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Abstract

We study value functions for mixed-integer programs and also

functions for deciding when an MIP is feasible. Examples are given to

show that the inductive structure in pur integer programs is not

preserved. However, a generalized class of value functions for pre-

multiplied MIPs does have an inductive structure.





Constructive Characterizations of the Value
Function of a Mixed-Integer Program

by C. E. Blair and R. G. Jeroslow

The mixed-integer program is the optimization program with linear

constraints, and integer and continuous variables:

inf ex + dy

subject
(MIP, ) to Ax + By = b

x,y ^0 x integer

The constraint matrices A,B and objective functions c,d will be

assumed throughout to be fixed and rational. Our primary concern is the

value function 2(b), defined to be the objective function value of the

optimal solution to (MIP, ), as b varies over all rational right-hand-

side vectors.* If (MIP, ) is inconsistent we set z(b) = +». Except

where otherwise stated we assume that z (0) = 0. This is equivalent to

assuming that whenever (MIP. ) is feasible, it is bounded in value.

The focus in our present paper has been on characterizations of value

functions, i.e., necessary and sufficient properties of value functions.

Our earlier work ([4], [14]) provided necessary properties only. This

focus has, in turn, led us to study inductively-defined classes of func-

tion.

The work of the second author has been partially supported by
NSF grant ECS 8001763.

*Most of our results hold in the case when b,c,d are arbitrary reals.
However the rationality of A,B is crucial to our work.
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In [2] we studied the value function of a pure integer program,

i.e., one in which there is no y, B, or d. We defined the class of

Gomory fvmctions inductively as the smallest class containing linear

functions and closed under rational sums, non-negative rational mulipli-

cation, taking maxima, and ceiling (next-higher integer) operations. It

was established that for each A,c there is a Gomory function F such that

F(b) = 2(b) for all feasible b. A converse showing that for every

Gomory function F there is a corresponding integer program was also

established. (Formal definitions and precise statements will be given

In the next section.)

These results are analogues of the simpler situation in parametric

linear programming. If we remove the ceiling operations from the defin-

ition of Gomory functions, the resulting class is the set of polyhedral

fxmctions. This is precisely the class of value functions of linear

programs. The ceiling operations provide the additional tool needed

for the requirement that all vbls are integer.

For pure integer programs, Gomory functions also provide "consis-

tency testers." For any matrix A, there is a Gomory function F such

that F(b) <_ if and only if the integer program with right-hand-side

b is feasible. Again, there is a converse which constructs a pure in-

teger program for every Gomory function.

Our present paper examines the interrelationships between Gomory

fimctions and MIPs.

Section 2 contains preliminary definitions and statements of theorems

from earlier papers.
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In section 3, we show that every MIP has a "consistency tester"

which is a Gomory function. This follows from the results for pure

integer programs in a straightforward manner. Several easy consequences

of this result are estabished.

Section 4 shows that the other results for pure integer programs

do not generalize to MIPs. Examples are given of a Gomory function that

is not a consistency tester and of an MIP whose value function is not a

Gomory function. The fundamental pathology underlying these examples

is that the inductive structure breaks down, e.g., the sum of two value

functions is not necessarily a value function. This theme is explored

in depth in section 6.

Section 5 identifies precisely which Gomory functions are consis-

tency testers. A constructive procedure is given by which, given a

closed-form expression for a Gomory function, it can be determined

whether or ot it is the consistency tester for some integer program.

Section 6 addresses the problem of value functions. The class of

value functions is imbedded in a class of functions corresponding to

mixed-integer programs in which the right-hand-side is pre-multiplied

by a matrix. This larger class of problems preserves the inductive

structure and is of independent practical interest. The subclass of

the pre-mtiltiplied value functions corresponding to value functions in

the original sense is identified algorithmically. We show that the

closure of the Gomory functions under infimal convolution provides

exactly the value functions for the pre-multiplied constraint sets. A

closed-form expression for value functions (both ordinary and pre-

multiplied) as the minimum of finitely many Gomory functions is also given.
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2. Definitions and Preliminary Restilts

In this section we present the material which will be needed later

in approximately the order in which it is needed. Motivation will be

supressed in the interests of brevity.

A. Value functions . As described in section 1, if A,B are m x r,

r s
m X s rational matrices cGQ,dSQ [Q = the rationals], then A,B,c,d

determine a value function z: Q -> Q u{+='}. z(b) is the objective

function value of the optimal solution to (MIP, ).* z(b) = +» means (MIP, )

is inconsistent, i.e., has no feasible solutions. Any value function

which is not finite everywhere can be extended to one which is, as

shown by the result:

Theorem 2.1 [4, thm 4.6] ; Let z be the value function determined

by A,B,c,d. There are A',B',c',d' such that z'(b) < +» for all b and

z'(b) = z(b) if z(b) < -H».

B. ChvataJ. and Gomory Functions ; In [2] we defined several in-

ductive classes of fxmctions.

The Gomory functions are the smallest class G of functions such that

(5.1) If X e q"^ then F € G where F(b) = \h

(5.2) If F € G then G e G where G(b) = F(b) = smallest

integer >_ F(b)

(5.3) If F,G € G then H S 6 where H(b) = F(b) + G(b)

(5.4) If F e G, a e Q, a >_ then H e G where H(b) = aF(b)

(5.5) If F,G e G then H € G where H(b) = max{F(b) ,G(b)

}

*The existence of an optimal solution to (MIP, ) is a non-trivial
result due to Meyer [15, see also 2, thm 4.6].
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The Chvatal functions are the smallest class of functions satisfying

(5.1) - (5.4).

Proposition 2.2 [2, prop. 2.18]: If F is a Gomory function, there

are Chvatal functions, C^, C^, ... C^ such that F(b) = max(C^(b), ... C^(b)),

The monotone Gomory functions are a subclass of the Gomory functions

obtained by restricting the A in (5.1) to have all components non-

negative. The unrestricted Gomory functions correspond to using (5.1)

as given and allowing all rational a (positive or negative) in (5.4).

C. Integer Programs and Gomory Functions . As in the introduction,

if A is an mxr rational matrix and c S Q we have, for each b S Q the

Integer program

(IP, ) inf ex

Ax = b

X > X integer.

Here z(b) is the value of the optimal solution to (IP, ).
b

Theorem 2.3 [2, theorems 5.1, 5.2]: For any A.c if z(0) =

there are Gomory functions F,G such that: (i) (IP, ) is consistent iff
b

G(b) £0; (ii) If G(b) <_ F(b) = z(b).

A function satisfying (i) is called a consistency tester for (IPt^)'

The proof of theorem 2.3 is constructive.

Theorem 2.4 [2, theorem 3.13]: Let F,G be Gomory functions and

suppose G(b) > if b is not an integer vector. Then there are A,c

such that (i) and (ii) hold.*

*We will discuss the constructive aspects of 2.4 in a forthcoming
paper.
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Monotone Gomory functions are the appropriate class for the study

of Integer programs in inequality form:

inf ex

(IIP, ) Ax < b
D —

X ^ 0, X integer

Theorem 2.5 [2, thm. 5.15, 5.16]: For any A,c if z(0) = there

are monotone Gomory functions F,G such that (i) and (ii) hold.

D. Monoids and Subadditive Functions . A rational monoid is a set

M C Q which contains the zero vector and is closed under addition.

M is a finitely generated monoid iff there is a finite F C M such that

if F C M' and M' is a monoid then M C M'. Equivalent ly , a finitely

generated monoid is the set of feasible right-hand sides of some integer

program (the columns of A are the members of F) . M is an integer monoid

if every element of M is an integer vector.

Theorem 2.6 [13]: The intersection of two finitely generated integer

monoids is a finitely generated integer monoid.

A function F: M -*- R U {-H»} is subadditive iff f (x) + f (y) >_ f (x + y)

for all x,y S M.

Proposition 2.7 [12]: Gomory functions, value functions of integer

programs, and value functions of mixed-integer programs are defined on

monoids and are all subadditive in their domains.
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3. Consistency Testers are Gomory Functions

We shall say that a function G is a consistency tester for (MIP, )—^—^— b

if, for all right-hand-sides b S Q ,

(3.1) G(b) <_ t-^- (MIP^) is consistent

The Gomory functions were developed in connection with pure integer

programs (the case s=0 in (MIP, ) of no continuous variables). Neverthe-

less, this class of functions is adequate to accovint for the consistency

testers for all mixed-integer programs (MIP ) , as we show in this sec-

tion. This will contrast with the fact that there are (MIP, ) value
D

functions which are not Gomory functions, as we shall show in Section 4.

We also establish sotne related results on the adequacy of Gomory func-

tions to represent certain relations and value functions, but postpone

to Section 6 a fuller treatment of these matters, after the negative re-

sults in Section 4 serve to motivate our interest in the "pre-multiplied

mixed integer programs" of Section 6.

Lemma 3.1 ; Let C be a rational matrix. There exist finitely many ra-

tional vectors G ,...9 such that, for all v,

(3.2) Cu >_ V is consistent *-* 9 v <_ for i=l,... ,t

Proof: This result is well-known (see e.g. [18, Chapter 1] where the

issue of the field in which the 9 lie is treated explicitly).

In fact, the 9 can be taken to be the extreme rays of the ra-

tional polyhedral cone {G>pl9C=0}.

Q.E.D.
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Our next result is related to Benders decomposition [1],

Theorem 3.2 ; The consistency tester for (MIP, ) is a Gomory fimction.

Moreover, if d=0 in the criterion function cx+dy of (MIP, ),

the value function of (MIP, ) is a Gomory function on its

domain of definition.

Proof : Using Lemma 3.1, there are rational vectors ,...,0 such that

(3.3) By = V, y >_ is consistent -«-> v _< for i=l,...,t

By (3.3), (MIP, ) is consistent if and only if there is some integer vec-

tor X > with

(3.4) D(b - Ax) <,

where D = [0 ] (rows).

Let A* be the rational matrix whose rows are A for i=l,...t. By

Theorem 2.5 there is a monotone Gomory function F with, for all w € R ,

(3.5) F(w) <_ -f-*- A'x ^ w, X >_ and integer,

has a solution

Let G(b) be the function obtained from F by substituting, for the vari-

able w. of F, the linear form ©""Tj. Thus, if F(w) = F(w. ,...,W ), we

have

(3.6) G(b) = F(0-h3,...,0H)

Since F is a Gomory function, G is a Gomory function.

We have
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(3.7) G(b) _< -^ FO-'-b gS) <.

-*-> A'x ^ Db, X ^ integer,
has a solution

^ D(b - Ax) <_ 0, X >_ integer,
has a solution

^-»- Ax + By = b; x,y ^ 0; x integer,
has a solution

Thus, G is a consistency tester for (MIP,).
b

Now suppose that d=0 in the criterion function cx+dy of (MIP, ).
b

By Theorem 2.5 there is a monotone Gomory function H(w) which provides

the value of the pure integer program inf{cx|A'x ^ w, x ^ and integer}

wherever that integer program is consistent. As we have seen, for w

of the form w=Db, the latter integer program is consistent precisely if

(MIP, ) is consistent. Moreover, for any solution x to this pure Integer

program with w=Db, the criterion value cx=cx-K)y is also a possible cri-

terion value for (MIP, ), and vice-versa. Hence the optimal value of

(MIP, ) and inf{cx|A'x ^ Db, x >_ and integer} is the same. As H is a

monotone Gomory function, K(b) = H(Db) is a Gomory fimction which is

also the value function of (MIP, )

.

D

Q.E.D.

We next show that the epigraph of a value function can be identi-

fied by a Gomory function.

Corollary 3.3 : Let z(b) be the value function of (MIP, ). Then there

is a Gomory function G(z,b) such that

(3.8) G(z,b) 1 -^ z >^ z(b)
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In particular, z(b) is the smallest value of z satisfying

G(z,b) _< 0.

Proof : z >_ z(b) if and only if the following mixed integer constraint

set is consistent.

(3.9) cx+dy £ z. Ax + By = b; x,y >_ 0; x integer

The result is then an immediate consequence of Theorem 3.2. The "in

particular" also follows at once.

Q.E.D.
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4, Some Negative Results

In this section we show that some of the results relating to pure

Integer programs do not extend to mixed integer programs.

Theorem 3.2 showed that each MIP has a consistency tester which is

a Gomory function. We begin with some examples of Gomory functions that

are not consistency testers for any MIP, which shows that theorem 3.2

does not have a converse.

r "1 r 1
Example 4.1 ; Let g(a) = ot + -2a . g(a) > for a close to zero.

Hence, if g were a consistency tester it would have to be for an (MIP),

with no continuous variables. Since g(a) <_ for a >_ 1, we would have

to have all ot ^ 1 feasible as a right-hand-side, which is impossible.

Note that a and -2a are consistency testers, so the consistency

testers are not closed under addition. Our next example shows they are

not closed uner maxima either.

Example 4.2 ; Let h^ (a,S) = a + -a , h„(a,6) = max {-3,6-a}. h^ is

the consistency tester for an MIP with integer columns (1,0); (-1,0)

and continuous columns (0,1); (0,-1). h2 is the consistency tester for

an MIP with continuous columns (1,0); (1,1). The function g = max {h^,h2}

has g(a,B) > for all (a, 3) close to the origin. Hence, as in example

4.1, g cannot be the consistency tester for an MIP with continuous

columns. But g(l,S) <^ for £ g <_ 1, so at least one continuous

column is necessary.

Next we analyze the situation with respect to value functions

for constraint sets (MIP, ). In view of theorem 2.1, we may restrict
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ourselves to those situations in which (MIP, ) is consistent for all b,
D

Neither theorem 2.3 nor 2.4 extends to constraint sets (MIP, ).
D

Lemma 4.3 ; If a Chvatal function is continuous at the origin it is

linear.

Proof ; We argue by Induction on the formation of f . If f is linear we

are done. If f = ag (a > 0) f is continuous at the origin only if g is.

By Induction hypothesis , g continuous at origin implies g linear, hence

f is linear.

It is easy to show that Chvatal functions are zero at the origin

and lower semicontinuous . If f = g is continuous at the origin g(b)

must be non-positive for all b close to the origin. This implies g

must be continuous at the origin. By Induction, this means g is linear.

If g is continuous and g is linear, g must be the constant mapping,

hence f is also.

If f = g^ + g_ is continuous at the origin, the semicontinuity of

g^ , g_ implies they are both continuous at the origin. By induction

g- and g_ are linear, hence f is linear.

Q.E.D.

Corollary 4.4 . If a Gomory function is continuous at the origin, it

is a maximum of finitely many linear functions.

Proof : By proposition 2.2, a Gomory function is the maximum of finitely

many Chvatal functions. Since the Chvatal functions are all lower semi-

continuous and have value zero at the origin, they must be continuous,

hence linear. Q.E.D.
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Example 4.5 ; The MIP with one constraint

min w + z

subject to x-y+w-2=a
x,y Integer x,y,w,z >_

I—I r ~i
has value function 6(Qt) = min [a, - a, -a + ct}

6 is continuous at the origin, but is not a maximum of linear

functions. By corollary A. 4, S is not a Gomory function.

Example 4.6 : a + -a is not a value function. Since we want (MIP, )

to be feasible for all b, B must have at least one continuous column.

But if b is such a column then the value of the optimal solution to

(MIP , ) would have to be less than one for small positive e. Since

a + -a = 1 for a close to zero, it cannot be a value function.

Note that a and -cc are value functions.

Example 4.7 ; Consider the constraint set

X +
y-|_

+ y2 = b^

-X +
yj_

+ y^ = b2

x,y , ^ X integer.

For any a. , o„ > b, , b„ can be chosen so that the line segment

connecting (x=0,y =a^) and (x=l,y^=a„) is a facet of the convex hull

of the feasible region. Hence the feasible region may contain facets

of arbitrary slope. In pure Integer programs only finitely many slopes

may occur as b varies [2, theorem 6.2].
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5. Which Gomory Functions are Consistency Testers ?

Theorem 3.2 and examples 4.1, 4.2 imply that the set of consistency

testers is a proper subset of the set of Gomory functions. The main

purpose of this section is to characterize this subset. A constructive

procedure is described such that, given a closed-form expression for a

Gomory function G we can determine whether or not matrices A, B exist

such that for all b, G(b) £0 iff (MIP,) has feasible solutions.

Lemma 5.1 ; Given a Chvatal function C:R ^ R. There are

A°,A ,...A S Q , a natural number D, and a monotone Chvatal function

E:R^ -^ R such that: (i) For all v € R^ C(v) = X°v + E( X v ,. .. X v )

;

(ii) E(e.) > 0, 1 £ i ^N where e, is the ith unit vector; (iii) For all

V, EQ X V ,... X V ) may be written as a rational number with denomina-

tor D.

Proof: Our argument is by induction on the formation of C. If C

is linear we may take N=D=1, E to be the identity, X = 0, and X^v = C(v),

If C = •§C- , where K,M are natural numbers and C. is a Chvatal function,

the induction hypothesis implies that there are X , D^^, E. such that

(i) - (iii) hold. We take D = MD^ ;
^° = f^^J and E = ^^.

Similarly, if C = C^ + C2 we take N = N^^ + N2

,

E(ci^,...a^) = E^(a^,...aj^ ) + E^i^^ _^^,. . .ct^) ; D = D^D2; X° = X° + X^;

X^ = xj, 1 <_ i <_ N^; X^ = X^'^l, N^ + 1 <. i <. N.

If C = '"c^"^; X° = ^, D = 1; N = N^ + 1; X^ = X^, 1 <. i <. N^;

X^ = D^X°; and E(aj^,...a^) = \(\*-"%.i^ "^ F^N * '^^^ completes

the induction.

Q.E.D.
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LpTmna 5.2 ; Let H:R ^ R be a Gomory function. There are

1 N k N
A ,...A € Q and a monotone Gomory fvmction F:R -> R such that

(5 .1) G(v) = F('~X-'-v~',...'~x\~') £0 iff H(v) <_

B

(5.2) F(e.) > 0, 1 1 i IN.

Proof: Recall from proposition 2.2 that there are Chvatal function

C, ,...C„ such that H(v) = max C,(v). Next apply Lemma 5.1 to each
l<_j<.M^-

Cj to obtain X., 1 < i < N, and E. such that
J J - - J J

C.(v) = X?v + E.C X.v .... X.v ). With D. as in (iii) above note that
J J J J J 2

.(v) = -ri Da?v + E^C X^v , 1 < i < N.) < iff C.(v) < 0. It is sim-
3 j^^ JJ--J- J-
ple to choose F, X so that G(v) = max B (v) . (5.2) follows from

1 <_ j _< M ^

(ii) above.

Q.E.D.

Lemma 5.3 ; Let G be given by (5.1). Let T = {v|x v = 0, 1 <_i <_N}.

Assume T is non-trivial. Let 6 ,...9 be a basis for T. Then G is a

consistency tester if and only if

J(v) = max{G(v); 6 v , 1 <_ i <_L; (-Z9 )v } is a consistency tester.

Proof : Recall from linear algebra that for every v there is a

unique representation v = v^ "*" ^9 where v^ £ T and 9v„ = 0, l<_i<_L.

Suppose that J is a consistency tester, i.e., that there are A, B

such that J(b) < iff (MIP, ) has feasible solutions. Form a new MIP— D

by adding columns 9 ,,..9 , (-ZQ ) to B. If b is feasible for the new

MIP there is a b' such that b - b' € T and J(b' ) <_ 0, hence

G(b) = G(b') <_ J(b') <_ 0. If G(b) <_ then b = b^ + b2 as above,

b e T implies G(b,) = G(b), hence J(b2) 1.0, b^ is feasible for the

original MIP, hence b is feasible for the new MIP. Thus, G is a consis-

tency tester for the new MIP.
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Conversely, suppose that G is a consistency tester and that A, B

define the appropriate MIP for G. To form the appropriate MIP for J

take each column v of A or B, decompose v = v + v„ as above and replace

V by V2. J(b) <_ only if G(b) <_ and eS* = 0, 1 <_ i <_ L. If

b = b- + b- is feasible for the MIP for G then b- is feasible for the

MIP for J, because the map from b to h^ is linear. 60 =0, 1 f. i ^ L

implies b, = 0, hence b = b-. If b is feasible for the MIP for J then

there is a b' feasible to the MIP for G with b - b' ^ T. Since all col-

umns V of the MIP for J satisfy 6 v = 0, b feasible implies

J(b) = max{G(b),0} = max{G(b'),0} = 0.

Q.E.D.

From this point onwards, we confine our attention to those Gomory

functions G satisfying (5.1), (5.2), and

(5.3) X^v = 0, 1 <_ i <_ N implies v = ^.

If we are given a formula for an arbitrary Gomory fiinction H, Lemma

5.2 enables us to construct a Gomory function G satisfying (5.1) and

(5.2) which is a consistency tester iff H is. If G does not satisfy

(5.3), then the function J constructed in lemma 5.3 does, and is a con-

sistency tester if and only if G is. Thus a procedure for determining

whether a Gomory function satisfying (5.1) - (5.3) is a consistency

tester suffices to solve the original problem.

Theorem 5.4 ; Let G satisfy (5.1) - (5.3). If G is a consistency

tester then G is a consistency tester for an (MIP) in which the columns

of B are the extreme rays of the cone C= {v|Xv<_0, l<_i<_N}.

Proof: Note that (5.3) implies C is a pointed cone and standard

results of convexity theory imply that every member of C is a non-

negative linear combination of the extreme rays of C.
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If A, B is an MIP corresponding to G and w is a column of B then

claim w S c. If w ? C then for some a > X (ow) > 0, 1 < i < N

and X^(aw) = 1 for at least one j. G(aw) >_ F(e.) by the monotonicity

of F and F(e.) > by (5.2). If w is a column of B we must have

G(aw) <_ for all positive a, so our claim is established. Further, if

w S c G(w) <_ F(^) = so all members of C must be feasible for the MIP.

From these two results we conclude that the MIP obtained by replacing B

by the matrix of extreme rays of C has the same feasible set, hence also

has G as a consistency tester.

Q.E.D.

An example illustrates a subtle way in which a function may fail

to be a consistency tester. It motivates our subsequent analysis.

Example 5.5 ; Let GCa^.Oo) = "i "*"
"^o

"*"

"'l
~ °'2 "*"

'^l
"* ^°2 *

G satisfies (5.1) - (5.3) hence we may apply theorem 5,4. The extreme

rays of C are w. = (-1,1), w = (-2,-1). For 1 < a. < 1.5

G(a^, 1 + a^) = 0. For any ^ > o G((a^, 1 + cx^) - € w^) > 0, i = 1,2.

If G were a consistency tester for an MIP in which the columns of B are

w , w then (a , 1 + a ) must be a feasible right-hand side. Moreover,

the MIP would have to have a feasible solution with y. = y„ = 0, because

otherwise (a,, 1 + a- ) -Sw. would be feasible for some = > 0. How-
1' 1 1

ever, the integrality requirement on the x vbls implies there must be

infinitely many a such that no suitable feasible solution exists.

Hence, G cannot be a consistency tester.

We shall show that example 5.5 represents the typical way in which

a function fails to be a consistency tester. Theorem 5.4 enables us to

explicitly identify the columns of the B-matrix. The set of points
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which are integer combinations of the A-matrix columns is discrete. If

a line segment (in this example the open segment with end points (1,2)

and (1.5,2.5)) can be identified such that each point of the segment

would have to be an integer combination of A-columns, then the function

cannot be a consistency tester.

Definition 5.6 : Let G be a specified Gomory function in the form

(5.1). V is defined to be a maximal vector if and only if: (i) G(v) <^

and (ii) whenever G(w) <_ and X w >_ X v for 1 £ i £ N, then w = v.

Lemma 5.7 ; Let G satisfy (5.1) - (5.3). If G is the consistency

tester for (MIP) and b is a maximal vector, then for some integer x >_

Ax =« b.

Proof : Since G(b) <_ there are x,y >^ ^, x integer with Ax + By = b.

By theorem 5. A we may assume that if w is a column ofB, Xw<^0,

1 <_ i <^ N. If y i' t, then there is ^ £ y' <_y such that b - By' ?' b.

Since Ax + B(y - y') = b - By', G(b - By') <_ 0. Since y' >. implies

A (b - By') >_ X.b, this contradicts property (ii) of maximal vectors.

Q.E.D.

Definition 5.8 : For G of the form (5.1) let

(5.4) J^ = {wl^xV = ^xV, ^-xV = ^-xV, 1 1 i < N}

Proposition 5.9 ; If w e J^, G(v) = G(w).

Lpttrmfl 5.10 ; If v is maximal and w e J , then w is maximal.

Proof ; Property (i) holds for w by 5.9. If property (ii) fails, we

have w' ii' w with X w' >_ X'^'w and G(w') <_ 0. For some a > we have

v' = V + a(w' - w) such that '"xS'"' <_ '"x^w'"', 1 1 i 1 N. Monotonicity

of F implies G(v') <_G(w') <_ 0, which contradicts the maximality of v.

Q.E.D.
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Leimna 5.11 ; If G satisfying (5.1) - (5.3) is a consistency tester,

then for every maximal vector v, J = {v}.

Proof ; If w € J and w ?' v then every vector aw + (1 - a)v,

0<a<lisinJ» hence is a maximal vector by 5.10. If G were a con-

sistency tester, then 5.7 would imply that every convex combination of

w and V would be an integer linear combination of the columns of A,

which is impossible.

Q.E.D.

We shall establish the converse to 5.11 later. First, we examine

the conditions under which J = {v}.

Lenmia 5.12 ; Let G satisfy (5.1) - (5.3). J = {v} if and only if

X V is integer for a linearly independent subset of size k from

1a ,...A /.

i k
Proof ; Recall that the X e q and that (5.3) implies the set of

all X has dimension k. The "if" direction follows immediately from the

definition of J since the condition given implies that any member

w € J would have to solve a non-singular system of k equations in k

unknowns

.

Conversely if J = {v} let S = {i|X v is integer}. It must be the

case that X w = for all i ^ g implies w = (otherwise v + aw 6 j for

small a). The conclusion follows by linear algebra.

Q.E.D.

For technical reasons we need to establish the ways in which denom-

inators of members of J depend on the X .

V

LeTmiia 5.13 : For every vS R , J contains a rational member.
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Proof ; For 1 ^ i ^ N, choose a , Q as follows: if X v is inte-

ger a. = g. = X v; otherwise Av <6<Xv<a. < Xv. Let

Q = {wje <^ X^ £ a., 1 _< i £ N}. Q Cj^ is a non-empty (v ^ Q)

polytope with rational defining inequalities, hence it has a rational

member

.

Q.E.D.

Proposition 5,14 ; Let M be an integer such that MX is an integer

vector, 1 < i < N. Then for all v, J _^ = J + Me., 1 < i < k,

(recall e. = jth unit vector).

Proof : J ,„ = iw X w = X V + MX e
,

; -X w = -X v - MX e,

,

1 < i < N} = {wlw - Me. € J }.- - ' J V

Q.E.D.

L^mna 5.15 ; There is a finite FC q such that, for any w, there

is a V S F for which J = J + u for some integer vector u,
w V

Proof ; By using 5.14, we can find u, w such that J = J + u where

£ V <^ M and u is an integer vector. For v in a bounded region of

space, only finitely many sets J occur. By 5.13 each of these sets has

a rational member, which we may choose for F.

Corollary 5.16 ; There are natural numbers D-, D- such that (i) if

J = {v} then every component of v is a rational with denominator D.

.

(ii) if J # {v} then there is a rational vector w all of whose compo-

nents are rationals with denominator D such that at least one component

cannot be written as a rational with denominator D.

.

Proof : (i) follows Immediately from 5.15. To establish (ii) note

that if J is not a singleton, then the rational polytope Q defined in

5.13 is not a singleton, hence it has a rational member whose components
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do not all have denominator D^ . By 5.15, we may take D^ to be the least

common multiple of the denominators arising from those J , v € F that

are not singletons.

Q.E.D.

N N
Lemma 5.17 ; Let F:R -*• R be a Gomory function, w £ R . If

N
F(w) + F(-w) > then for every u S R and L there is a natural number

M such that F(u + Mw) + MF(-w) >_ F(u) + L.

Proof: We argue by induction on F. If F is linear, F(w) + F(-w) =

and the conclusion holds vacuously. If F = aF^ , a > 0, then by induc-

tion hypothesis there is an M such that F- (u + Mw) + MF^(-w) >_ F^(u) + —

and the conclusion follows.

If F = F^ + F^ we may assume F-(w) + F-(-w) > 0. By induction hy-

pothesis there is an M such that F. (u + Mw) + MFj^(-w) ^ F- (u) + L.

Since Gomory functions are subadditive F- (u + Mw) + MF_ (-w) >_ F- (u)

,

and we obtain the conclusion by adding the two inequalities

.

If F = F^ and F. (w) + Fj(-w) <_ then subadditivity Implies

F-(u + Mw) = F (u) + MFj^(w) for all integer M. Since F(w) + F(-w) > 0,

F,(w) = -F, (-w) is not integer. Choose M so that

r ~i r "1

MF^(w) + M -Fj^(w) >_L + 1. Then F(u + Mw) = Fj^(u) + MFj^(w) >_

""f (u) + L + 1 - ^^FJ^(-w)"'~' = ''f^(u) + L + 1~^ - MF(-w) >_ F(u) + L - MF(-w),

If F^ (w) + F- (-w) > then we may apply the induction hypothesis to F^^

and obtain M such that F. (u + Mw) + MF- (-w) ^ F^(u) + L + 1 and the

conclusion follows.

If F = max{Fj^,F-} and F^(w) + F^(-w) > 0, then the induction hy-

pothesis implies there is an M such that F (u + Mw) + MF^(-w) >_ F(u) + L.

Since F >_ F^ , the conclusion follows. The remaining case is
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F, (w) + F^(-w) = F2(w) + F2(-w) =0. In this case

F,(u + Mw) = F^(u) + MF^(w), i=l,2. We may assume F(w) = Fj^(w) and

F(-w) = F2(-w). Choose M so that M(F(w) + F(-w)) >. L + F(u) - F^(u)

and the conclusion follows.

Q.E.D.

Lemma 5.18 ; Let G satisfy (5.1) - (5.3), G(v) _< 0. Let

T = {wlX^w > X V, 1 < i < N}. There is a w € T which is a maximal
V

vector (definition 5.6).

Proof: Let z = (X v,...x\). For 1 <. j <_ N either

F(e.) + F(-e,) = or F(e.) + F(-e.) > by subadditivity. In the first

case F(z + Ne.) = F(z ) + NF(e.). In the second case, we may apply lemma

5.17. In either case, there is a natural number M, such that

F(z + M.e,) > 0. Let M = maxM , . Using the monotonicity of F, we con-

clude that if w e T and G(w) <_ then X w £ X v + M. By (5.3)

{w|X'^v £ X w <_ X'''v + M} is compact. Hence there is a w ^ T such that

(i) G(w-'-) <_ (ii) if w e T and G(w) _< then X-'-w <_ X w .

For 2 <_ j _< N we obtain w^ £ T such that (i) G(w-') <_

(ii) X^w^ = xV"-"-, 1 1 i 1 j-1 (iii) if w € T^ satisfies (i) and (ii)

then X-'w <_ X'^w-' . w is the desired maximal vector.

Q.E.D.

Theorem 5.19 ; Let G satisfy (5.1) - (5.3). Then G is a consis-

tency tester if and only if J = {v} for every maximal vector v.

Proof ; We established the "only if" part of the result in 5.11.

If J = {v} for every maximal v we construct matrices A,B to form the

appropriate (MI?) . The columns of B consist of the extreme rays of the



-23-

cone {w|A w <^ 0, 1 ^ i ^ N}. To construct A we consider the function

G' iR^ -> R defined by G' (b^,. . .b^^) =

r -] ^1 \
wax{ b^ - b^, 1 ^ i £ k; G(—,...—)}, where D^^ is given by 5.16.

K
G'(b) <^ iff b is an integer vector and G(—) _< 0. By 2.4 a matrix A'

1

can be constructed such that G'(b) <^ iff b is a non-negative integer

combination of columns of A*. The columns of A consist of the columns

of A' divided by D^ . If G(b) <_ and all components of b have denomina-

tor D^ then b is a non-negative integer combination of columns of A.

In particular, 5.16 implies that every maximal vector is such a combina-

tion. For any b, if G(b) ^0, 5.18 implies there is a maximal vector v

such that X (b - v) <_ 0. Since b - v is a non-negative linear combina-

tion of columns of B, we have a feasible solution to (MIP, ),

Q.E.D.

Lemma 5.20: If v is a maximal vector and v = Ta.v. where a. are
i 1 i

natural numbers and G(w.) <_ then the w. are maximal vectors.

Proof ; If some w is not maximal then there is w' 7* w. with

i i
X w! > A w, and G(w'. ) < 0. But subadditivity would imply

J — J J
—

G(v - a.w. + a.w! ) ^0, which would contradict the maximality of v.

Q.E.D.

Theorem 5.21 : Let G satisfy (5.1) - (5.3). Suppose that w. ,...w

are such that for every b whose components are rationals with denomina-

tor D™ , G(b) ^ iff b is a non-negative integer combination of the w .

Then G is a consistency tester iff every w. which is a maximal vector

satisfies J = {w . }

.

w. i
1

Proof ; If G is a consistency tester, we may apply 5.11. If G is

not a consistency tester, then 5.19 implies there is a maximal v for
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which J 5* {v}. By 5.16 and 5.10 we may assume every component of v is

a rational with denominator D_ , and that at least one component is not

a rational with denominator D^ . By hypothesis, v is a non-negative

integer combination of w., which are maximal by 5.19. At least one

maximal w. does not have all its components with denominator D. . By

5.16, J i {w.}.

Q.E.D.

Theorem 5.19 gives us our procedure for testing whether or not a

given G is a consistency tester. As described previously, G is modified

so that (5.1) - (5.3) are satisfied. Then D- is calculated. Using

theorem 2.4 we construct the appropriate set of w.. For each w., it can

be determined if it is a maximal vector and if J = {w, },

^i ^

It must be admitted that this description of which Gomory functions

are consistency testers is cumbersome, but we do not think there is a

really neat characterization. In particular, we conjecture that the

problem of deciding whether or not a given formula for a Gomory function

is a consistency tester is NP - complete.
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6. Pre-nailtiplled Mixed Integer Constraint Sets

We now first summarize the information provided by this paper up

to the present section, and give a perspective on it.

The Gomory functions were developed to account for pure integer

programs [2], There is a priori no reaon to expect this class of

functions to account for mixed integer programs (MIP, ).

The barriers to a treatment of (MIP, ) by Gomory functions were

highlighted in Section 4.

First of all, the Gomory functions are, by construction, a class

of functions inductively closed under the operations of maximiam, sum,

and round-up; neither the class of consistency testers or value func-

tions of (MIP, ) are so closed. Since the Gomory functions do provide

all consistency testers for (MIP, ) by Theorem 3.2, that class must

also contain functions which are not consistency testers for (MIP, ).
b

Our efforts In Section 5 were directed at obtaining some algorithmic

procedure for identifying the consistency testers for (MIP, ) within

the much larger class of Gomory functions.

The second barrier to a treatment of (MIP, ) by Gomory functions,

is that some value functions of problems (MIP, ) are not Gomory func-

tions. To this fact, we add the complication, as before, that some

value functions for (MIP, ) are Gomory functions, even though their

sum or maximum or round-up is not a value function for a problem (MIP, ),
D

Thus, on the one hand, there will be Gomory functions which are not

value functions, and on the other hand, value functions which are not

Gomory functions. The situation for value functions is thus even more

complex than for consistency testers.
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Despite these barriers, matters are simpler than might appear.

We proceed to account for the discrepancies by, first, addressing the

easier issue of consistency testers, and asking the question: is there

a class of constraints for which the Gomory functions are exactly the

class of consistency testers?

Observe that, if H(b) is a Gomory function and C is a rational

matrix, then G(v) = H(Cv) is a Gomory function. If H happens also to

be the consistency tester for (MIP, ), then G is the consistency tester

for this "premultiplied" mixed integer constraint set

:

(PMIP ) Ax + By = Cv; x,y >^ 0; x integer

This motivates a consideration of such constraint sets. They would

arise in practice, for example, when certain right-hand-sides of a

mixed integer program depend linearly on others. By Theorem 3.2,

consistency testers for (PMIP ) are all Gomory functions, so such

constraint sets are the smallest class of constraints which may pos-

sibly allow us to answer the question of the previous paragraph.

In the following, if S is the set of all r.h.s. v such that

(PMIP^) holds (for certain rational A, B, and C) , we call S a

finitely generated mixed monoid .

Theorem 6.1 : The Gomory functions provide exactly a class of consistency

testers for the constraint sets (PMIP ).

Moreover, the sets S for which there is a rational matrix A and

a finitely generated integer monoid M with
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(6.1) S = U {v|Av <_m}

meM

are exactly the finitely-generated mixed monoids

.

Proof : It suffices to show, in order, these implications: if S is a

finitely generated mixed monoid, its consistency tester is a Gomory

function; if G is a Gomory function, then there is a rational matrix A

and a finitely generated integer monoid M such that (6.1) holds, for

S = {v|G(v) <_0}; if (6.1) holds, then S is a finitely generated mixed

monoid.

Our previous discussion established the first implication, using

Theorem 3.2.

As to the second implication, let G be a Gomory function. Since

the second implication concerns G only throu^ the set S = {v|g(v) <_0},

by Lemma 5.2, we may assxime that G has the form

(6.2) G(v) = F(^X-'-v~',...,^X%'^)

where F(w) = F(w^,...,w ) is a monotone Gomory function.

We define H: R^ ^ R by

(6.3) H(w) = max {F(w), w^ - w. , i = l,...t}

H(w) <_ iff w is an integer vector and F(w) <_ 0. We apply Theorem

2.4 with F = 0, G = H to obtain an integer program such that H(w) <_

iff (IP ) is consistent. We let M be the monoid generated by the
w

columns of A and let A be the matrix with ith row X., 1 < i < t and
1 — —

(6.1) holds.
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As to the third implication, suppose that (6.1) holds. Then if

M is generated by m^ for j = 1,.., s we have:

(6.4) veS -<-> for some meM, Av ^ m

*-» there exist x,y >_ with x integer and

Av = i: m-^x. = I

j=l J ^

where I is the identity matrix. Thus, in (PMIP ) we may take

C = A, B = -I, and A = [m-"] (cols).

Q.E.D.

The finitely generated mixed monoids have certain interesting

closure properties, some of which follow directly from closure properties

of Gomory functions, and some of which imply new closure properties of

Gomory functions. We provide some examples in the immediately following

discussion and the next two results.

Let two finitely generated mixed monoids be defined by:

(6.5a) S^ = {v|Aj^x + B^y = C^v; x,y >_ 0; x integer}

(6.5b) $2 = {v|A2X + B2y = C2V; x,y 1 0; x integer}

for rational matrices A., B
.

, C. and i = 1,2. One can prove directly

that their intersection S^ f^ S^ is a mixed monoid; and one easily notes

that this corresponds to the fact that the maximum of two Gomory func-

tions is a Gomory function. It is also easy to prove directly that,

if a^ and a_ are rational scalars, then c-i S^ + c-S- is a finitely

generated mixed monoid.
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Proposition 6.2 ; If S is a finitely generated mixed monoid, and

veS is partitioned v = (u,w) , then the following is also a finitely

generated mixed monoid:

(6.6) S' = {u| for some w, we have (u,w)eS}.

Proof ; Let S = {v|Ax + By = Cv for some x,y ^ with x integer} where

A, B and C are rational matrices. Partition C = [DiE] conformally

with V = (u,w). Then we have;

(6.7) S' = {u|Ax + By - Ew- + Ew^ = Du for some

^tYt^-i >^2 — ^ with X integer}

From (6.7) S' is a finitely generated mixed monoid.

Corollary 6.3 ; If G(u,w) is a Gomory function, there is a Gomory

fimction H(u) such that:

(6.8) H(u) <_ -M. min G(u,w) <, 0.

w

Proof; This follows directly from Theorem 6,1 and Proposition 6,2,

Q,E,D.

Q.E.D.

We next turn our attention to the value function of (PMIP ) with

respect to a chosen criterion fimction ex + dy, i.e., functions of the

form z(v) = inf {ex + dyJAx + By = Cv for some x,y >_ with x integer},

where A, B and C are rational matrices. As usual, we assume throughout

our discussion that z(0) > -". (If 2(0) = -<=, then z(v) = -" whenever

(PMIP ) is consistent, and this case is therefore trivial).
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If G(z,v) is a Gomory function of the scalar z and vector v, we

Introduce the symbolism

(6.9) F(v) = yz(G(z.v) <. 0)

to define the function F(v) = the least value of z such that G(z,v) ^ 0.

If no z exists with G(z,v) <_ 0, we define F(v) = + " in (6.9).

Theorem 6.4 ; The value functions of constraints (PMIP ) are exactly

the functions F defined by (6.9). where G(z,v) is a Gomory fiaiction.

The function F is a value function of mixed integer program exactly

if G(z,v) is a consistency tester for such a program.

Proof ; First, we show that the value function of (PMIP ) has the

desired form (6,9). By Corollary 3.3, there is a Gomory function H

with

(6.10) pz(H(z,b) <_ 0) = inf {ex + dy|Ax + By = b;x,y > 0; x integer}

Hence uz(H(z,Cv) <_ 0) is the value function of (PMIP ), and as C is a

rational linear transformation, G(z,v) = H(z,Cv) is a Gomory function.

Now suppose that G(z,v) is a Gomory function. By Theorem 6.1,

there exists rational matrices A, B, C and a rational column vector Cq

with

(6.11) G(z,v) <_ <-> Ax + By = C-z + Cv for some x,y, >^ with x integer

From (6.11) we see at once that
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(6.12) F(v) = inf {z^ - zJAx + By - C^z^ + CqZ2 = Cv with

x,y,z^,z- >_ and x integer }

where F is defined by (6.9).

In the case of a mixed-integer program (i.e. , C = I = the identity

matrix, in (PMIP )), we found that (6.9) held for the function G given

as the consistency tester of the mixed-integer constraints (3.9). Con-

versely, in the case that G(z,v) is a consistency tester for a mixed-

integer constraint set, we can take Cq = e, = the first unit vector

in (6.14), and

(6.13) C =

I

in (6.11), where denotes a zero row and I an identity matrix. We

can con formally partition A and B thus:

(6.14) A =

A'

B =
d

B'

where c,d are rational row vectors and A', B' are rational matrices.

Again, (6.12) holds, hence

(6.15) F(v) = inf {zjz = ex + dy, A'x + B'y = v;x,y ^ 0; x integer}

= inf {ex + dyJA'x + B'y = v;x,y >_0; x integer}.

Thus, F is the value function of a mixed integer program.
Q.E.D,

Our next result provides another expression for p re-multiplied

value functions.
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Theorem 6.5 : The value function z(v) of a pre-multiplied constraint

set (PMIP ) is equal to the minimum of finitely many Gomory func-

tions where z(v) is defined, provided that z(0) > -". Furthermore,

the minimum of Gomory functions will be subadditive on R .

Proof ; By Theorem 6.4 we may asstjme that

(6.16) z(v) = yz(G(z,v) <. 0)

where G is a Gomory function. By Lemma 5.2, we may assume that

(6.17) G(z,v) = ifa^z+X^v^ o^z+X*^v )

where F: R -» R is a monotone Gomory function. By Theorem 2.1 we may

assume z(v) is finite for all v.

Define N={i|a. <0. N must be non-empty if z(0) < -". For all

v the integers n.(v) =
,
a,z(v) + ^^v,, ieN are well defined.

(l
Xj = largest integer ^ x)

.

For ieN, -n. (b) is also the optimal value of this pre-multiplied

constraint set, which has an integer objective function value:

min - (n - n )

(6.18) subject to (n -n~) - a^(zj^-Z2) <_ X v

Ax + By - Cq(z^-Z2) = Cv

X, y, z^, z^, n^, n^ >_

X integer; n , n. integer
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where A, B, C are rational matrices and Cq is a rational column vector,

chosen so that

(6.19) G(z,v) £ -M- Ax + By = CqZ + Cv

By Theorem 6.1, (6,19) holds for suitable A, B, C, and Cq.

By Theorem 3.2 the value function of (6.18) equals a Gomory func-

tion pre-multiplied by a matrix, where defined. Hence there is a

Gomory function F.(v) such that -n.(v) = F,(v) for all v.

We claim that if for all v G Q there is an ieN such that

n.(v) = a z(v) + X v. If this were not the case there would be a

z' < z(v) such that a.z' + X v <_ a.z(v) + Xv,l<^i<^t. The

monotonicity of F would imply that G(z',v) ^0, which would contradict

(6.16).

Since the definition of n.(v) implies n.(v) <_a z(v) + X v for

all ieN, it follows that

(6.20) z(v) = min (- r^)(X v - n (v))

ieN i

wherever z(v) is well defined. Since the a. < and -n.(v) = F.(v)

we have the desired representation.

From prop 2.7, z is subadditive, hence by (6.20) the minimum on the

right is subadditive for all v.

Q.E.D.
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Theorem 6.4 provides one characterization for value functions of

both premultiplied and ordinary mixed integer programs, via the algorithmic

procedure of Section 5 for identifying consistency tests for mixed-integer

programs. In the remainder of this section, we seek other inductive

characterizations of pre-multiplied value functions and derive consequences

of these characterizations.

The infimal convolution [16] of a finite set f,, ..., f^ of func-

tions, denoted infcon{f-, ..., f }, is the function f defined by

(6.21) f(v) = lnf{fj^(v-'-) + ... + f^(v'^)iv- + ... + v*^ = v}

It is possible to have f (v) = -« even if all f . are finite valued. One

easily proves that only the infimal convolution of functions two-at-a-

time need be defined. Indeed, if we set

(6.22a) §1 = fi

(6.22b) g^^j^
= infcon{f^^j^.g^} for 1 <. i < t-1

we have

(6.23) g^ = infcon{fj^, ..., f^}

To handle occurrences of -«> which can arise due to infimal convolu-

tion, we shall adhere to these conventions, whenever r S R U {-»}:

(6.24) (-»)t = r«(-«) = -« if r > 0; (-<«')«0 = 0«(-«') = 0;

r + (-") = (-") + r = -".

The mixed Gomory functions is the class of functions inductively

defined by these clauses:
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(6.25a) All linear functions Av with A £ Q are mixed Gomory;

(6.25b) If F^ and F_ are mixed Gomory and a and 6 are non-negative

rationals, then aF^ + BF_ is mixed Gomory;

(6.25c) If F^ and F- are mixed Gomory, then max{F^ ,F„} is mixed Gomory;

(6.25d) If F is mixed Gomory, then F is mixed Gomory;

(6.25e) If F, and F2 are mixed GomoT^r, then infcon{F, ,F2} is mixed Gomory.

Note that the mixed Gomory functions take values in R U {-"}, This

class of functions can alternatively be defined, as inductively obtained

by closing the class of Gomory functions under infimal convolution.

We next state an alternative characterization of the value functions

of pre-multiplied constraint sets.

Theorem 6.6 ; The class of value functions of pre-multiplied constraint

sets. Including the value function which is identically -= where defined,

are exactly the class of mixed Gomory functions restricted to the domain

of definition of the value function. Moreover, for any mixed Gomory func-

tion F with F(0) > -», there is a premultiplied constraint set defined

for all r.h.s. v, for which F is the value function.

Our proof of Theorem 6.6 will proceed by several lemmata, which

also have some independent interest.

Lemma 6.7 : Suppose that z^(b) and Z2(b) are pre-multiplied value functions

(where one or both functions may be identically -«> where defined).

Then the following functions are pre-multiplied value fxjnctions (in-

cluding possibly the -" value function):
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a) az^ + 3z_ when a,g >_ are rational scalar;

b) max{z,,Z2};

c) Z^

d) lnfcon{z, jZ^} ^

Proof : For notatlonal purposes, set:

(6.26) z^(b) = lnf{c^x + dSU^x + B^ = cH; x,y >. 0; x integer}; i=l,2;

where A , B , C are rational matrices and c and d are rational vectors.

All the above results a) to d) are proven by first writing these

constraints:

(6.27) A-'-x + B-'-y - C^S.^ + C-^-y"'" = 0;

2 2 2 2 2 2
A u + B V - C B + C Y = 0;

12 12
x,u,y,v,6 ,e ,Y ,Y lO; x,u integer

and then appending some further constraints and an objective function z.112 2
For (a), we append the constraints z-acx-ady-6cu-6dv=0;

3 - Y = b, and 8 - y = b.

For (b), we append the two constraints: z-cx-dy^O,
2 2 11 2 2

z - ex - d y >_ 0, e - Y = b, and 6 - y = b.

2 2 11
For c), we append the constraints: 3 = y = and z >_ c x + d y;

and we also require that z be an integer variable,112 2
For d) , we append the constraints z-cx-dy-cu-dv=0

and B-"- -
Y""" + 3^ - Y^ = b.

Since all ri^t-hand-sides are, in all cases a) to d), either zero or

a component of b, we do have a pre-multiplied constraint set.
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We leave it to the reader to check that the constraint sets in a)

to d) define the value functions desired.

Q.E.D.

Lemma 6.8 ; Suppose that the function

(6.28) g(v) = mln f (v)

i=l t

is subadditive. Then

(6.29) g = infcon{f^, ..., f^.}.

Proof : Let i = 1, ..., t. Using (6.21) with v = v and v-" = for

weii±f we find that f(v) f.f.(v). Since i = 1, .... t is arbitrary,

have f(v) ^ g(v) for all v, where f = infcon{f- , ...,f }.

Now suppose that g is subadditive. Let v , ..., v be chosen

arbitrarily so that v + ... + v = v. We have

(6.30) g(v) < g(v^) + ... + g(v'') < f^(v^) + ... + f^(v^).

Taking the infimum on the right in (6.28), we obtain g(v) <_ f(v) where

f = infcon{f^ f }, using (6.21). Hence g(v) = f(v) for

all v.

Q.E.D.

Proof of Theorem 6.6 ;

Let z(v) be a value function of a pre-multipled constraint set.

If z(0) = -0°, then z(v) = -<» whenever z(v) is defined. Thus, on its

domain of definition, z(v) equals the mixed Gomory function

1 2
I 1 2 "I 1

infcon{F^(v ) + F- (v )|v + v = v} where F^ (v") = Z v. and

2 2 ^

F2(v ) = -2 E v. (as the latter infimal convolution is identically -=°)
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If z(0) > -<», Theorem 6.5 and Lemma 6.8 provide the desired resxilt,

since by (6.25e) the infimal convolution of Gomory fiaictions is a mixed

Gomory function, and value functions are subadditive.

For the converse, suppose that F is a mixed Gomory function. If

F(v) = Av, F is the value function of the linear program

(6.31) Inf XCy-'- - y^)

subject to y - y = V

y\y^ 10

For the cases (6.25b) through (6.25e) in the definition of a mixed Gomory

function. Lemma 6.7 applies. Moreover, if F(0) > -", F is the value

function of a mixed integer constraint set with z(0) > -". Hence

z(v) > -" for all V where z (v) is defined. However, F is everywhere

defined, since <*> > F(v) = z(v) > -<>=. The first strict inequality ob-

tains since infimal convolution cannot give a +« value when applied

to functions with values in R U {-"}.

Q.E.D.

Theorem 6.9 ; The class of mixed Gomory functions F with F(0) > -" is

identical with the class of minima of a finite set of Gomory functions,

such that the minimum is subadditive.

Proof : If F is a mixed Gomory function with F(0) > -<*>, by Theorem 6.6

it is the value function of an everywhere consistent pre-multiplied con-

straint set. Then Theorem 6.5 shows that F is a minimum of finitely

many Gomory functions. Moreover, F is subadditive, since F(v) = G(Cv)

for a rational maxtrix C, where G is the value function of a mixed

integer program, and G is subadditive by proposition 2.7.
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For the converse, let a subadditive minimum of Gomory functions be

given. By Lemma 6.8, this minimum is also the infimal convolution of

the same Gomory functions. By (6.25e), it is also mixed Gomory function.

Q.E.D.

Although mixed Gomory fimctions is a class of functions which prop-

erly contains the Gomory functions, this class does not extend the

capability to test for consistency, as our next result shows (compare

with Theorem 6.1).

Theorem 6.10 : The Gomory functions provide exactly a class of consis-

tency tests for constraint sets (PMIP ).

Proof : By Theorem 6.1, every constraint set (PMIP ) has a consistency

tester which is a Gomory, and hence a mixed Gomory, function.

For the converse, let F be a mixed Gomory function. By Theorem 6.5,

these are rational matrices A, B, C and vectors c and d such that

(6.32) F(v) = inf{cx + dy|Ax + By = Cv; x,y >_ 0; x integer}

Since the infimal value of a mixed-integer program in rationals is at-

tained [15], we have:

(6.33) F(v) <_ -*-> there are x,y >_ with x integer and Ax + By = Cv,

ex + dy <_

The constraint set on the right in (6.33) is a pre-multiplied constraint

set of the form (PMIP ).
v

Q.E.D.
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We are now in a position to sharpen Theorem 3.2 for the case d = 0.

Theorem 6 . 11 ; The class of value functions z(v) of pre-multiplied con-

straint sets with z(0) > -" and with c integer and d = in the criterion

function, are exactly the class of Gomory functions F, such that F(v)

is integer for all v, vrtien the latter functions are restricted to the

domain of definition of z(v). Moreover, for any Gomory function F,

such that F(v) is integer for all v, there is a premultiplied constraint

set, having criterion ex + dy with c integer and d = 0, which is con-

sistent for all r.h.s. v, and for which F is the value function.

Proof ; For a pre-multiplied constraint set of the type described, let

its r.h.s. configuration Cv be replaced by a vector b. By Theorem 3.2

for the case d = 0, there is a Gomory function G(b) which provides the

optimal value of the resulting mixed integer program, and note that

z(v) = G(Cv) on its domain of definition. Moreover, as c is an integer

vector, G(b) is integral for all consistent r.h.s. v. The desired Gomory

function is therefore F(v) = G(Cv) .

For the converse, suppose that F is a Gomory function such that

F(v) is integer for all v. Then by Theorem 6.6, we have (6.32). By

the integrality property of F:

(6.34) F(v) = inf{z^ - Z2IAX + By = Cv; z, - Z2 + ex - dy = 0;

,y,z^,Z2 >.0; -x-^z^yZ^ integer}

The criterion function (6.34) has integral coefficients for the integer

variables, and zero coefficients for the remaining variables.

Q.E.D.
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Corollary 6.12 : For any e > and any mixed Gamory function G with

G(0) > ", there is a Gomory function F which approximates G uniformly to

within £, from above:

(6.35) <. F(v) - G(v) < e for all v

Proof : Let D >_ 1 be an Integer such that e > —. We have that

H(v) = DG(v) is Integer valued for all v, and it is a mixed Gomory

function with H(0) > -«. By Theorem 6.6, there is a pre-multiplled

constraint set, defined for all r.h.s. v, for which H is the value func-

tion. By Theorem 6.11, H is actually a Gomory function. Hence

F(v) = H(v)/D is a Gomory function, and we have (6.35).

Q.E.D.

We next provide a result which may be interpreted as a converse

to Theorem 6.6.

Theorem 6.13 ; Let F and G be mixed Gomory functions. Then there is a

pre-multiplled constraint set (PMIP ) for which G is a consistency

tester, and an objective function ex + dy such that F(v) is the optimal

value of the pre-multipled program whenever G(v) < 0.

Proof : By Theorems 6.6, and 6.10, there are rational matrices A., B. ,

C, (1=1,2) and rational c and d such that

(6.36) F(v) = inf{cx + dyJA x + By = C v; x,y >_ 0; x integer}

2 2 2
(6.37) G(v) <_ -^ there are x,y >_ with x integer and Ax + By = Cv

The desired pre-multlpled optimization problem is then
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(6.38) inf ex + dy

subject to Ax+By=Cv
.2 _, J. J.Au + Bw=Cv

x,y,u,v >_

x,u integer

Q.E.D.

We conclude with a result about pre-multiplied constraint sets in

the form (6.1), v?hich provides an alternate (but not directly computa-

tional) perspective on when a pre-multiplied constraint set is actually

that of a mixed-integer program.

Theorem 6.14 ; A set S is exactly the set of feasible r.h.s. b of a mixed

integer program (MIP, ), if and only if there exists a finitely generated

integer monoid M and a matrix of rationals A which, both satisfy (6.1),

and are such that the equality system

(6.39) Av = m

has a solution for every m € M.

Proof : Suppose that A,B are rational matrices with

(6.40) v£S-«-^v = Ax + By for some x,y ^ with x integer

Let A , .... X be a finite set of generators for the cone {X ^0|XB <_0}.

Without loss of generality the X are integer vectors such that X A

is integer for i = 1, ..., t. As in Theorem 3.2,
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(6.41) V S *-> for some x >_ integer,

X Ax >_ X V for i = 1, ..., t

-«-^ for some m ^ M,

m >_ Av

where M is the integral monoid generated by the X A and where A = [X ]

(rows )

.

For the converse, suppose that (6.1) holds and that (6.39) is

solvable for all m S M. Observe that there is a rational matrix T with

this ("pseudo-inverse") property, which can easily be constructed from

Smith Normal Form:

(6.42) Av = d is solvable -> A(rd) = d.

Let m , ..., m be a finite basis for M and let v , ..., v be a

finite rational basis for the cone {v|Av <_0}. Then

(6.43) V € S -*-»• for some m € M, Av £ m

--* for some m G M, Av <_ ATm

«-> for some m € M, A(v - Tm) <_

*-* for some y^, ..., y, ^0, and some m e M,

s -^

V - Tm = Z y.v.

j=l J J

-*-» for some integer x^ , . . . , x > and^ 1» ' u —

scalars y^ , ..., y. ^0,

" k ^ i
V = E (Fm )x^ + E v^y .

k=l ^ j=l J

We have thus constructed a mixed integer program for which S is the set

of feasible r.h.s.

Q.E.D.
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