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L-Estimation for Linear Models

Roger Koenker and Stephen Portnoy

Abstract

Analogues of linear-combinations-of-order-statistics, or L-estimators, are suggested for

estimating the parameters of the linear regression model. The methods are based on linear

combinations of the p-dimensional "regression quantiles" proposed by Koenker and Bassett.

A uniform Bahadur-type representation of regression quantiles is established, and this permits

a general theory of L-estimators based on regression quantiles including those with smooth

weight functions. A leading example of the proposed class of estimators is an analogue of the

trimmed mean which seems to exhibit certain advantages over earlier proposals by Koenker
and Bassett and Ruppert and Carroll. A brief investigation of two proposals for estimating the

covariance matrix of this estimator is also reported.

Roger Koenker is Professor of Economics, and Stephen Portnoy is Professor of Statistics,

University of Illinois at Urbana- Champaign, Champaign, IL, 61820. This research was sup-

ported in part by NSF grants SES-8408567 and MCS-8301834.
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1. Introduction

Analogues of a broad class of L-estimators for the parameters of the linear regression

model are proposed and investigated. The methods are based on the "regression quantile"

statistics of Koenker and Bassett (1978).

Consider the linear model

)>i =XiP + Ui i = 1, ..., n (1.1)

where xt
= (1, xi2, -, xip ) denotes the I

th row of an n xp design matrix, and e Rp is an

unknown regression parameter. We will assume throughout that (u u ..., un ) are independent

with common distribution function F. Explicit further assumptions on the design and F will

be introduced below.

The p-dimcnsional analogues of the sample quantiles, introduced in KB (1978) solve the

problem

n

min £ PoiVi - x
{
b) (1.2)

6€RP ,=1

where pg(u) denotes the "check" function pg(u) = 9u + + (1 - 6)u~ and u\ u~ denote respec-

tively the positive and negative parts of u. The set of such solutions will be denoted by Be.

Note that in the location model, i.e., when ,x, = 1, B is simply the usual 6
m sample quantiles

from the (now i.i.d.) sample (y u • • •
, yn )

from F(y - /?). The l 1 regression problem, (1.2) with

6 = 1/2, is also a familiar special case.

Problem (1.2) may be formulated as a linear program and it is easily shown that B 9 is the

convex hull of one or more "basic" solutions of the form bh = X£l

yh , where h indexes p-

element subsets of {1, 2, ..., n) and Xh denotes the sub-design matrix with rows a:,-: / e h, and

yh is the sub-response vector with coordinates y,: i eh. Thus the "regression quantiles" may

be viewed as order-statistics corresponding to groups of p-obsenations. And problem (1.2)

serves to identify a small number of "interesting" basic solutions, roughly O(n) in our empirical



experience, out of the number of possible basic solutions. Wu (1986) has recently

emphasized the fundamental role played by these p-observation subsets in the theory of least-

squares estimation.

Computation of regression quantiles is treated in Koenker and d'Orey (1985). There, an

algorithm based on Barrodale and Roberts (1974) ^-regression algorithm is provided to effi-

ciently compute solutions to problem (1.2) for all 8 e [0,1]. This may at first appear onerous,

but fortunately it is a straightforward exercise in parametric linear programming, or sensitivity

analysis. Once one solution has been identified the remaining, 0(n), solutions may be found

easily and each involves essentially one simplex pivot.

An asymptotic theory of finite linear combinations of regression quantiles was developed

in KB (1978), and led to simple analogues of the "systematic statistics" of Mosteller (1946),

Tukey (1970), Gastwirth (1966) and others. Ruppert and Carroll (1980) showed that a simple

analogue of the trimmed mean could be constructed as,

~Pa = {X'WX)-lX'Wy (1.3)

where W is a diagonal matrix with typical element w, = I(x,l3a < y{
< x.A^J where % denotes

some selection from B 9. This estimator trims observations on-or-below the a"* and on-or-

above the l-a 01 regression quantile plane, and computes a least squares estimate based on the

remaining observations. Ruppert and Carroll established, under mild conditions, that

\fn(fia -P) was asymptotically Gaussian with covariance matrix cr(a,F)Q~1 where

Q = \imn~lX'X and <r{a,F) is the asymptotic variance of the alpha-trimmed mean from a

random sample on F.

In simulation experiments, reported briefly in Koenker (.1986), it was found that this

trimmed least-squares estimator was rather sensitive to influential design points, and exhibited

substantial departures from the behavior predicted by its asymptotic theory, especially when p

was large relative to n. This finding motivated the present investigation into a considerably



broader class of L-estimators based on regression quantiles.

Following Serfling (1980), it is natural to consider estimators of the form,

i B

% - fj(0)$(0)dB + £u,i8(0,) (1.4)

O i=l

A A
where, as above, if necessary, we have adopted a rule for choosing an element 0(9) from Bg.

Estimators of this general form are scale and reparameterization-of-design equivariant, see KB

(1978, Thm. 3.2). This is an important advantage of L-statistics over competing M-estimates.

Bickel (1973) proposed analogues of L-estimators for the linear model based on a preliminary

estimate, but they are computationally complex and are not equivariant to reparameterization

of the design. Recently, Welsh (1985, 1986) has proposed a class of one-step L-estimators

which are equivariant and reasonably easy to compute.

We will focus here on the first term of (1.4) with J chosen to be reasonably smooth. A

leading example of the type we wish to consider is the analogue of the trimmed mean,

"a

In the simulations reported in Koenker (1986) this estimator performed extremely well, show-

ing considerably less sensitivity to influential design points than the (asymptotically

equivalent) trimmed least squares estimator.

In the next section we establish a uniform (/7
1/,4

log/z ) Bahadur-type representation for

the regression quantile process approximating y/Ji (0(9) - 0(9)) as \l\fti times a sum of

independent random variables with error negligible to O (n
-1 /4log«) uniformly in 9. Applica-

tions of this result to the asymptotic theory of L-statistics like (1.5) are treated in Section 3,

where we also discuss the problem of estimating the covariance matrix of such estimators.



2. A Uniform Bahadur Representation for Regression Quantiles

We will assume throughout this section that p = and h
_1

£)*,• = (1, 0, ..., 0); this involves

no loss of generality due to equivariance considerations.

The following design conditions are employed:

XI: —X'X = Q + Qn where Q is positive definite and the maximum eigenvalue of Qn satis-
n

fiesA^Ce^CKrc-1 /4
)

X2: £ ll*,f = 0(n)

X3: max|pc,-|| = 0(n 1 /4
)

X4: condition 2.10 of Portnoy (1985):

Partition fi = (a, 7) so 7 e Rp_1
. Then for any constant a (sufficiently large) there is

t) > such that for all ae[-a,a] and all 7 e Rp_1
, 7'M (0,7) > tj 5(7) where

Mifi) = ExtFOdfl and 5(7) = min (Wp- WD-
1=1

It is not difficult to see that these conditions will hold in typical ANOVA designs, and

will hold in probability when the rows of the design {.x,-: i = 1, 2, • • • } form a random sample

from a very wide class of distributions in Rp
. Results along these lines are given in Portnoy

(1985), in particular for condition X4.

Our condition on F is the following:

F: F has a density, f, and for some e > 0: 4>{u) = f {F~l
(u)) > and $'(11) is uniformly

bounded for u e [e,\-e].

Lemma 2.1 Under conditions XI -4, and F, for any £ > there is a K > such that

sup W{6) - m\\ < K (log n In )
1 '2 n

1

)



with probability tending to one.

Proof. Following Portnoy (1985) partition £ = (an), where 7 e Rp_1 and J9(0) = (a(6), 7(d)).

Let

6(a) = sup {9 e [0,1]: a(9) < a) (2.2)

See Bassett and Koenker (1982) for further details on this estimate of F. From Lemma 2.1 of

Portnoy (1985),

sup IftWII = P(logn
/«)*/*

(2 . 3)
£ < 6 < l-£

and, from Proposition 2.1 there, for some c > 0,

\d(a)-F(a)\<c/^ (2.4)

uniformly in \a\ <b = max {|ir_1(e)|,|F
-1
(l-e)|} with probability tending to one. Since

f (x) > and is continuous, there is a d > such that for 6 e [e, 1-e], with probability tending

to one

6(cc + d/y/n) > F(a + d/y/t) -c/y/n

>F(a) + Kd/y/n -c/y/n (2.5)

>F(a)

and similarly

Ha-d/y/n)<F(a) (2.6)

where K = inf{ f (u): \u \
< b + d/y/n). Thus from the definition of 9, we have for 9 = F(a)

\a-F-\9)\<d/y/Tx (2.7)

and the lemma follows from (2.3) and (2.7).

The main result of this section is the following uniform Bahadur representation for

y/n $(0) - P(9)), extending a result of Jureckova and Sen ( 1 984).



Theorem 2.1 Under XI -4 and F, with probability tending to one, for any e>0,

yfn (f3(6) - 0(6)) = -J=rk i^ Q'1 S xtf - '(".' ^ ^(0))] + Oin-1'* log n ) (2.8)
y/nf(F \6)) , =1

uniformly for 9 e [e, 1 -«].

/Voo/. From KB (1978), $(6) = bh = AWh if and only if for j=l, ..., p.

£ ['(* < *.£) - Sltji 1 Xifo] xi}
- € [6-1, 6] (2.9)

«=i

Thus there is a vector v e Rp with max|Vj- 1 < 1, for which 0(9) = bh and
i

II EI/CC, < *,£) - *]x< - (1 - *) £ x,.
||
= 0(\\Xh v\\) (2.10)

1=1 ieh

Since (1 -0)£ <P max ||x,|| = 0(« x/4
) and pr

fc
v|| < [tr (X;xh )?l

2 = 0(n^4
) by X3, and

y,- = x,/?(0) - F -1
(0) + ", we have

||£[/(n,- < F-'(9) + Xi (f3
- 0)) - 6]Xi \\

= 0(n xlA
), (2.1 1)

with probability tending to one, uniformly in 6 e [«,1 - e]. Let

g(S,6) = £[/(«< < F -1
(0) + *,-*) - *]*,- (2.12)

and set

T(6,6)=g(6,6)-g(0,6) (2.13)

and

f(6,6) = T(S,6) - ET(S,6) (2.14)

Now, for 5 6 { 6 6 R»
\

\\S\\ < Ky/logn/n)

Eg(6,6) = Y,Xi(XiS)f(F-*(6)) + £x,(x,-*)a f '(F-\d*))

= n(Q + Qn)Sf(F~
1
(6)) + £ll*,f0(log n/n) (2.15)

= / !g5/(F-1W) + 6>(log/;)



by X2 and condition F. And the result follows by Lemma 2.1 and Lemma 2.2 (below) .

Proposition. For any A > 0, K fixed as in Lemma 2.1, and

5& A = {SeW
I ||£||< KyJ\ogn/n),

P { | f, |
> \n ^log/z } < 2 exp{-A log n (1 + o (1 ))} (2.16)

Proof. By the Markov inequality, for t > 0, and any \ n >

P{|fy |
> AJ < «** [Af

y (0 + M^-t)] (2.17)

where A/y (/ ) is the mgf of fy . By independence of the u 's, A/y(/ ) = II A/,y(/ ) where

Af
tf

(f ) = £ exp {tXuViiSJ}) - EJ&m (2.18)

and

JiW) = /(^ < F-1 + Xi 6) - flm < F~\e)) (2.19)

Note that £7,- = sgn (x,$)ft for ft = 5{», between F^tf) and F -1
(0) + *,•*} thus,

M
i3 (t) = ft exp {txi3 (\ - p^ sgn (x,<5) } + (1 -ft) exp {-/ x

tf ft sgn (.x,5)} (2.20)

If/ = CKm -1 /4
), |x,y/ 1 is bounded by X3, and since for 5 s A,

ft =
\ XiS\f(F-\6*)< c \ XiS\ - (2.21)

since / is bounded. Thus,

log A%(0 < log (1 + 2ft,x i
yVe

l*o'l
)

<2ft(x,J
/)

2
e

|l'>" (2.22)

< c \XiS\(Xijtf exp {5/n 1/4
}

for some constant c, by (2.21). Therefore by condition X2, for t > 0, and / = 0(/z
-1 /4

),

log A/y(0 < £c ' M ll*.f '
2 exp {5m 1 /4

}

' =1
(2.23)

< c "yjn log n t
2 exp {5m 1 /4

}

Finally, by (2.17), with t = ir1 '4
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P{\T,-
1
> A h 1/4 log n) <2 exp {-A log n + c "J\ogne B

)3
(2.24)

= 2 exp {-A log « ( 1 +o(l))}

Lemma 2.2 Under XI -4 and condition F, with probability tending to one,

sup \\TW(9)- 0(9), 9)\\ = 0(n^ log n) (2.25)

Proof. First let 6
{
= e + i /n 3

- i = 0, 1,2, ,...,[(1 -2e) n 3
] and let &, € A be the centers of spheres

of radius /z~° covering A. Let

B = {(6,8)\9 = e
it

5 = 6j for some i and j) (2.26)

Then #B < an 3n 3p
, and, hence, from the proposition

P{sup \Tj-(6,6)\ > Op + 5)n^4 log n) < an 3? + 3 e^3p + 4
>
lo6»—

(2.27)

Consequently, as n — oo

P {sup \\f(6,S)\\ >p Op + 5) n !/4 log n } ->
(2.28)

Now for {S^} c A, with ||5,
- 52 ||

< n"3 and {0 lt 2} c [e,l - e] with \d 1
-9

2 \
< n

-3
consider

|T(Ml) " HWII = IE* ['("< <^ _1
(^i) + *.A) - '("< < F-l

W2) + *,-*3 )]||

(2.29)

Note that since / is continuous and strictly positive
|

^" —

1

(^ 1 )— F~x
{92 )\ <c ln~

3 and hence,

(2.30)

Now for /'

i- j

\{F~l
{9) + xJJ - (P-x

(0) + x{S2)\ < cjn 3 + ctfi^n-*

< c 3n~
2h

<C4n~2*
(2.31)

since / is bounded. Hence

P {min \ut - uj |
< c 3n "J < n(n - \)c 3n

2i -» (2.32)
•73'



It follows that with probability tending to one, the term in square brackets in (2.29) is nonzero

for at most two values of /; and, hence,

Hr^, 6J - r(02,
S2)\\

< 2 max ||.x,|| = 0(" 1/4
)- (2.33)

Also, from (2.29) and (2.21)

\\ET(9U 6,) - ET(92 _
62 )\\ <£ ||x,||

\Pi (9lt «i) -
P,-(*3 .

«< 3 )l

< £ 1*1 I
x^

| |/ (F-H9J - f {F~\92 ) | (134)

+ SW/(H«,)) xA\ -
\ Xi s2 \

Since / '(x) is bounded the first term above is 0(n(\og n)/n 1/*)n~a = 0(1). And since

|.*AI - \x,S2 \
< Mh-W <" 1/4 «^ (2.35)

the second term is also bounded. Hence the left side of (2.34) is bounded, and thus,

\\f(9 lJ1)-T{62J2)\\
= 0{n l li

) uniformly for {9U 92 ) c [e,l - e] with \9 l
-9

2 \<n^ and

{6: 52 } c A with 11$!
- 52 ||

< n'3 (with probability tending to one). Thus, using (2.27)

/>{sup{||7W)||: 6e[e,l -e],8eA)>b n 1 '4 log «}-» (2.36)

Therefore, by Lemma 2.1, (2.25) follows D . 3. L-estimators for the Linear Model

Smooth L-estimators for regression may be expressed as

i

= f J{6)k8)d9 (3.1)

o

and the results of the previous section immediately yield

Theorem 3.1 Under conditions of Section 2, let J(9) denote a bounded, measurable func-

tion on [0,1], and suppose there is an e, satisfying condition F, such that J{ ) vanishes outside

[e, 1 - e] then

L(y/H0- /?(/, F))) -> N(0, o*(J, F)Q->) (3.2)

i

where /?(/, F) = j p{9)J{8)d9 and
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1 1

a2 (/, F) = ff(s At - ts)[f (F~\t))f {F-\s))TlJ(t)J(s) ds dt (3.3)

Proof. Theorem 2.1 implies that

^0 - 0(J,F)) = -^Q-^XiVi + P
("-1/4 log n ) (3.4)

where

",• = jJifitf (F-Km-Vb'i < F~l
(S) - &] d6 (3.5)

o

00

[or w,- = f J(F(v))[I(iij < v) - F(v)]dv]. The w
t

are iid random variables with mean zero
-oo

and variance <P{J ,F). Conditions XI and X3 and the Lindeberg-Feller CLT immediately

yield 3.2.

Remark. An intriguing special case, not covered by this result is the "untrimmed mean,"

i

O = Jkd) dd (3.7)

o

Under further conditions on the tail behavior of F, it is natural to conjecture that O would

have the same limiting behavior as the least squares estimator. The least squares estimator

may be written as

= S ">A (3.8)

where bh = Xh
1

yh as in Section 1 and wh = \Xh \

2
/Y, \Xh |

2
, and the sums are over all

possible /z's. (See Wu (1986) for further detail on this result.) Thus while every subset of p

observations gets positive weight in (3.8), the asymptotically equivalent form (3.7) places posi-

tive weight on the much smaller subset of bh 's which solve problem (1.2). Thus it may be

advantageous to resample from 0(d) along the lines recently discussed by Wu (1986) to imple-

ment bootstrap methods for regression.
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Natural estimates of the asymptotic covariance matrix ^(J , F) may be constructed in

several ways. One approach is to substitute the empirical distribution of the residuals in the

expression (3.3) or the equivalent form,

oo oo

oV, F)= J / [F(x A.v) - F(x)F(y)]J(F(x))J(F(y)) dx dy. (3.9)

-oo -co

Welsh (1986) derives a convenient form of this general expression by integrating by parts. An

alternative approach to estimating c^iJ, F) is to employ the empirical quantile function

£y(0) = inf{jc b\b G$e) (3.10)

which arises naturally from problem (1.2). Here x is the mean design row, i.e., rt
-1

^]*,-. See

Bassett and Koenker (1982, 1986) and Portnoy (1985) for further details on Qy(B). It suffices

here to note that under considerably milder conditions than those of Section 2, Qy(&) is

strongly consistent for Q{6) = x/3 + F^id), which may be interpreted as the conditional quan-

tile function of the response variable evaluated at the mean design point.

We have investigated both approaches in the important special case of trimming. The

asymptotic variance of the trimmed regression quantile estimator given in (1.5) is, when F is

symmetric, the Winsorized variance,

l-a

^(a, = (1 - 2a)-2
[ / f(d)d9+ a^(a) + (1 - a)£2(l - <*)] (3-1 D

a

where £(0) = F -1
(0)- The simplest approach to estimating (^(a, f) is simply to replace £ in

(3.1 1) by the recentered estimate,

m = Qy(e)-x~Pa . (3.12)

We will denote this estimator as

s§(a)=o2(a,&. (3.13)
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De Jongh and de Wet (1986) have investigated several estimators of (3.1 1) based on resi-

duals from the trimmed least squares estimator. A slight variant of their most successful

method is,

sHcc) = (1 - 2a)-\(n - p^r? /(f(a) < rt <f(l - a))

*, *, (3.14)
+ af(a) + (1 -a)f(l -a)

where r, = y,- - x,-J9a, and f(0) is given in 3.12.

To compare the performance of the two estimators we have conducted a small monte-

carlo experiment along the lines developed by Gross (1977). Since a is translation equivari-

ant, and s§(a), sfia) are scale equivariant, we can exploit Gross's monte-carlo swindle for

error distributions from the normal/independent family. Given a design matrix X, we draw y{

= Uf = Zi/V{, i = 1, 2, ..., n, where the z
{

are independent standard normal and the v, are

independent root chi-squared random variables divided by degrees of freedom. Thus the u{

are i.i.d. Student random variables and we may compute the optimal weighted least squares

estimate % = (X'WX)~lX'Wy, with W = diag (v
f

2
). Then, as in Gross (1977), for any linear

contrast a = c'0,

P {a > ks
{ ) = 1 - QdkSi - a + a)/ac )

and by symmetry considerations,

P (a > kSi) = *((-/c5,- - a + a)/ac )

where $ is the standard normal distribution function, a = c'0, and ac
= c '(X'WX^c . We

average these two probabilities over a number of replications of the experiment for several

values of k, yielding estimates p(k
t ), i = 1, ..., k. Logit (p) is then regressed on k and we

interpolate in logit (p) to find k ' such that p{k')^ .025.

Expected confidence interval lengths (ECILs) may be estimated by averaging

s/((y - X/3)'W(y - Xp))i over monte-carlo replications and finally multiplying by 2k' times

the factor
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Ecr = E((y - xfo'Wiy - Xp)?

= V^T((fl -p + l)/2)/T((«-p)/2).

There are 27 different experimental configurations. The factors are

Design: The X matrix is drawn at random once for each configuration and fixed over

experimental replications. The first column of X consists of ones, the remain-

ing columns consist of i.i.d. draws from a Student's t distribution with 1, 3,

and oo degrees of freedom. The design matrix X is then orthogonalized for

each configuration.

Errors: The error distribution is also chosen to be Student's t with 1, 3, and oo

degrees of freedom.

Sample Size: The sample size is chosen to be 25, 50, and 100.

All other factors are fixed over experimental replications: p = 3 parameters are estimated

in every case, ten percent trimming is applied, and the linear contrast employed was

c = (v^3, \fi>, \/3y. The experiment was conducted entirely with the 'S' system of Becker and

Chambers (1984). 1000 replications were preformed for each configuration. An 'S' macro to

compute results for a given configuration is available on request. The random number genera-

tor used is the 'S' portable implementation of the Marsaglia uniform generator and thus, recal-

ling the seeds used in the experiment, results should be reproducible on any machine support-

ing this generator.

In Table 3.1 we report estimated 5% critical values for a two-tailed test on the specified

linear contrast. Results are reported for both s Q and s
x
and the former yields consistently

slightly smaller critical values. The estimated critical values for the n = 25 cases are some-

what larger than one would be led to expect from a naive t-table inspection, however, it is

only in the extreme case of Cauchy response and Cauchy design where the discrepancy is sub-

stantial. This point is reinforced by examining the results for larger sample sizes. Standard

errors for the elements of Table 3.1 are approximately .01, but particularly for the Cauchy
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design cases it should be emphasized that the results are conditioned on the initial draw of the

design.

In Table 3.2 we report ECIL's for each of the experimental configurations. Consistently

the scale estimate, s , based on the regression quantile function yields slightly shorter intervals

than Sx, the estimate employing residuals.

In the case of both tables the results compare favorably with those of Gross for the

bisquare m-estimator. They suggest that reliable hypothesis testing and confidence interval

estimation is possible for the trimmed regression quantile estimator with modest sample sizes.

Further investigation is clearly needed to suggest methods for improving on the simple

methods studied here. The bootstrapping suggestions of deJongh and deWet(1986) provide a

natural alternative approach.
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Table 3.1

ESTIMATED CRITICAL VALUES

Response Design Distribution

Distribution Normal Student (3) Cauchy

sample size = 25

Normal
*o 2.21

2.31

2.22

2.32

2.33

2.53«1

Student (3)

So 2.10

2.22

2.38

2.53

2.54

2.73Si

Cauchy
s 1.83

2.00

2.30

2.60

2.28

2.48Si

sample size = 50

Normal
So 2.09

2.14

2.09

2.14

2.14

2.18Si

Student (3)

So 2.02

2.06

2.08

2.12

2.33

2.38Si

Cauchy
So 1.80

1.88

1.96

1.96

3.07

3.07Si

sample size = 100

Normal
So 2.01

2.03

2.02

2.04

2.06

2.08Si

Student (3)

So 1.99

2.01

2.01

2.02

2.26

2.29Si

Cauchy
So 1.85

1.88

1.91

1.95

2.99

3.02Si
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Table 3.2

EXPECTED CONFIDENCE INTERVAL LENGTHS

Response Design Distribution

Distribution Normal Student (3) Cauchy

sample size = 25

Normal
So 4.36

4.44

4.36

4.44

4.36

4.44Si

Student (3)

s 6.20

6.30

6.20

6.30

6.20

6.30Si

Cauchy
So 17.84

18.10

17.84

18.10

17.40

18.10Si

sample size = 50

Normal
So 4.19

4.22

4.19

4.22

4.24

4.26Si

Student (3)

So 5.19

5.23

5.36

5.41

5.85

5.88Si

Cauchy
So

Si

10.10

10.24

10.62

10.73

15.92

15.80

sample size = 100

Normal
So 4.08

4.09

4.11

4.12

4.16

4.16Si

Student (3)

So 5.12

5.13

5.14

5.15

5.70

5.72Si

Cauchy
So

Si

9.21

9.28

9.41

9.47

14.10

14.08



17

References

BarrodaleJ. and Roberts,F.D.K. (1974). Solution of an overdetermined system of equations

in the 11 norm. Communications of the ACM. 17, 319-320 .

Bassett, G. and Koenker R. (1986). Strong Consistency of Regression Quantiles and Related

Processes. Econometric Theory, forthcoming.

Bassett, G. and Koenker R. (1982). An empirical quantile function for linear models with iid

errors. Journal of the American Statistical Association. 77, 407-415 .

Becker, R.A. and Chambers J.M (1984). S: An Interactive Environment for Data Analysis and

Graphics. Wadsworth. 1

Bickel,P.J. (1973). On some analogues to linear combinations of order statistics in the linear

model. Annals of Statistics. 1, 597-616 .

deJongh P.J. and deWet T (1986). Confidence Intervals for Regression Parameters based on

Trimmed Means. South African Journal of Statistics, forthcoming.

Gastwirth, J.L. (1966). On robust procedures. Journal of the American Statistical Association.

61,929-948.

Gross, A.M. (1977). Confidence intervals for bisquare regression estimates. Annals of Statis-

tics. 72,341-354.

Jureckova J. and Sen P.K. (1984). On adaptive scale equivariant m-estimators in linear

models. Statistics and Decisions. 1,31-46.

Koenker,R.W. and Bassett,GW. (1978). Regression quantiles. Econometrica. 46 ,33-50.



18

Koenker, R. and d'Orcy V. (1986) Computing Regression Quantiles Applied Statistics, forth-

coming.

Mosteller,F. (1946). On some useful "inefficient" statistics. Annals of Mathematical Statistics.

17,377-408.

Portnoy S. (1985). Tightness of the Sequence of empiric CDF Processes Defined from

Regression Quantiles. J. Franke, W. Hardle, and D. Martin(ed.) Robust and Nonlinear

Time Series Analysis. Springer-Verlag.

Ruppert, D. and Carroll, R.J. (1980). Trimmed least squares estimation in the linear model.

Journal of the American Statistical Association. 75, 828-838 .

Serfling, R. (1980). Asymptotic Tlieory of Statistics. Wiley. New York .

Tukey J.W. (1970). Exploratory Data Analysis. Addison-Wesley.

Welsh A.H. (1985). The Trimmed Mean in the Linear Model. Annals of Statistics, forthcom-

ing.

Welsh A.H. (1986). One-Step L-estimators for the Linear Model. University of Chicago

Statistics Department Technical Report.

Wu C.F.J. (1986). Jackknife, bootstrap and Other Resampling Methods in Regression

analysis. Annals of Statistics, forthcoming.











HECKMAN
BINDERY

INC.
| ,

JUN95




