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Approximating the 2-Interval Pattern problem

Maxime Crochemore⋆, Danny Hermelin⋆⋆,
Gad M. Landau⋆ ⋆ ⋆, and Stéphane Vialette†

Abstract. We address the problem of approximating the 2-Interval

Pattern problem over its various models and restrictions. This problem,
which is motivated by RNA secondary structure prediction, asks to find
a maximum cardinality subset of a 2-interval set with respect to some
prespecified model. For each such model, we give varying approximation
quality depending on the different possible restrictions imposed on the
input 2-interval set.

1 Introduction

In the context of RNA secondary structure prediction, Vialette [11] proposed
a geometric representation of a helix in an RNA single stranded molecule by
means of a natural generalization of an interval, namely a 2-interval. A 2-interval
is the union of two disjoint intervals defined over a single line. In [11], intervals
and 2-intervals represent respectively sequences of contiguous bases and possible
pairings between such sequences in the RNA secondary structure. The goal is
to find a maximum disjoint subset of the given set of 2-intervals, restricted to
prespecified geometrical constrains, so as to serve as a valid approximation of
the actual secondary structure of the given RNA.

Throughout the paper, a 2-interval is denoted by D = (I, J) where I and J

are two (closed) intervals defined over a single line such that I < J , i.e., I is
completely to the left of J . Two 2-intervals D1 = (I1, J1) and D2 = (I2, J2) are
disjoint, if both 2-intervals share no common point, i.e., (I1∪J1)∩ (I2∪J2) = ∅.
For such disjoint pairs of 2-intervals, three natural binary relations are of special
interest.

Definition 1 (Relations between 2-intervals). Let D1 = (I1, J1) and D2 =
(I2, J2) be two disjoint 2-intervals. Then
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– D1 < D2 (D1 precedes D2), if I1 < J1 < I2 < J2.
– D1 ⊏ D2 (D1 is nested in D2), if I2 < I1 < J1 < J2.
– D1 ≬ D2 (D1 crosses D2), if I1 < I2 < J1 < J2.

A pair of 2-intervals D1 and D2 is R-comparable for some R ∈ {<,⊏, ≬}, if
either (D1, D2) ∈ R or (D2, D1) ∈ R. A set of 2-intervals D is R-comparable
for some R ⊆ {<,⊏, ≬}, R 6= ∅, if any pair of distinct 2-intervals in D is R-
comparable for some R ∈ R. The non-empty subset R is called a model. Note
that any two disjoint 2-intervals are R-comparable for some R ∈ {<,⊏, ≬}.
Equivalently, any pairwise disjoint subset of D is {<,⊏, ≬}-comparable. In [3,
11], the 2-Interval Pattern problem is defined as follows:

Definition 2 (The 2-Interval Pattern problem). Let D be a set of 2-
intervals and let R ⊆ {<,⊏, ≬}, R 6= ∅, be a given model. The 2-Interval

Pattern problem asks to find a maximum cardinality R-comparable subset of
D.

By the above definition, any solution for the 2-Interval Pattern problem
over a model R corresponds to a secondary structure constrained by R. Let D be
a set of 2-intervals and let S(D) = {I, J : D = (I, J) ∈ D} be the set of intervals
involved in D. Several biologically motivated restrictions on D and S(D) are of
interest.
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Fig. 1. Restrictions for 2-interval sets. Intervals are represented by dark lines or circles
and 2-intervals are represented by a thin line connecting two intervals. (a) A point
2-interval set where D1 ≬ D2 and D1 < D3. D2 and D3 are not disjoint and thus are
not comparable by any relation. (b) A unitary 2-interval set where D1 ≬ D2, D1 < D3,
and D2 < D3. (c) A balanced 2-interval set where D3 ⊏ D2. The entire set is {<, ⊏}-
comparable. (d) An unlimited {<, ⊏, ≬}-comparable 2-interval set.

Definition 3. Let D be a set of 2-intervals and let S(D) be the set of intervals
involved in D.

– D is a point 2-interval set if all intervals in S(D) are pairwise disjoint (note
that in this case, all intervals in S(D) may be considered as points).



– D is a unitary 2-interval set if S(D) consists of intervals of unit length.
– D is a balanced 2-interval set if any 2-interval in D is a pair of two intervals

of equal length.
– D is an unlimited 2-interval set if none of the above restrictions are imposed.

The left part of Table 1 depicts the current state of the art for the 2-Interval

Pattern problem in terms of exact algorithms. In [11], the 2-Interval Pat-

tern problem over the {⊏, ≬} and {<,⊏, ≬} models is proved to be NP-hard
even for unitary 2-interval sets. The proof for the {<,⊏, ≬} model is obtained
as a direct consequence of the APX-hardness result for the Maximum Inde-

pendent Set problem for t-interval graphs given in [2]. The results in [2] also
provide approximation algorithms for this model. In [3], an NP-hardness result
for the {<, ≬} model restricted to unitary 2-interval sets is given. The time com-
plexity for this same model when the input is restricted to point 2-interval sets
is still unknown [11, 3]. These results imply that in practical terms, secondary
structures containing pseudoknots are hard to predict in our suggested math-
ematical model. This is consistent with previously known NP-hardness results
for RNA secondary structures prediction in other models considering arbitrary
pseudoknots [1, 8, 9].

Classical complexity

Model Unl. Bal. Uni. Pnt.

{<, ⊏, ≬} NP-C [11, 2] O(n
√

n) [11]

{⊏, ≬} NP-C [11] O(n2√n) [3]

{<, ≬} NP-C [3] ?

{<, ⊏} O(n2) [11]

{≬} O(n2 log n) [11]

{⊏} O(n log n) [3]

{<} O(n log n) [11]

Approximation factors

Model Unl. Bal. Uni. Pnt.

{<, ⊏, ≬} (Section 2) 4a 4b 3c –

{⊏, ≬} (Section 3) 4a 4d 3e –

{<, ≬} (Section 4) 6b 5b 3c 2c

a Polynomial-time [2].
b O(n2) time algorithm.
c O(n lg n) time algorithm [2].
d O(n3) time algorithm.
e O(n2 lg n) time algorithm.

Table 1. The 2-Interval Pattern problem over it’s various models and restrictions.
Left part: Classical complexity results for the 2-Interval Pattern problem, where
n = |D|. Right part: The approximation factors we obtain in this paper.

In this paper we focus on the three NP-hard models of the 2-Interval

Pattern problem. More specifically, we design constant factor approximation
algorithms for the {<, ⊏, ≬}, {⊏, ≬}, and {<, ≬} models. The approximation fac-
tors obtained by all our algorithms vary depending on the restriction imposed on
the input set of 2-intervals (see Table 1). Furthermore we suggest a new restric-
tion, namely balanced 2-interval sets. By definition, unitary 2-interval sets are
also balanced but the converse is not necessarily true. Consequently, the above
mentioned NP-hardness results also hold for the balanced case, and moreover,
balanced 2-interval sets introduce a new combinatorial object which requires



particular consideration. Furthermore, the balanced restriction is very natural
in the biological setting of the problem.

This paper is organized as follows. In Section 2, we consider the 2-Interval

Pattern problem over the general model, i.e., the {<, ⊏, ≬} model. We describe
in Section 3 an approximation algorithm for the problem over the {⊏, ≬} model.
Finally, in Section 4, the {<, ≬} model is considered, and different approximation
algorithms are introduced for all possible restrictions imposed on the input.

2 Approximation algorithms for the {<, ⊏, ≬} model.

We begin by considering the 2-Interval Pattern problem over the general
model, i.e., the {<,⊏, ≬} model. Recall that in this case, given an input set of
2-intervals D, the problem asks to find a maximum {<, ⊏, ≬}-comparable subset
of D, which is equivalent to finding a maximum pairwise disjoint subset of D.

For point 2-intervals sets, 2-Interval Pattern can be solved in polyno-
mial time by maximum matching [11]. For unitary 2-interval sets, the problem
is already APX-hard [2], and therefore is APX-hard also for balanced and un-
limited 2-interval sets. Furthermore, the results in [2] also yield approximation
algorithms for our case which directly imply the following.

Proposition 1 ([2]). The 2-Interval Pattern problem over the {<, ⊏, ≬}
model can be approximated within a factor of 4 when restricted to unlimited
2-interval sets, and a factor of 3 when restricted to unitary interval sets.

The algorithm given in [2] that solves the case of unitary 2-interval sets can
be executed in O(n lg n) time, where n is the size of the input set of 2-intervals.
However, the algorithm for unlimited 2-interval sets uses linear programming
techniques, which in practice are very often too time costly. Clearly, balanced
2-interval sets lie between the two cases and are arguably the most biologi-
cally important case. In the rest of this section we describe a quadratic time
4-approximation algorithm for balanced 2-intervals sets.

Given any balanced 2-interval set D, let the smallest 2-interval in D be the 2-
interval with the shortest left (or right, as they are both of equal length) interval
among all left intervals involved in D. The algorithm we suggest is a simple
greedy strategy that repeatedly picks the smallest 2-interval in the input, adds
it to the solution, and omits all other 2-intervals in the input which intersect it.
A schematic description of this algorithm, which we call Bal-{<,⊏, ≬}-Approx,
is given in Figure 2.

Lemma 1. Algorithm Bal-{<, ⊏, ≬}-Approx achieves an approximation factor
guarantee of 4 for the 2-Interval Pattern problem over the general model,
restricted to balanced 2-interval sets.

Proof. Let D be the set of remaining 2-intervals at any arbitrary iteration of Bal-
{<,⊏, ≬}-Approx, and let D0 ∈ D be the smallest 2-interval at this iteration.
Since D0 is the smallest 2-interval in D, no interval involved in D can be properly



Algorithm Bal-{<, ⊏, ≬}-Approx(D)

Data : A set of balanced 2-intervals D.
Result : A {<, ⊏, ≬}-comparable subset of D.
begin

while D 6= ∅ do
1. Let D0 be the smallest 2-interval in D.
2. Add D0 to the solution.
3. Omit D0 and all 2-intervals intersecting D0 from D.

end
return the 2-intervals chosen for the solution.

end

Fig. 2. A schematic description of algorithm Bal-{<, ⊏, ≬}-Approx.

contained in the left or right interval of D0. Thus, there can be at most four
disjoint intervals involved in D, which intersect D0 at this given iteration. It
follows that at this iteration, at most four 2-intervals in the optimal solution
are omitted from D. Applying this argument for all iterations of the algorithm
yields the desired approximation factor guarantee. ⊓⊔

Time complexity. Given an input set of 2-intervals D of size n, algorithm Bal-
{<,⊏, ≬}-Approx can be implemented straightforwardly to run in O(n2) time.

3 An approximation algorithm for the {⊏, ≬} model.

We next consider the 2-Interval Pattern problem over the {⊏, ≬} model.
Recall that the 2-Interval Pattern problem over this model is NP-complete
even for unitary 2-interval sets [11]. In the following we introduce a single algo-
rithm which achieves different constant approximation factors for unitary, bal-
anced and unlimited 2-interval sets. More specifically, we describe an algorithm
which uses the algorithms described in the previous section as sub-procedures,
choosing the specific algorithm according to the restriction imposed on the input.
Our algorithm is a direct generalization of the algorithm devised in [3] for the 2-
Interval Pattern problem over the {⊏, ≬} model, restricted to point 2-interval
sets. As in [3], the notion of interval graphs is used extensively throughout the
section. An interval graph is an intersection graph of a finite family of intervals,
all defined over a single line [7, 10].

Given a 2-interval D = (I, J), let C(D) denote the smallest interval that cov-
ers D, i.e., C(D) = [l(I) : r(J)] where l(I) and r(J) are the left and right end-
points of I and J , respectively. Blin et al. [3] called C(D) the covering interval of
D. They also observed that any pair of disjoint 2-intervals are {⊏, ≬}-comparable
if and only if their corresponding covering intervals intersect. Thus, given a set
of 2-intervals D, and the set C(D) of all covering intervals of 2-intervals in D,
any {⊏, ≬}-comparable subset D′ ⊆ D corresponds to a pairwise intersecting
subset of C′ ⊆ C(D). However, the converse is not true as a pair of non-disjoint



2-intervals have corresponding intersecting covering intervals as well. Hence, a
pairwise intersecting subset of C(D) can contain corresponding 2-intervals which
are non-disjoint in D.

Let D be the input set of 2-intervals and C(D) be the set of covering intervals
of all 2-intervals in D. First, we construct the interval graph ΩC(D) of C(D).
Since ΩC(D) is an interval graph, it has at most |V (ΩC(D))| = |D| maximal (in
containment order) cliques, and all these maximal cliques can be computed in
polynomial time [6]. Note that any pair of 2-intervals with covering intervals in
a maximal clique, are either nesting or crossing (but not preceding), or they are
non-disjoint. Now, let OPT denote a maximum cardinality {⊏, ≬}-comparable
subset of D and let C(OPT ) be the set of covering intervals of OPT . The sub-
graph of ΩC(D) which corresponds to C(OPT ) is a clique, and is thus a subset of
a maximal clique in ΩC(D). Furthermore, any 2-interval with a covering interval
in this clique and not in OPT is necessarily non-disjoint with at least one of the
2-intervals in OPT .

Observation 1. Let OPT denote the maximum {⊏, ≬}-comparable subset of
D. Then OPT is a maximum pairwise disjoint subset of a set of 2-intervals D′,
OPT ⊆ D′ ⊆ D, such that C(D′), the covering intervals of OPT , corresponds to
a maximal clique in ΩC(D).

Given the 2-intervals which corresponds to a maximal clique in ΩC(D), one
can use the algorithms in Section 2 to find an approximation of the maximum
pairwise disjoint subset of these 2-intervals. A detailed schematic description of
our algorithm, which is called {⊏, ≬}-Approx, is given in Figure 3.

Algorithm {⊏, ≬}-Approx(D)

Data : A set of 2-intervals D.
Result : A {⊏, ≬}-comparable subset of D.
begin

1. Construct C(D), the set of covering intervals of all 2-intervals in D.
2. Construct ΩC(D), the interval graph of C(D).
3. Compute all maximal cliques of ΩC(D) using [6].
4. foreach maximal clique C of ΩC(D) do

(a) Compute DC ⊆ D, the 2-intervals with covering intervals in C.
(b) Approximate the maximum pairwise disjoint subset of DC , using
the algorithms described in the previous section.

end
return the largest pairwise disjoint subset found in step 4(b).

end

Fig. 3. A schematic description of algorithm {⊏, ≬}-Approx.

Lemma 2. Algorithm {⊏, ≬}-Approx is a 4-approximation (3-approximation)
algorithm for the 2-Interval Pattern problem for unlimited (unitary) 2-
interval sets.



Proof. Immediate from the above discussion and from Proposition 1 and
Lemma 1. ⊓⊔

Time complexity. The number of sub-procedure invocations in step 4(b) of {⊏
, ≬}-Approx is bounded by O(n) where n denotes the size of the input set. Also,
generating all maximal cliques of ΩC(D) can be done in O(n2) time. Hence, we
have a super-quadratic running time of O(n2 lg n) for unitary 2-interval sets and
a O(n3) running time for balanced 2-interval sets. For unlimited 2-interval sets,
the running time of {⊏, ≬}-Approx is polynomial [2].

4 Approximation algorithms for the {<, ≬} model.

We now turn to considering the 2-Interval Pattern problem over the {<
, ≬} model. Recall that the problem is known to be NP-hard for unitary 2-
interval sets, while for point 2-interval sets the problem is not known to be
in P [3]. Thus, in the following section we consider all possible restrictions for
the {<, ≬} model. More specifically, we design a 3-approximation algorithm for
unitary 2-interval sets which is also a 2-approximation algorithm for point 2-
interval sets. We later slightly modify this algorithm to obtain a 5-approximation
algorithm for balanced 2-interval sets. Finally, we introduce a different more
complex modification which yields a 6-approximation algorithm for unlimited
2-interval sets.

Throughout the section, we will use the notion of trapezoid graph [4, 5].
Consider two intervals, I ′ and J ′, defined over two distinct horizontal lines. The
trapezoid T = (I ′, J ′) is the convex set of points bounded by I ′ and J ′, and the
two arcs connecting the right and left endpoints of I ′ and J ′. We call I ′ and J ′

the bottom interval and top interval of T respectively. A family of trapezoids
is a finite set of trapezoids which are all defined over the same two horizontal
lines. The above definitions imply, that two distinct trapezoids T1 = (I ′1, J

′
1) and

T2 = (I ′2, J
′
2) in a family of trapezoids are disjoint, i.e., they contain no common

point, if and only if (I ′1 < I ′2 and J ′
1 < J ′

2) or (I ′2 < I ′1 and J ′
2 < J ′

1) holds. If T1

and T2 are indeed disjoint, then one trapezoid is completely to left of the other,
say for instance T1, and this is denoted by T1 < T2. Finally, a trapezoid graph
is an intersection graph of a family of trapezoids.

4.1 Point and unitary 2-interval sets.

We begin the discussion in this section by first describing an approximation
algorithm for point and unitary 2-interval sets. We call this initial algorithm
{<, ≬}-Approx. The general outline of {<, ≬}-Approx consists of the following
stages: First T (D), a family of trapezoids representing each 2-interval in D is
constructed. Next, the maximum pairwise disjoint subset of T (D) is computed
using the algorithm proposed in [5]. Finally, trapezoids in this subset which
correspond to non-disjoint 2-intervals in D are omitted, and the filtered solution
is outputted.



Definition 4 (Corresponding trapezoid family). Let D be a set of 2-
intervals, and let α and β be two distinct horizontal lines such that α is below β.
The corresponding trapezoid family of D, denoted T (D), is defined as the family
containing a single trapezoid T = (I ′, J ′) ∈ D for each 2-interval D = (I, J) ∈ D,
where I ′ is defined over α, J ′ is defined over β, and I ′ = I and J = J ′.
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Fig. 4. {<, ≬}-comparable 2-intervals correspond to disjoint trapezoids but the converse
is not necessarily true.

Let D be a set of 2-intervals and let T (D) be the corresponding trapezoid
family of D. It is not difficult to see that {<, ≬}-comparable 2-intervals in D
correspond to disjoint trapezoids in T (D), while {⊏}-comparable 2-intervals in
D correspond to intersecting trapezoids in T (D) (see Figure 4).

Observation 2. Any two disjoint 2-intervals in D are {<, ≬}-comparable if and
only if their corresponding trapezoids in T (D) are disjoint.

Felsner et al. [5] presented an O(n lg n) algorithm for finding a maximum dis-
joint subset in a family of n trapezoids. Unfortunately, this alone does not suffice
in our case since there may be disjoint trapezoids in T (D) which correspond to
non-disjoint 2-intervals in D. (see Figure 4).

Definition 5 (Clashing intervals). Let I ′ = [l(I ′), r(I ′)] and J ′ =
[l(J ′), r(J ′)] be two distinct intervals defined over two distinct horizontal lines
such that l(I ′) ≤ l(J ′). The two intervals I ′ and J ′ clash, if either l(I ′) ≤ l(J ′) ≤
r(J ′) ≤ r(I ′) or l(I ′) ≤ l(J ′) ≤ r(I ′) ≤ r(J ′).

Definition 6 (Clashing trapezoids). Let T1 = (I ′1, J
′
1) and T2 = (I ′2, J

′
2) be

two distinct trapezoids in a family of trapezoids. The two trapezoids T1 and T2

clash, if either I ′1 and J ′
2 clash or I ′2 and J ′

1 clash.

Observation 3. Any pair of 2-intervals in D are {<, ≬}-comparable if and only
if their corresponding trapezoids in T (D) are disjoint and do not clash.

Observation 3 is the heart of algorithm {<, ≬}-Approx. Note that the number
of maximal (in containment order) pairwise disjoint subsets of T (D) can be
exponential, so exhaustively searching through all such subsets for a maximum



non-clashing subset is unfeasible. Let T ′ be the maximum pairwise disjoint subset
of T (D). Since the optimal solution OPT ⊆ D also corresponds to a pairwise
disjoint non-clashing subset of trapezoids, we must have |OPT | ≤ |T ′|. Next we
show how to obtain a a pairwise non-clashing subset of T ′ which is no more
than a constant factor smaller then OPT , in case D is either a point or unitary
2-interval set. Namely, we find a subset of T ′ which is an approximation of OPT .

Consider the leftmost trapezoid T0 of T ′ and let D0 be its corresponding
2-interval in D. By our definition of a 2-interval and of T (D), any trapezoid in
T (D), has a bottom interval which is completely to the left of its top interval.
Thus, T0 can only clash with trapezoids on its right in T ′. Now, if D is a point 2-
interval set, then all 2-intervals with left intervals intersecting the right interval of
D0 have the same left interval, and as T ′ is pairwise disjoint, at most one of these
has a corresponding trapezoid in T ′. Furthermore, if D is a unitary 2-interval
set, intersecting intervals involved in D must overlap. Thus, any trapezoid in T ′

clashing with T0 corresponds to a 2-interval with a left interval which contains
either endpoints, but not both, of the right interval of D0. Since T ′ is pairwise
disjoint, there can be at most two such trapezoids in T ′.

Algorithm {<, ≬}-Approx first computes T ′ the maximum pairwise disjoint
subset of T (D), and then repeatedly adds the leftmost trapezoids in T ′ to the
solution while omitting all trapezoids which clash with this trapezoid in T ′. A
schematic description of algorithm {<, ≬}-Approx is given in Figure 5.

Algorithm {<, ≬}-Approx(D)

Data : A set of 2-intervals D.
Result : A {<, ≬}-comparable subset of D.
begin

1. Construct T (D), the corresponding trapezoid set of D.
2. Compute T ′ ⊆ T (D), the maximum pairwise disjoint subset of T (D) [5].
3. while T ′ 6= ∅ do

(a) Let T0 be the leftmost trapezoid in T ′.
(b) Add T0 to the solution.
(c) Omit T0 and all trapezoids clashing with T0 from T ′.

end
return the set of 2-intervals corresponding to the trapezoids in the solution.

end

Fig. 5. A schematic description of algorithm {<, ≬}-Approx.

Lemma 3. Algorithm {<, ≬}-Approx is a 3-approximation algorithm (2-
approximation algorithm) for the 2-Interval Pattern problem over the {<, ≬}
model restricted to unitary 2-interval sets (point 2-interval sets).

Time complexity. Let |D| = n. The family of trapezoids T (D) can be constructed
in O(n) time, and according to [5], T ′ ⊆ T (D) can be computed in O(n lg n)
time. In addition, each iteration in step 3 of the algorithm can easily be computed



by scanning T ′ a constant number of times. As there are O(n) iterations all
together, it follows that step 3, and consequently algorithm {<, ≬}-Approx, can
be computed in O(n2) time. In fact, if we sort all the right endpoints of intervals
involved in D in an O(n lg n) preprocessing stage, we can compute each iteration
of step 3 in linear time with respect to the number of trapezoids omitted. As
there is only a constant number of such trapezoids in each iteration, step 3 can
be computed in O(n) time. This yields a total of O(n lg n) running time.

4.2 Balanced 2-interval sets.

We next consider balanced 2-interval sets. We show that a slight modification to
algorithm {<, ≬}-Approx yields a 5-approximation algorithm for this case. We
call this new algorithm Bal-{<, ≬}-Approx. Algorithm Bal-{<, ≬}-Approx differs
from {<, ≬}-Approx only by the fact that at each iteration of step 3, instead of
choosing the leftmost trapezoid in T ′, the smallest trapezoid (i.e., the trapezoid
corresponding to the smallest 2-interval) amongst all trapezoids in T ′ is chosen
for the solution.

Lemma 4. Algorithm Bal-{<, ≬}-Approx is a 5-approximation factor the 2-
Interval Pattern problem over the {<, ≬} model restricted to balanced 2-
interval sets.

Proof. Consider T ′ at an arbitrary iteration of step 3 in Bal-{<, ≬}-Approx, and
let T0 be the smallest trapezoid of T ′ at this iteration. Also let OPT denote the
maximum {<, ≬}-comparable subset of D. Since T0 is the smallest trapezoid, by
a similar argument used in Lemma 1, T0 clashes at most 4 other trapezoids in
T ′ at this iteration. Hence, since |OPT | ≤ |T ′| prior to step 3, the promised
approximation factor is obtained and the above lemma holds. ⊓⊔

Time complexity. Algorithm Bal-{<, ≬}-Approx can be implemented straight-
forwardly to run in O(n2) time, where n = |D|.

4.3 Unlimited 2-interval sets.

The rest of this section is devoted to the 2-Interval Pattern problem over
the {<, ≬} model for unlimited 2-interval sets. We introduce a slightly more
delicate modification of {<, ≬}-Approx to obtain a 6-approximation algorithm
for the unlimited case. For this, we consider special trapezoid families which
have structures that are convenient for our purposes.

Definition 7 (Proper trapezoid family). A family of trapezoids T is proper
if for any two distinct trapezoids T1 = (I ′1, J

′
1), T2 = (I ′2, J

′
2) in T , I ′1 ∩ I ′2 = ∅

and J ′
1 ∩ J ′

2 = ∅ holds.

Definition 8 (Strongly proper trapezoid family). A proper family of trape-
zoids T is strongly proper if for any two distinct trapezoids T1 = (I ′1, J

′
1), T2 =

(I ′2, J
′
2) in T , if J ′

1 and I ′2 clash then l(J ′
1) ≤ l(I ′2) < r(I ′2) ≤ r(J ′

1), where
l(J ′

1), r(J
′
1) and l(I ′2), r(I

′
2) are the left and right endpoints of J ′

1 and I ′2 respec-
tively.



Note that by the above definition, any pairwise disjoint family of trapezoids
is proper, but the converse is not true. Thus, T ′ ⊆ T computed at step 2 of
{<, ≬}-Approx is a proper trapezoid family. Also, computing a strongly proper
subset T ′′ ⊆ T ′ can be done easily by adjusting step 3 of {<, ≬}-Approx. Instead
of omitting all trapezoids clashing with the leftmost trapezoid in this iteration,
we need only to omit a small subset of these trapezoids. More specifically, let
T0 = (I ′0, J

′
0) be the leftmost trapezoid in T ′. We only omit trapezoids Tα =

(I ′
α
, J ′

α
) ∈ T ′ with either l(I ′

α
) ≤ l(J ′

0) ≤ r(I ′
α
) or l(I ′

α
) ≤ r(J ′

0) ≤ r(I ′
α
) (or

both). It is not difficult to see that we obtain a strongly proper trapezoid family
T ′′ ⊆ T ′ if we proceed in this fashion and that |T ′′| ≥ 1

3 |T
′|.

Definition 9 (Clashing trapezoid graph). Given a family T of trapezoids,
the clashing trapezoid graph of T , denoted by GT , is the graph such that each
vertex in V (GT ) corresponds to a distinct trapezoid in T , and two vertices are
connected by an edge if and only if their corresponding trapezoids clash.

Lemma 5. Let T be a family of trapezoids. If T is strongly proper then GT is
a forest.

Proof. Let T be a strongly proper family of trapezoids and let GT be its corre-
sponding clashing trapezoid graph. Define G∗

T as the directed graph obtained be
orientating the edges of GT according to the precedence relation of T . In other
words, V (G∗

T ) = V (GT ) and (T1, T2) ∈ E(G∗
T ) if and only if {T1, T2} ∈ E(GT )

and T1 < T2 in T . Since T is strongly proper, every trapezoid in T clashes with
at most one trapezoid on its left, and so the in-degree of every vertex v ∈ V (G∗

T )
is at most one. Hence, any cycle (v0, . . . , vt, v0) in GT is a (directed) cycle in
G∗

T . However, in such a case we must have T0 < Tt < T0 by definition of G∗
T ,

which is clearly a contradiction. Hence, we conclude that G∗
T , and consequently

GT , contain no cycles, and the above lemma holds. ⊓⊔

It is well known that the maximum independent set in any forest G is of size
at least 1

2 |V (G)| and that this set can be found in linear time with respect to
|V (G)|. Also, by definition, if T ′′ is a pairwise disjoint family of trapezoids, then
any independent set of GT ′′ corresponds to a pairwise disjoint non-clashing set
of trapezoids, which by Observation 3, corresponds to a {<, ≬}-comparable set
of 2-intervals. A schematic description of our algorithm for unlimited 2-intervals
sets, called Unl-{<, ≬}-Approx, is given in Figure 6.

Lemma 6. Algorithm Unl-{<, ≬}-Approx is a 6-approximation algorithm for the
2-Interval Pattern problem over the {<, ≬} model.

Proof. Let D be the input set of 2-intervals and let T (D), T ′ and T ′′ be the
trapezoid families as described in the above description of Unl-{<, ≬}-Approx.
Also, denote by OPT the maximum {<, ≬}-comparable subset of D. We have
|OPT | ≤ |T ′| and |T ′| ≤ 3|T ′′|. Let α(GT ′′) denote the size of the maximal
independent set of GT ′′ . Since GT ′′ is a forest, we have |V (GT ′′)| ≤ 2α(GT ′′).
Accumulating all these inequalities together we get: |OPT | ≤ |T ′| ≤ 3|T ′′| =
3|V (GT ′′)| ≤ 6α(GT ′′). Thus, the maximum independent set of GT ′′ is at least
of size 1

6 |OPT |, and the promised approximation factor holds. ⊓⊔



Algorithm Unl-{<, ≬}-Approx(D)

Data : A set of 2-intervals D.
Result : A {<, ≬}-comparable subset of D.
begin

1. Construct T (D), the corresponding trapezoid set of D.
2. Compute T ′, the maximum pairwise disjoint subset of T (D).
3. Compute T ′′, a strongly proper subset of T ′, such that |T ′′| ≥ 1

3
|T ′|.

4. Compute GT ′′ and the maximum independent set of GT ′′ .
return the set of 2-intervals corresponding to the maximum independent set
of GT ′′ .

end

Fig. 6. A schematic description of algorithm Unl-{<, ≬}-Approx.

Time complexity. Let |D| = n. Steps 1-2 in Unl-{<, ≬}-Approx can be computed
in O(n lg n) time by a similar analysis of the time complexity of {<, ≬}-Approx.
Step 3 can be computed straightforwardly in O(n2) time. Finally, step 4 can be
computed in O(n) time since GT ′′ is a forest. Thus, the whole algorithm can be
implemented to run in O(n2) time.
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