse-utive elements in the permutation. If g and g0 both belong to S (or to T ), then they areonseutive in the permutation indued by S (or by T ), and �(g; g0) � Æ. If g is in S but notin T , and g0 is in T but not in S, then either g is between two onseutive elements of T , org0 is between two onseutive elements of S. Otherwise, the two sets S and T would have anempty intersetion. If g is between two onseutive elements of T , for example, then one ofthem is g0, implying �(g; g0) � Æ.We now have easily:Proposition 1 For a given set of genes �, the Æ-teams of hromosomes C and D form apartition of the set �.Proof: Sine any singleton of � is a Æ-set, any gene of � belongs to a Æ-team. If the in-tersetion of two di�erent Æ-teams T1 and T2 is not empty, then the intersetion of the twounderlying Æ-hains is not empty neither in C nor in D, therefore their union is also a Æ-hainin both sequenes, implying that T1 [ T2 is a Æ-set, and ontraditing the maximality of T1and T2.Proposition 1 has the following orollary: 5



Corollary 1 If a set S is both a league, and a Æ-set, of hromosomes C and D, then S is aÆ-team.Proof: Sine the maximal Æ-sets form a partition of �, any Æ-set is ontained in a uniqueÆ-team.The algorithms desribed in the next setion work on leagues, splitting them while ensuringthat a league is split in smaller leagues. The proess stops when eah league is a Æ-set.Corollary 1 provides a simple proof that suh an algorithm orretly identi�es the teams.The next proposition gives the \initial" leagues for the �rst algorithm.Proposition 2 Any maximal Æ-hain of C or of D is a league.Proof: First observe that the set of maximal Æ-hains in a hromosome also forms a partitionof �. Therefore, any Æ-hain is inluded in a unique maximal Æ-hain. If T is a team of C andD, then T is a Æ-hain in both hromosomes, thus T is inluded in a single maximal hain inboth hromosomes.3 Algorithms to Find Gene TeamsIt is quite straightforward to develop O(n2) algorithms that �nd gene teams in two hro-mosomes. In the following subsetion, we present some of the pitfalls of naive approahesto partition re�nement that an lead to an O(n2) worst ase senario. However, sine theultimate goal is to be able to upgrade the de�nitions and algorithms to more than two hro-mosomes, suh a threshold is too high. In Setion 3.2, we develop an O(n log2 n) algorithm,whose omplexity is analysed in setion 3.3. We then propose in Setion 3.4 an optimizationof the �rst algorithm, reduing its time omplexity to O(n logn log Æ0), where Æ0 is, for allpratial purpose, a small onstant.3.1 Partition Re�nementAssume that we are given two permutations on �, �C and �D, eah already partitioned intomaximal Æ-hains of hromosomes C and D:�C = (1 : : : k1)(k1+1 : : : k2) : : : (ks+1 : : : n)�D = (d1 : : : dl1)(dl1+1 : : : dl2) : : : (dlt+1 : : : dn):Let (i : : : j) be one of the lasses of the partition of �C , by Proposition 2 (i : : : j) is aleague. Our goal is to split this lass in v sublasses S1; : : : ; Sv suh that: a) eah sublass isa league; b) eah sublass is a Æ-hain in C; and ) eah sublass is ontained in one of thelasses of �D.Consider, for example, the following two hromosomes { in whih we identi�ed the genesas numbers, and k � 1:X = (3 1 5 2 7 4 9 : : : 2k + 1 2k � 2 2k + 3 2k) (2k + 2)Y = (1 2 3 4 5 : : : 2k + 1 2k + 2 2k + 3):6



If one ompares the �rst league of hromosome X to the �rst league of hromosome Y , onean observe that genes 2k+2 and 2k+3 must be isolated in both partitions. But the resultingproblemX 0 = (3 1 5 2 7 4 9 : : : 2k + 1 2k � 2) (2k + 3) (2k) (2k + 2)Y 0 = (1 2 3 4 5 : : : 2k + 1) (2k + 2) (2k + 3);has the same form tas the original one, showing that a bad hoie of leagues to ompare anyield to O(n) iterations of the proess. This partition re�nement approah has the drawbakthat big leagues must be read over and over again, in order to extrat the small leagues thatare buried in them. In the next setion, we take the point of view of the small lasses, andshow that their extration an be done eÆiently.3.2 A Divide-and-Conquer AlgorithmThe following algorithm to identify teams is a divide-and-onquer algorithm that works byextrating small leagues from larger ones. Its basi priniple is desribed in the followingparagraph.Assume that S is a league of hromosomes C and D, and that the genes of S are respe-tively ordered in C and D as: (1 : : : n); and (d1 : : : dn):By Proposition 1, if S is a Æ-set, then S is a Æ-team. If S is not a Æ-set, there are at leasttwo onseutive elements, say i and i+1 that are distant by more than Æ. Therefore, both(1 : : : i) and (i+1 : : : n) are leagues, splitting the initial problem in two sub-problems. Thefollowing two lemmas explain how to split a problem eÆiently.Lemma 2 If S is a league, but not a team, of hromosomes C and D, then there exists asub-league of S with at most jSj=2 genes.Proof: Let jSj = n, if all sub-leagues of S have more than n=2 genes, it follows that eahteam inluded in S has more than bn=2 genes, and the intersetion of two suh teams annotbe empty.The above lemma implies that if S is a league, but not a team, and if the sequenes(1 : : : n) and (d1 : : : dn) are the orresponding permutations in hromosomes C and D, thenthere exist a value p � n=2 suh that at least one of the following sequenes is a league:(1 : : : p);(n�p+1 : : : n);(d1 : : : dp);(dn�p+1 : : : dn):For example, if X = a b  � d e f gY =  a e d b g fand Æ = 1, then (a b ) is easily identi�ed as a league, sine the distane between  andd is greater than 1 in hromosome X. The next problem is to extrat the orrespondingpermutation in hromosome Y . This is taken are of the following lemma that desribes thebehavior of the funtion \Extrat((1 : : : p);D)":7



Lemma 3 Assume that �C and �D, and their inverse, are known. If (1 : : : p) is a set ofgenes ordered in inreasing position in hromosome C, then the orresponding permutation(d01 : : : d0p) on hromosome D an be obtained in time O(p log p).Proof: Given (1 : : : p), we �rst onstrut the array A = (��1D (1); : : : ; ��1D (p)). SortingA requires O(p log p) operations, yielding the array A0. The sequene (d01 : : : d0p) is given by(�D(A01) : : : �D(A0p)).The last operation needed to split a league is to onstrut the ordered omplement of anordered league. For example, for the league �Y = ( a e d b g f), the omplement of theleague ( a b) is the league (e d g f).More formally, if (d01 : : : d0p) is a subsequene of (d1 : : : dn), we will denote by(d1 : : : dn) n (d01 : : : d0p)the subsequene of (d1 : : : dn) obtained by deleting the elements of (d01 : : : d0p). In our partiularontext, this operation an be done in O(p) steps. Indeed, one a problem is split in two sub-problems, there is no need to baktrak in the former problems. Therefore, at any point inthe algorithm, eah gene belongs to exatly two ordered leagues, one in eah hromosome. Ifthe gene data struture ontains pointers to the previous and the following gene { if any { inboth leagues, the struture an be updated in onstant time as soon as an extrated gene isidenti�ed. Sine p genes are extrated, the operation an be done in O(p) steps. An exampleof suh an \extration" operation is shown in Fig. 1.
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D’Figure 1: Extration of a league P out of D. The initial problem on (C;D) is split in twosub-problems on (C 0;D0) and (C 00;D00).Fig. 2 ontains the formal desription of the algorithm FindTeams. The three asesthat are not shown orrespond to the tests �C(n�p; n�p+1) > Æ, �D(dp; dp+1) > Æ and�D(dn�p; dn�p+1) > Æ, and are dupliations of the �rst ase, up to indies.Theorem 1 On input �C and �D, algorithm FindTeams orretly identi�es the Æ-teams ofhromosomes C and D.Proof: Sine � is a league, the �rst input to FindTeams will be a league. The orretness ofthe algorithm omes from the fat that if a league S is supplied to the algorithm, then either8



FindTeams((1 : : : n); (d1 : : : dn))1. SubLeagueFound  False2. p 13. While (not SubLeagueFound) and p � bn=2 Do4. If �C(p; p+1) > Æ or �C(n�p; n�p+1) > Æ or5. �D(dp; dp+1) > Æ or �D(dn�p; dn�p+1) > Æ Then6. SubLeagueFound  True7. Else p p+ 18. End of if9. End of while10. If SubLeagueFound Then11. If �C(p; p+1) > Æ Then12. (d01 : : : d0p) Extrat((1 : : : p); D))13. FindTeams((1 : : : p); (d01 : : : d0p))14. FindTeams((p+1 : : : n); (d1 : : : dn) n (d01 : : : d0p))15. Else If : : :16. /* The three other ases are similar */17. End of if18. Else (1 : : : n) is a Team19. End of ifFigure 2: Fast reursive algorithm for gene teams identi�ation.S is a Æ-team, whih is the ondition tested by the four tests within the loop of line 3, or ithas a \small" sub-league, whose omplement is also a league.The spae needed to exeute algorithm FindTeams is easily seen to be O(n) sine itneeds the four arrays ontaining �C , �D, ��1C , ��1D , and the n genes, eah with four pointersoding impliitly for the ordered leagues.3.3 Time Complexity of Algorithm FindTeamsIn the last setion, we saw that algorithm FindTeams splits a problem of size n in twosimilar problems of size p and n� p, with p � n=2. The number of operations needed to splitthe problem is O(p log p), but the value of p is not �xed from one iteration to the other. Inorder to keep the formalism manageable, we will \... neglet ertain tehnial details when westate and solve reurrenes. A good example of a detail that is glossed over is the assumptionof integer arguments to funtions.", [17℄ p. 53.Assume that the number of operation needed to split the problem is bounded by �p log p,and let F (n) denote the number of operations needed to solve a problem of size n. Then F (n)is bounded by the funtion T (n) desribed by the following equation:T (n) = max1�p�bn=2f�p log p+ T (p) + T (n� p)g: (1)with T(1) = 1. 9



Surprisingly, the worst ase senario of the above equation is when the input is alwayssplit in half. Indeed, we will show that T (n) is equal to the funtion:T2(n) = �n2 log n2 + 2T2 �n2� ; (2)with T2(1) = 1. One diretion is easy:Lemma 4 T (n) � T2(n).Proof: Suppose that T (i) � T2(i) for all i < n, thenT (n) � max1�p�n=2f�p log p+ T2(p) + T2(n� p)g� (�n=2) log(n=2) + T2(n=2) + T2(n� n=2)= T2(n):In order to show the onverse, we �rst obtain a losed form for T2(n).Lemma 5 T2(n) = n� (�n=4) log n+ (�n=4) log2 n.Proof: Substituting the value T2(n=2) in the left side of Equation 2, and using the identitylog(n=2) = (log n)� 1 yields:T2(n) = (�n=2) log(n=2) + 2[n=2� (�n=8) log(n=2) + (�n=8) log2(n=2)℄= n� (�n=4) log n+ (�n=4) log2 n:We use this relation to show the following remarkable property of T2(n). It says that whena problem is split in two, the more unequal the parts, the better.Proposition 3 If x < y then T2(x) + T2(y) + �x log x < T2(x+ y).Proof: Consider the variable z = y=x. The following identities are easy to derive:log(x+ y)� log x = log(1 + z)log(x+ y)� log y = log(1 + 1=z)log2(x+ y)� log2 x = [2 log x+ log(1 + z)℄ log(1 + z)log2(x+ y)� log2 y = [2 log x+ log(1 + z) + log z℄ log(1 + 1=z):De�ne H(z) = log(1 + z) + z log(1 + 1=z). Its value for z = 1 is 2, and its derivative islog(1 + 1=z), implying that the H(z) is stritly inreasing. We will show that [T2(x + y) �T2(x)� T2(y)℄=(�x) > log x. Using the losed form for T2, we have:[T2(x+ y)� T2(x)� T2(y)℄=(�x)= (1=4)[log2(x+ y)� log2 x℄ + (y=4x)[log2(x+ y)� log2 y℄�(1=4)[log(x+ y)� log x℄� (y=4x)[log(x+ y)� log y℄:10



Substituting y=x by z, the last expression beomes:(H(z)=4)[2 log x+ log(1 + z)� 1℄ + (1=4)z log z log(1 + 1=z)� (H(z)=2) log x> log x; sine H(z) > 2, when z > 1.Using Proposition 3, we get:Proposition 4 T (n) � T2(n).Proof: Suppose that T (i) � T2(i) for all i < n, thenT (n) = max1�p�bn=2f�p log p+ T (p) + T (n� p)g� max1�p�bn=2f�p log p+ T2(p) + T2(n� p)g� max1�p�bn=2fT2(p+ n� p)g� max1�p�bn=2fT2(n)g= T2(n):We thus have:Theorem 2 The time omplexity of algorithm FindTeams is O(n log2 n).Theorem 2 is truly a worst ase behavior. It is easy to onstrut examples in whih itsbehavior will be linear, taking, for example, an input in whih one hromosome has onlysingletons as maximal Æ-hains.3.4 A faster algorithmAlgorithm FindTeams an be optimized by using a parameter Æ0 that depends on genedensity and the value of Æ:De�nition 4 Let Æ0 be the maximal number of genes ontained in moving window of size Æ,over all the hromosomes.The optimization fouses on how to extrat the small league P , or the pivot of Hoproft'sframework (see Setion 4). Assume P to be of size p. The extration algorithm will run inO(p log Æ0) instead of O(p log p). The idea is to loally sort the genes in small zones, and thenonsider onseutive zones to �nd the maximal Æ-teams. These onseutive zones are built byextending the neighborhood of eah zone, without sorting the zones.
11



3.4.1 Assoiating a zone to eah geneEah hromosome is ut in at most 2n zones Zi of length Æ, and eah gene on this hromosomeis assoiated with a spei� zone. A table Z = Z1 : : : Zh is built for eah hromosome to insurea diret aess to a zone.The zone building algorithm for a hromosome is given in Fig 3. The genes are sannedfrom left to right (line 2), the urrent position is initialized with the position of the �rst gene,the initial gene to the �rst gene, and the zone number to 1 (line 1). Then, if the distanebetween the urrent gene and the initial gene is greater than 2Æ, we build two zones and resetthe proess. If this distane is between Æ and 2Æ, it means that we entered a onseutive zoneand we also reset the proess, but inrement the number of zones only by one. Finally, if thedistane is smaller than Æ, we stay in the same zone.Build zones((1 : : : n))1. CurrentZone  1 ; InitGene  12. For i = 1 : : : n Do3. If �C(InitGene; i) > 2Æ Then4. CurrentZone  CurrentZone+2 ; InitGene  i5. Else6. If �C(InitGene; i) > Æ Then7. CurrentZone  CurrentZone+1 ; InitGene  i8. End of if9. End of if10. Zone C(i) CurrentZone11. End of forFigure 3: Algorithm for assigning a zone to eah gene of a hromosome C.The h zones Z1; : : : ; Zh omputed withBuild zones have some obvious properties. Thereare at most Æ0 genes assoiated with the same zone. The total number h of zones is less thanor equal to 2n, sine a gene reates at most 2 zones (line 4).3.4.2 Sorting all zonesAssume now that we want to extrat a league P of size p out of a hromosome C. We�rst group together the genes of P that are assoiated to the same zone of the table Z of C.Suppose we onsidered l zones Zi1 ; : : : ; Zil of size zj , i1 � j � il. This takes time proportionalto p. We now sort eah suh zone using a lassial optimal sort algorithm. Sorting Zij requiresO(zj log zj) time, whih is, as zj � Æ0, less or equal than O(zj log Æ0). The total omplexity isthen less or equal to O(Plj=1 zj log Æ0) = O(p log Æ0).Note that for the rest of the extration algorithm, we keep trak, for eah non empty zoneZij , of the minimal and maximal position of the genes in Zij . This is given by the sortingproedure without additional ost.3.4.3 Extrating maximal Æ-hainsAt this point, we have a list of l sorted zones Zi1 ; : : : ; Zil of genes, in a table Z = Z1 : : : Zh.The zones are not sorted among eah other, in the sense that we annot address the zones12



of Zi1 ; : : : ; Zil aording to their order in the table Z. We show now that even withoutthis information we an extrat P in C. The idea is simply to onsider for eah zone Zij ,1 � j � l, the zone to its left in the table Z, that is Zij�1 (if it exists), and hain Zij withZij�1 if neessary. The zone Zij�1 is aessible in onstant time through the table Z. Theorder in whih the zones Zij are onsidered is irrelevant. There are three main ases:1. Zone Zij�1 does not exist (ij = 1). Zone Zij is diretly marked as an initial zone.2. Zone Zij�1 is empty. Then, the way zones are built by algorithm Build zones (Fig.3) insures that the genes in Zij annot be Æ-onneted to other genes to the left, sinean empty zone means a distane greater than Æ to any preeding gene. The zone Zij isthen marked as an initial zone.3. Zone Zij�1, is not empty. Then, if the distane between the last element of Zij�1 andthe �rst element of Zij is less or equal to Æ, then Zij is hained to Zij�1 as a followingzone. Otherwise, we apply a proess similar to ase 2.At the end of that proess, after having onsidered all zones in whih at least one elementof P was found, all zones are either hained to the zone to their left, or initial. To �nishthe proess, for all the initial zones, we follow the links of hained zones and onatenate thegenes. This forms the maximal Æ-hains, sine: (a) inside a zone, the genes are Æ-onneted;(b) if two zones Zij�1 and Zij are hained, the genes of these two zones are Æ-onneted, sinewe test whether the maximal gene of Zij�1 is onneted to the minimal gene of Zij or not;() if the Æ-hain was not maximal, another zone (to the left or to the right) would have beenhained.3.4.4 ComplexityProposition 5 Splitting a league P of size p an be done in O(p log Æ0) worst ase time.Using the analysis of Setion 3.3 or the amortized tehniques of Hoproft's framework(see Setion 4), we get a new algorithm with O(n logn log Æ0) worst ase time omplexity.The optimization still requires O(n) spae, sine there are at most 2n zones per hromosome.The omplexity analysis extends to the ase of m hromosomes, yielding an O(mn logn log Æ0)algorithm.4 Hoproft's partitioning frameworkPartition re�nement with pivots is a widely used tehnique to solve a large lass of problemson graphs, strings, et [4, 8℄. The �rst designer was Hoproft who used it to minimizedeterministi automata [10℄. We propose another version of the faster algorithm, based onpartition re�nement with pivots, for the omputation of the Æ-teams of two hromosomes.The algorithms extends to an arbitrary number m of hromosomes.4.1 Gene teams and Hoproft's partitioning frameworkRe�ning a partition an be done by splitting its lasses into smaller ones, aording to asubset of � alled the pivot set : eah lass X of L is replaed by X \ S and X n S. We13



say that the pivot set S splits the partition L into a new partition. In the omputation ofÆ-teams, pivots will always be Æ-hains of one of the hromosomes.Let LC and LD be the two initial partitions indued by maximal Æ-hains of hromosomesC andD. We distinguish two types of pivots, alled type C and type D. Pivots of type C splitthe partition LD while pivots of type D split the partition LC . Partitions are implementedby sorted lists. Therefore partitions are impliitly ordered. A partition Q is ompatible witha partition P if every lass of Q is inluded in a lass of P and if the ordering in P respetsthe ordering in Q (i.e if in P the lass X is before the lass Y , then any lass X 0 � X of Qis before any lass Y 0 � Y ). A pivot splits a partition into a ompatible one. Moreover, andthis point di�ers slightly from general partition re�nement shemes, eah lass of a partitionalso is implemented by a sorted list. Eah lass of the partition LC is sorted aording to thegene order given by hromosome C, and eah lass of the partition LD is sorted aordinglyto the order given by D.De�nition 5 We say that a lass X overlaps a set S if X 6� S and X \ S 6= ;. Given asubset S of �, a partition L of � is said to be S-stable when no lass of L overlaps S.Note that after a re�nement step of L by S, the new partition is S-stable.The PartitionRe�nement algorithm is desribed in Fig. 4. While Hoproft's originalalgorithm proesses the \small half", we proess several \small parts": initially, the stakpivots ontains all lasses of the two partitions. Then, eah lass in the stak is either replaedby smaller ones, or new small sublasses are staked. The algorithm alls Sort zones(P ), aproedure whih omputes a deomposition of the pivot P of type C (resp. D) into an unionof maximal Æ-hains of D (resp. C). This proedure is desribed in Setions 3.4.2 and 3.4.3.Proedure Split(X;P ), Fig. 5, is the main part of the algorithm. If a lass X properlyoverlaps the pivot set, the pivot splits the lass X of LC (resp. LD) into at least two lassesaording to the pivot set. The obtained sublasses are still Æ-hains of C (resp. D). Thesizes of the sublasses are omputed in parallel during the proess, in order to avoid parsingan eventual { unique { large sublass. The ode uses the following funtions. If X is Æ-hainof the hromosome C, let (g1; : : : ; gk) be the permutation of X indued by C. We denote bynext(gi;X) the gene gi+1 when it exists, in whih ase hasnext(gi;X) is true. If it does notexist, hasnext(gi;X) is false.The orretness of Algorithm PartitionRe�nement is obtained with the following in-variants of the while loop (line 6).Proposition 6 Partitions LC and LD always verify:1. Eah lass of LC (resp. LD) is a Æ-hain of C (resp. D).2. The union of two distint lasses of LC (resp. LD) is not a Æ-set.Proof. During the initialization of Algorithm PartitionRe�nement, the lasses of LC andLD are Æ-hains of C and D respetively, and Proedure Split transforms a olletion ofÆ-hains into a olletion of Æ-hains.The onservation of the property 2 follows from the following property 2': for any pivotP , any element g of P and any element g0 =2 P , g and g0 annot be in a same maximal Æ-set.Properties 2' and 2 are true after the initialization step. Let us assume that they are bothsatis�ed at some time. Then, after a splitting of a lass X under a pivot, any two elements14



PartitionRe�nement(hromosomes C;D)1. Initializations2. LC (resp. LD)  the olletion of maximal Æ-hains of C (resp. D),(eah lass of LC (resp. LD) is ordered by C (resp. D)).3. Let pivots be an empty stak of pivots.4. Add eah lass of LC (resp. LD) in pivots as a pivot of type C (resp. D).5. Re�nements6. While (pivots is not empty) Do7. Pik a pivot P in pivots.8. Sort zones(P )9. If P has type D (the ase type C is similar) Then10. If LC is not P -stable Then11. Let M be the set of lasses of LC properly overlapping P .12. For eah lass X 2M Do13. Let (X1; X2; : : : ; Xr) = Split(X;P )14. If (X is ontained in the stak pivots) Then15. Remove X from pivots and add X1; X2; : : : ; Xr16. as pivots of type C.17. Else18. For eah lass Xi suh that size[Xi℄ � size[X ℄=2 Do19. Add Xi in pivots as a pivot of type C.20. End of for21. End of if22. End of for23. End of if24. End of if25. End of whileFigure 4: Hoproft-like algorithm for gene teams identi�ation.of two distint sublasses annot belong to a same maximal Æ-set, by onstrution. Thus thenew pivots of the stak obtained from lines 15-16 of Algorithm PartitionRe�nement orfrom lines 18-19 of Algorithm PartitionRe�nement still verify 2', and the re�ned partitionstill veri�es 2. 2Proposition 6 implies that no Æ-team will be split during the proess. The next propositioninsures that there is always enough pivots in the stak to properly identify all Æ-teams.Proposition 7 If the partition LC is not Y -stable for every lass Y 2 LD, (or if the partitionLD is not X-stable for every lass X 2 LC), then some pivot of type D (resp. C) in the stakpivots will stritly re�ne this partition.In the ase of more than two hromosomes, at the end of the exeution of the algorithm,eah partition of one hromosome is X-stable for eah lass X of a partition of anotherhromosome.Proof. We show that if the partition LC is not Y -stable for every lass Y 2 LD, then somepivot in pivots will stritly re�ne the partition LD. Let us assume that there is a lass X 2 LCsuh that X properly overlaps a lass Y 2 LD. Let g 2 Y \X, and f 2 (�nY )\X. Considerthe �rst time g and g0 are split apart into two di�erent lasses Z1 and Z2 of LD. If these15



Split(lass X 2 LC , pivot P of type D)ouputs a list of lasses L with their sizes1. Let L be the empty list.2. Extrat maximal Æ-hains X1; : : : ; Xr of elements from X \ P3. Extrat maximal Æ-hains X 01; : : : ; X 0s of elements from X \ (� n P )4. For (eah hain Xi) Do5. Compute size[Xi℄ with an exploration of the hain Xi.6. Add Xi to L.7. size[X ℄ size[X ℄� size[Xi℄8. End of for9. Let L0 = (X 01; : : : ; X 0s)10. For (eah hain X 0 2 L0) Do11. Set g(X 0) as the �rst element of X 0.12. size[X 0℄ 1.13. End of for14. While (L0 ontains more than one hain) Do15. While (hasnext(g(X 0); X 0) for eah X 0 2 L0) Do16. For (eah X 0 2 L0) Do17. g(X 0) next(g(X 0); X 0).18. size[X 0℄ size[X 0℄ + 1.19. End of for20. End of while21. For (eah X 0 2 L suh that not hasnext(g(X 0); X 0)) Do22. Add X 0 to L.23. Remove X 0 from L0.24. size[X ℄ size[X ℄� size[X 0℄.25. End of for26. End of while27. If (L0 is nonempty, and hene ontains a unique hain X 0) Then28. Add X 0 to L.29. size[X 0℄ size[X ℄.30. End of if31. return L.Figure 5: Splitting a lass under a pivot.lasses are lasses of the initial partition LD, then Z1 is an initial pivot. Otherwise, thereis a splitting of a lass Z 3 g; g0 into Z1 3 g; Z2 3 g0; : : : ; Zr. Then either Z was already inthe stak of pivots, and all sublasses Zi have been added as pivots (lines 15-16 of AlgorithmPartitionRe�nement), or Z was not in the stak, and all sublasses Zi but at most onehave been added as pivots (lines 18-19 of Algorithm PartitionRe�nement). This produesa pivot either ontaining g and not g0, or g0 and not g. Suh a pivot annot go out of thestak sine pivoting on it would split X into at least two lasses. If it is split himself insidethe stak (lines 15-16 of Algorithm PartitionRe�nement), another pivot seperating g andg0 still remains in the stak. Thus the stak ontains a pivot able to stritly re�ne LC . 2As a onsequene, at the end of the exeution of the proess, LC is Y -stable for everylass Y 2 LD, and LD is X-stable for every lass X 2 LC . Thus LC and LD are olletionsof the same Æ-sets. It follows from Proposition 6, property 2 that these Æ-sets are maximal.We obtain the expeted Æ-teams as LC or LD.16



4.2 ComplexityTo ahieve a good omplexity, we use the following data strutures. Any lass of LC (resp.LD) is stored in a doubly linked list, ordered by C (resp. D). All the lasses of a partition arestored in a doubly linked list. Eah element of a lass has a pointer to its lass. Moreover, eahgene an be aessed diretly in LC and in LD, by the use of a table. This data strutureis illustrated by Figure 6 whih represents the initial partition LC for the two followinghromosomes C;D with Æ = 2.C =  � � e d a � bD = a b � � �  � d e:The initializations are performed in a linear time O(n) for two hromosomes.
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bFigure 6: The initial partition LC .The omplexity analysis uses amortized tehniques, espeially the pointed parts tehniqueused in [4℄ or [2, p. 331℄. We onsider pairs (P; g) made of a pivot P going out of the stak ofpivots (line 7 of the algorithm PartitionRe�nement), and an element of g in P . The basiresult is the following:Proposition 8 Eah gene g appears at most 2 log n times in a pivot P going out of the stak.Proof. If a pivot P ontaining an element g is going out of a stak and has size p, a pivotontaining g whih enters the stak later is inluded in P , and has size at most p=2. Thus, itwill have a size at most p=2 while going out of the stak also. A gene g belongs initially totwo pivots, one of type C and one of type D. 2Let (P; g) be the amortized ost of proessing the pointed pair (P; g). Then, by Proposi-tion 8 the global ost of the algorithm will be given by 2n (P; g) log n. We establish, in thenext proposition that (P; g) is O(log Æ0).[Note that the omplexity analysis assumes the following data strutures. Any lass ofLC (resp. LD) is stored in a doubly linked list, ordered by C (resp. D). All the lasses of apartition are stored in a doubly linked list. Eah element of a lass has a pointer to its lass.Moreover, eah gene an be aessed diretly in LC and in LD, by the use of a table.℄Proposition 9 The amortized ost (P; g) = 1 log Æ0 + 2, where 1 and 2 are onstants.17



Proof. Let us assume that we pik a pivot P of type D, and of size p, in the stak. This pivotis �rst proessed by Sort zones in time O(p log Æ0). We assign to eah (P; g) a ost log Æ0,so that the sum of these osts for all g in P equals the ost of the sorting operation. Theomputation of the set M of lines 10-11 of the algorithm is done in time O(p) by exploringP and using the diret links from a gene to its position in a lass. This inrements the ostof eah (P; g) by a onstant.We now onsider the ost indued by Proedure Split. Let h be the size of the lass X tobe split. We laim that the extrations of lines 2-3 also are performed in time O(p). Indeed,one extrats a Æ-hain Xi of elements of X \ P by exploring the list P , and by hekingthe Æ-onnetion for the order indued by C. More preisely, when an element, andidate tobe added in Xi, is not Æ-onneted to the previous ones for the order C, one builds a newlass Xi+1. If it is Æ-onneted, it is removed from X in onstant time. If X is no longerÆ-onneted, we ut it into a Æ-hain X 0j of elements in X\(�nP ), and a new Æ-hain X. Thisinrements the ost of eah (P; g) only with another onstant. Remark that this implies thatthere are at most p sublasses Xi. Note also that, at this time, the sizes of the sublasses,and the pointers from eah element in a lass to its lass, have not been updated.We next onsider the ost of the omputation of the sizes of the sublasses. The ompu-tation of the sizes of the sublasses Xi is performed lines 4-8 of Proedure Split in time O(p),sine the sum of the sizes of these sublasses is at most p. This harges (P; g) with a onstantagain. The omputation of the sizes s0j of the sublasses X 0j is done in lines 14-30. Reallthat a small sublass has a size less than or equal to h=2. Sine L0 in lines 14-26 has at leasttwo sublasses, the sublasses removed in line 23 are small. At line 26, all sublasses thathave been read ompletely are small, and the beginning of an eventual unique large sublassY may have been explored. Nevertheless, the maximal number of elements of Y read is themaximal size of all other sublasses. The pointers from eah element in a lass to its lassare reomputed for all sublasses but Y . Thus the ost of the omputation of the sizes andpointers of all sublasses is at most 2Pj2J s0j, where J is the index set of all sublasses butY . Sine all sublasses but Y are at some time ontained in the stak of pivots, and an goout of it by being removed in line 14, one harges again eah (P; g) with one more onstant,in order to ount the ost of these operations. 2Proposition 10 The time omplexity of the algorithm PartitionRe�nement is O(n log n log Æ0)for two hromosomes and O(mn logn log Æ0) for m hromosomes.4.3 From Hoproft like algorithm to FindTeamsThe two algorithms PartitionRe�nement and FindTeams are very lose. The algorithmFindTeams is in fat a reursive simpli�ation of the Hoproft like one. The simpliation isbased on the two following remarks.First, the stak pivots of lines 6-8 of Algorithm PartitionRe�nement is simulated inFindTeams by the reursive alls to itself of lines 13-14. This uses a property of the problemthat is not valid for all Hoproft like algorithms, and allows to divide the original problem intwo subproblems. Indeed, assume that in line 11 of PartitionRe�nement a pivot P (sayof LD) splits the set of lasses M of LC whose alphabet intersets that of P . The split isperformed using Split, whih partitions the resulting lasses of LC in two sets, those thatontains elements of P and the others. Some of these lasses will be reintegrated in thelist pivots in lines 18-19 of PartitionRe�nement and reused later to split other lasses. A18



simple observation is that the lasses of LC built with elements of P after Split, if reusedas pivots, would only ut lasses built with elements of P of LD. This property allows us toderive two sub-problems after a Split, on one hand all lasses of LC built of elements of Ptogether with P on LD, and, on the other hand, all the lasses remaining on LC and LD.This is used in FindTeams to reursively all the same algorithm on these two sets in lines13-14 of Algorithm FindTeams.A seond remark onerns the omputation of the sizes of the lasses. In the Hoproft-like algorithm, when splitting a lass X with a pivot P , the sizes of the resulting lasses ofsize less than or equal to size[X℄=2 are omputed in lines 14-30 of Split. After the split,in lines 18-19 of algorithm PartitionRe�nement, the lasses are kept as potential pivots.Algorithm FindTeams simpli�es this step lines by �nding a small lass of size p (if it exists)in O(p) and onsidering it as a pivot.5 Extensions5.1 Multiple ChromosomesThe most natural extension of the de�nition of Æ-teams to a set fC1; : : : ; Cmg of hromosomes,is to de�ne a Æ-set S as a Æ-hain in eah hromosome C1 to Cm, and onsider maximal Æ-setsas in De�nition 2. For example, with Æ = 2, the only Æ-team of hromosomes:X =  � � e d a � bY = a b � �  � d eZ = b a e � �  � d;that is not a lonely gene is the set fa; bg.All the de�nitions and results of Setion 2 apply diretly to this new ontext, replaing Cand D by the m hromosomes.Algorithm Findteams an be readily adapted to m hromosomes by modifying its twomain tasks of �nding and extrating small leagues. Identifying a small league in m partitionsan be done in O(mp). This small league must then be extrated from m� 1 hromosomes,yielding two sub-problems, one of whih is of size p. The analysis of Setion 3.3 yieldsdiretly an O(mn log2 n) time bound for this algorithm, sine the parameter � in Equation 1was arbitrary.5.2 Extension to Cirular ChromosomesIn the ase of irular hromosomes, we �rst modify slightly the assumptions and de�nitions.The positions of genes are given here as values on a �nite interval:� PC�! [0::L℄;in whih position L is equivalent to position 0. The distane between two genes g and g0 suhthat PC(g) < PC(g0) is given by:�C(g; g0) = min� PC(g0)� PC(g)PC(g) + L� PC(g0):19



The permutation �C = (g1 : : : gn) is still well de�ned for irular hromosomes, but so arethe permutations, for 1 < m � n:�(m)C = (gm : : : gng1 : : : gm�1):A Æ-hain in a irular hromosome is any Æ-hain of at least one of these permutations.A irular Æ-hain is a Æ-hain (g1 : : : gk) suh that �C(gk; g1) � Æ: it goes all around thehromosome. All other de�nitions of Setion 2 apply without modi�ations.Adapting algorithm FindTeams to irular hromosomes requires a speial ase for thetreatment of irular Æ-hains. Indeed, in Setion 3.2, the beginning and end of a hromosomeprovided obvious starting plaes to detet leagues. In the ase of irular hromosomes,assume that S is a league of hromosomes C and D, and that the genes of S are respetivelyordered in C and D, from arbitrary starting points, as:(1 : : : n) and (d1 : : : dn):If none of these sequenes is a irular Æ-hain, then there is a gap of length greater thanÆ on eah hromosome, and the problem is redued to a problem of linear hromosomes. Ifboth are irular Æ-hains, then S is a Æ-team. Thus, the only speial ase is when one is airular Æ-hain, and the other, say (1 : : : n) has a gap greater than Æ between two onseutiveelements, or between the last one and the �rst one. Without loss of generality, we an assumethat the gap is between n and 1. Then, if S is not a team, there exists a value p � n=2 suhthat one of the following sequene is a league:(1 : : : p)(n�p+1 : : : n:)The extration proedure is similar to the one in Setion 3.2, but both the extratedleagues an again be irular Æ-hains, as illustrated in Fig. 7.
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Figure 7: Speial ase that might our when extrating the league p out of a irular leagueof D. Both extrated leagues are again irular Æ-hains of D0 and D00.The irularity an be deteted in O(p) steps, sine the property is destroyed if and onlyif an extrated gene reates a gap of length greater than Æ between its two neighbors.20



5.3 Teams With a Designated MemberA partiular ase of the team problem is to �nd, for various values of Æ, all Æ-teams thatontain a designated gene g. Clearly, the output of algorithm FindTeams an be �ltered forthe designated gene, but it is possible to do better. In lines 13 and 14 of Fig. 1, the originalproblem is split in two subproblems. Consider the �rst ase, in whih the sub-league (1 : : : p)is identi�ed:1. If gene g belongs to (1 : : : p), then the seond reursive all is unneessary.2. If gene g does not belong to (1 : : : p), then the extration of (d01; d0p), and the �rstreursive all, are not neessary.These observations lead to a simpler reurrene for the time omplexity of this problem,sine roughly half of the work an be skipped at eah iteration. With arguments similar tothose in Setion 3.3, we get that the number of operations is bounded by a funtion of theform: T (n) = �(n=2)log(n=2) + T (n=2);where T (1) = 1, and whose solution is: T (n) = �n log n� 2�n+ 2�+ 1:6 Conlusions and perspetivesWe de�ned the unifying notion of gene teams and we onstruted two distint identi�a-tion algorithms for n genes belonging to two or more hromosomes, the faster one ahievingO(mn logn log Æ0) time for m linear or irular hromosomes. Both algorithms require onlylinear spae.The gene team identi�ation problem is more omplex than one ould think in viewof the simpliity of the �rst reursive algorithm. We showed in a seond part that thisalgorithm is in fat a nie simpli�ation of a full Hoproft partitioning algorithm. However,instead of leading to a faster algorithm, this strong link reinfores our estimation of theintrinsi omplexity of the gene team identi�ation problem. In some partiular Hoproftlike algorithms, a lever pivot hoie an redue the omplexity from O(n logn) to O(n) [8℄.Obtaining faster algorithms or lower bounds for the gene team identi�ation problem remainsopen.We intend to extend our work in two diretions that will further larify and simplify theonepts and algorithms used in omparative genomis. The �rst is to relax some aspet ofthe de�nition of gene teams. For large values of m, the onstraint that a set S be a Æ-hainin all m hromosomes might be too strong. Sets that are Æ-hains in a quorum of the mhromosomes ould have biologial signi�ane as well. We also assumed, in this paper, thateah gene in the set � had a unique position in eah hromosome. Biologial reality an bemore omplex. Genes an go missing in a ertain speies { their funtion being taken over byothers, and genes an have dupliates.In a seond phase, we plan to extend our notions and algorithms to ombine distane withother relations between genes. For example, interations between proteins are often studiedthrough metaboli or regulatory pathways, and these graphs impose further onstraints onteams. 21
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