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Abstract. We give two optimal linear-time algorithms for computing
the Longest Previous Factor (LPF) array corresponding to a string w.
For any position i in w, LPF[i] gives the length of the longest factor of
w starting at position i that occurs previously in w. Several properties
and applications of LPF are investigated. They include computing the
Lempel-Ziv factorization of a string and detecting all repetitions (runs)
in a string in linear time independently of the integer alphabet size.
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1 Introduction

Given a string w, we introduce the Longest Previous Factor (LPF) array defined
as follows. For any position i in w, LPF[i] gives the length of the longest factor
of w starting at position i that occurs previously in w. Formally, if w[i] denotes
the ith letter of w and w[i . . j] is the factor w[i]w[i + 1] . . . w[j], then

LPF[i] = max
(

{ℓ | w[i..i + ℓ− 1] is a factor of w[0..i + ℓ− 2]} ∪ {0}
)

.

We give two linear-time (optimal) algorithms for computing LPF using suffix
arrays. The first uses no additional information whereas the second uses the
longest common prefix array which is often part of the suffix array data structure.
Previously such algorithms involved computing the suffix trees, which are more
complex and take a lot of space. Also, a logarithmic factor of the size of the
alphabet often appears in the complexity. Our algorithms use suffix arrays, are
much simpler, and their complexity is alphabet independent.
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⋆⋆ Research supported in part by CNRS.
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One important application is computing the Lempel–Ziv factorization [14].
Recently [1] gave a suffix-array-based algorithm for computing Lempel–Ziv fac-
torization. However, their algorithm is essentially a simulation of the suffix tree
using the suffix array. The description in [1] is very brief but it seems that their
approach can be used to achieve similar goals with ours, nevertheless in a sig-
nificantly more complicated way.

Simultaneously and independently of our work, [2] gave an algorithm that
is similar with our second one. Our first algorithm is more general and our
approach for the second gives a clearer explanation as well as more insight into
the structure of LPF.

2 Suffix arrays

We recall in this section briefly the notions of suffix array and longest common
prefix. Consider a string w = w[0 . . n− 1] of length n over an alphabet A that
is an integer interval of size no more than nc, for some constant c. The suffix of
w starting at position i is denoted by sufi = w[i..n− 1], for 0 ≤ i ≤ n− 1. The
suffix array of w, [16], denoted SA, gives the suffixes of w sorted ascendingly in
lexicographical order, that is, sufSA[0] < sufSA[1] < · · · < sufSA[n−1]. The suffix
array of the string abbaabbbaaabab is shown in the second column of Fig. 1.

Often the suffix array is used in combination with another array, the Longest
Common Prefix (LCP) which gives the length of the longest common prefix
between consecutive suffixes of SA, that is, LCP[i] is the length of the longest
common prefix of sufSA[i] and sufSA[i−1]; see the third column of Fig. 1 for an
example.

i SA[i] LCP[i] sufSA[i] prev
<

[SA[i]] prev
>

[SA[i]] LPF[SA[i]] PrevOcc[SA[i]]
0 8 0 aaabab −1 3 2 3
1 9 2 aabab 8 3 3 3
2 3 3 aabbbaaabab −1 0 1 0
3 12 1 ab 3 10 2 10
4 10 2 abab 3 0 2 0
5 0 2 abbaabbbaaabab −1 −1 0 −1
6 4 3 abbbaaabab 0 2 3 0
7 13 0 b 4 7 1 7
8 7 1 baaabab 4 2 3 2
9 2 3 baabbbaaabab 0 1 1 1

10 11 2 bab 2 6 2 2
11 6 1 bbaaabab 2 1 4 1
12 1 4 bbaabbbaaabab 0 −1 0 −1
13 5 2 bbbaaabab 1 −1 2 1

Fig. 1. The arrays SA, LCP, and LPF for the string abbaabbbaaabab.
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3 A direct algorithm

We give first a direct algorithm for computing LPF from the suffix array. We
compute also, for each i, a position PrevOcc[i] < i where the longest previous
factor at i occurs.1 (If LPF[i] = 0, then PrevOcc[i] = −1.) Both arrays for our
example are shown in the last two columns in Fig. 1.

The idea of the algorithm is as follows. For any position i, the longest factor
starting at i that occurs also to the left of i in w is the longest common prefix
between the suffix sufi and the suffixes starting to the left of i in w, that is, sufj ,
0 ≤ j ≤ i− 1. However, given SA, we need only consider those which are closest
to sufi in SA. We shall therefore compute, for each i, the closest positions in SA

that are smaller than i; in most cases there will be two such positions, one before
and one after i in SA. Denote them by prev<[i] and prev>[i], respectively. If one of
them does not exists, then we assign the value −1; see columns 5 and 6 in Fig. 1.
Rephrasing the above, LPF[i] is obtained as the length of the longest common
prefix between sufi and either sufprev

<
[i] or sufprev

>
[i], whichever is longer.

After prev< and prev> are found, LPF is computed for all values of i in in-
creasing order, using the property that LPF[i] ≥ LPF[i−1]−1. Thus, we already
know that w[i . . i + LPF[i − 1] − 2] occurred to the left of i and need only try
to extend it. A problem appears because we do not know whether we should
compare sufi to sufprev

<
[i] or sufprev

>
[i]. We shall therefore compute two arrays,

LPF<[0 . . n − 1] and LPF>[0 . . n − 1]; they have the same meaning as LPF ex-
cept that they consider only positions corresponding to suffixes lexicographically
smaller, resp. larger, than sufi. Formally, we have

LPF<[i] = max
(

{j | ∃k < i, w[i . . i+j−1]=w[k . . k+j−1] and sufk <sufi}∪{0}
)

and LPF>[i] is defined identically except for the last condition which becomes
sufk > sufi. Consider one of them, say LPF<. We still have that LPF<[i] ≥
LPF<[i− 1]− 1. This is because, if w[i− 1] = w[k − 1], then the order between
sufi and sufk is the same as between sufi−1 and sufk−1. That means, we already
know that sufi and sufprev

<
[i] have a common prefix of length LPF<[i − 1] − 1

and we check only the following letters. This explains why our algorithm runs in
O(n) time. Finally, LPF[i] is the maximum between LPF<[i] and LPF>[i]. The
algorithm is given in Fig. 2.

Computing the arrays prev< and prev> is a matter of manipulating data
structures. We can construct a doubly linked list with the elements of SA and
two extra elements at the beginning and at the end with value −1, for the case
prev<[i] or prev>[i] do not exist. The values are computed in decreasing order of
i, from n to 0, and each i is removed once the values for i have been computed.
When i is considered, it is the largest left in the list and therefore the one before
and the one after in the list will give the values of prev<[i] and prev>[i]. In fact
pointers can be avoided, and arrays used instead, because after the doubly linked
list is created only deletions are performed. The details are omitted.

1 Note that a suffix-tree-based algorithm would compute the leftmost such position in
the string whereas our algorithm might produce a different one. For instance, in our
example, PrevOcc[12] = 10 but the left most occurrence of ab starts at 0.
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Compute LPF(w, prev
<

, prev
>

)

1. LPF[0]← LPF<[0]← LPF>[0]← 0
2. for i from 1 to n− 1 do

3. j ← max(LPF<[i− 1]− 1, 0); k← max(LPF>[i− 1]− 1, 0)
4. if (prev

<
[i] = −1) then LPF<[i]← 0

5. else while (w[i + j] = w[prev
<

[i] + j]) do j ← j + 1
6. LPF<[i]← j

7. if (prev
>

[i] = −1) then LPF>[i]← 0
8. else while (w[i + k] = w[prev

>
[i] + k]) do k ← k + 1

9. LPF>[i]← k

10. LPF[i]← max(LPF<[i], LPF>[i])
11. if (LPF[i] = 0) then PrevOcc[i]← −1
12. else if (LPF<[i] > LPF>[i]) then PrevOcc[i]← prev

<
[i]

13. else PrevOcc[i]← prev>[i]
14. return LPF and PrevOcc

Fig. 2. Algorithm for computing LPF directly from the SA via arrays prev< and prev>.

It should be clear from the above discussion that the arrays prev< and prev>

can be computed in time O(n). The algorithm Compute LPF uses O(n) space.
Using the fact that the suffix array of a string of length n over an integer alphabet
can be computed inO(n) time by any of the algorithms in [7, 9, 11, 12], we obtain:

Theorem 1. Given a string of length n over an integer alphabet, the LPF and

PrevOcc arrays can be computed in time and space O(n).

4 An algorithm using LCP

Our second algorithm for computing LPF uses the LCP array. Its advantage
over the previous algorithm is that it processes the suffix array in one pass and
requires less memory space. The idea is similar to the one above. Assuming we
know the longest common prefixes between sufi and either sufprev

<
[i] or sufprev

>
[i],

it is enough to take the maximum of the two.
Using this idea, we give a space-efficient algorithm for computing LPF. For a

better understanding, it is useful to arrange the SA and LCP arrays in a graph.
The vertices are labelled by the SA values and the edges by the LCP values. The
vertices are arranged in the left-to-right order corresponding to their order in SA

and are placed at a height corresponding to their starting position in the string.
In other words, if SA[i] = j, then the vertex labelled j is plotted with abscissa i

and ordinate j. An example if shown by the graph in Fig. 3(i) consisting of the
solid edges only.

Now consider the vertices in decreasing order of their labels, that is, vertices
that are highest in the graph (“peaks”) are considered first. For vertex 13, the two
adjacent edges are labelled 0 and 1, corresponding to the longest common prefixes
of suf13 with sufprev

<
[i] = suf4 and sufprev

>
[i] = suf7, respectively. Therefore, the

maximum of the two gives LPF[13] = 1. On the other hand, the minimum of the
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Fig. 3. (i) Solid edges form the graph representing SA and LCP for the text
abbaabbbaaabab; dotted edges show the (conceptual) transformation of the graph dur-
ing the algorithm Compute LPF using LCP. (ii) The graph after the vertices 13, 12,
and 11 were considered.

two gives the longest common prefix of suf4 and suf7; we remove the vertex 13
and add a (dotted) edge between 4 and 7, labelled 0. Notice that prev<[7] = 4
and prev>[7] = 2, so this property is an invariant of the graph. Next we consider
the vertex 12 and so on. Fig. 3(ii) shows the graph after having considered the
vertices 13, 12, and 11.

It is clear that we need not consider the vertices in this order. For instance,
we can compute LPF[6] right away. Precisely, any vertex which is a “peak” in our
graph can have its LPF value computed. In the algorithm in Fig. 4 we consider
the vertices in the order they appear in the SA (that is, left to right in the graph)
and use a stack to store unprocessed vertices. The vertices in the stack will be
in increasing order from bottom to top. Whenever a vertex with a smaller label
than the one on top of the stack is encountered, the top of the stack is processed
and popped. For instance, vertex 4 has to wait for 13 and 7 to be processed. In
order to process all vertices uniformly, we assume a last (virtual) vertex with
label n and height −1. The stack contains pairs of the form (x.len, x.pos), where
x.pos is a position (in SA) and x.len stores the longest common prefix between
sufx.pos and the suffix corresponding to the node right below x in the stack (or
0 if none). For instance, when the vertex 7 is considered, 13 is processed and
removed from the stack. The top of the stack becomes 4 and 7 is then pushed
on top of it: top(S ).len← 0 and top(S ).pos← 7.

The correctness of the algorithm follows from the above discussion. It runs
in O(n) time because each element of SA is pushed only once on to the stack.
Also, [10] gives a very simple linear time algorithm to compute the LCP array.
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Compute LPF using LCP(w, SA, LCP)

1. SA[n]← −1; LCP[n]← 0
2. push((0, SA[0]), S )
3. for i from 1 to n do

4. lcp← LCP[i]
5. while

�
(S 6= ∅) and (SA[i] < top(S ).pos)

�
6. LPF[top(S ).pos]← max(top(S ).len, lcp)
7. lcp← min(top(S ).len, lcp)
8. v ← top(S )
9. pop(S )

10. if (LPF[v.pos] = 0) then PrevOcc[v.pos]← −1
11. else if (v.len > lcp) then PrevOcc[v.pos]← top(S ).pos
12. else PrevOcc[v.pos]← SA[i]
13. if (i < n) then push((lcp, SA[i]), S )
14. return LPF

Fig. 4. Algorithm for computing LPF using LCP.

The spaced used by the stack is at most n pairs of integers, which is reached for
the string an−1b. However, the expected size of the stack is much less.

There is an interesting consequence of the above discussion, namely that the
array LPF is a permutation of LCP. This is shown by analyzing the graph in
Fig. 3(i). The labels of the solid edges form the LCP array. When removing a
“peak” from the graph, the maximum of the two labels of the adjacent edges
becomes an LPF value whereas the minimum becomes the label of the newly
formed (dotted) edge. Each value will eventually become an LPF value which
proves the statement.

Proposition 1. LPF is a permutation of LCP.

Remark 1. Note that [1] suggests a bottom-up computation of the LPF array on
the lcp-interval tree (isomorphic with the suffix tree) and therefore leads to a
similar result with ours. However, our approach is much simpler.

5 Application 1: computing the Lempel–Ziv factorization

The Lempel–Ziv factorization of w [14] is the decomposition w = u0u1 · · ·uk,
where each ui (except possibly uk) is the longest prefix of uiui+1 · · ·uk that has
another occurrence to the left in w or a single letter in case this prefix is empty.
For our example the Lempel–Ziv factorization is a.b.b.a.abb.baa.ab.ab.

The Lempel–Ziv factorization is a basic and powerful technique for text com-
pression [17]. It has many variants used in gzip or PKzip software, and more
generally in dictionary compression methods.

The Lempel–Ziv factorization is easily computed from LPF. The algorithm is
shown in Fig. 5. For the example text abbaabbbaaabab in Fig. 1, the algorithm
outputs lz = [0, 1, 2, 3, 4, 7, 10, 12].
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Lempel–Ziv factorization(w, LPF)

1. lz[0]← 0; i← 0
2. while (lz[i] < n) do

3. lz[i + 1]← lz[i] + max(1, LPF[lz[i]])
4. i← i + 1
5. return lz

Fig. 5. Algorithm for computing Lempel–Ziv factorization using LPF.

Theorem 2. The Lempel–Ziv factorization of a string of length n over an in-

teger alphabet can be computed in O(n) time.

The experimental results of [2] may be explained by the fact that suffix-tree-
based algorithms computing the Lempel–Ziv factorization usually have complex-
ity O(log(|A|)n), where |A| is the cardinality of the alphabet.

Also, note that suffix trees allow online computation of the Lempel–Ziv fac-
torization. However, this comes with the extra log(|A|) factor. It remains open
whether true linear-time online computation is possible.

6 Application 2: computing runs in linear time

Repetitions are a fundamental topic in stringology and appear in many ap-
plications such as text algorithms, data compression, or analysis of biological
sequences. The simplest repetition is a square ww, where w is any string. A gen-
eral repetition has the form we, for any rational exponent e ≥ 2 such that e|w|

is an integer; e.g., (aabab)
7

5 = aababaa. Particularly important turned out to
be maximal repetitions [15] or runs. A run is an occurrence of a repetition that
cannot be extended. As an example, the string aababaabba contains the runs aa

at positions 0 and 5, ababa, and bb. Runs allow the encoding of all repetitions
in linear space [13].

An element of the Lempel–Ziv factorization carries information already pro-
cessed by any online algorithms computing repetitions. Therefore it is not sur-
prising that the Lempel–Ziv factorization plays a central part in the algorithm of
[13] as well as in all efficient computations of repetitions in strings. Their running
time is then O(n log(|A|)). Using a suffix array and the algorithms described in
previous sections leads to linear-time computations on integer alphabets. This
applies to: testing square freeness of a string [3], computing all leftmost maxi-
mal periodicites [15], computing all runs [13], computing of all local periods of
a string [6], and computing all primitively-rooted squares occurring in a string
[8]. In particular, we get:

Theorem 3. The runs of a string of length n over an integer alphabet can be

computed in O(n) time.
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