
Boyer-Moore strategy to efficient approximate string

matching

Nadia El Mabrouk, Maxime Crochemore

To cite this version:

Nadia El Mabrouk, Maxime Crochemore. Boyer-Moore strategy to efficient approximate string
matching. Hirschberg D. and Myers E.W. Combinatorial Pattern Matching (Labuna Beach,
California, 1996), 1996, France. Springer-Verlag, 1075, pp.24-38, 1996, LNCS. <hal-00620020>

HAL Id: hal-00620020

https://hal-upec-upem.archives-ouvertes.fr/hal-00620020

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48346901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00620020

Boyer-Moore strategy to e�cient approximatestring matchingNadia El-Mabrouk and Maxime CrochemoreIGM, Universit�e Marne la Vall�ee,2 rue de la Butte Verte, 93166 Noisy Le Grand CedexAbstract. We propose a simple but e�cient algorithm for searching alloccurrences of a pattern or a class of patterns (lengthm) in a text (lengthn) with at most k mismatches.This algorithm relies on the Shift-Add algorithm of Baeza-Yates andGonnet [6], which involves representing by a bit number the currentstate of the search and uses the ability of programming languages tohandle bit words. State representation should not, therefore, exceeds theword size !, that is, m(dlog2(k + 1)e+ 1) � !. This algorithm consistsin a preprocessing step and a searching step. It is linear and performs 3noperations during the searching step.Notions of shift and character skip found in the Boyer-Moore (BM) [9]approach, are introduced in this algorithm. Provided that the consideredalphabet is large enough (compared to the Pattern length), the averagenumber of operations performed by our algorithm during the searchingstep becomes n(2 + k+4m�k).1 IntroductionOur purpose is approximate matching of a pattern or a class of patterns in a text,all sequences of characters or classes of characters from a �nite alphabet �. Er-rors considered here are mismatches. A class of patterns, is a set of patterns withdon't care symbols, patterns containing the complementary of a character or anyother class of characters. Such a problem has a lot of applications, in particularin molecular biology for predicting potential nuclear gene-coding sequences ingenomic DNA sequences. In fact, exact string matching is not su�cient sincegene-coding sequences are in general only partially and approximately speci�ed.Concerning exact string matching, algorithms based on the Boyer-Moore(BM) [9, 13] approach are the fastest in practice. Such algorithms are linearand may even have a sublinear behaviour, in the sense that every character inthe text need not be checked. In certain cases, text characters can be \skipped"without missing a pattern occurrence. The larger the alphabet and the longerthe pattern, the faster the algorithm works.Various algorithms have been developed for searching with k mismatches alloccurrences of a pattern (length m) in a text (length n), both de�ned over analphabet � (length c). Running times have ranged from O(mn) for the naivealgorithm, to O(kn) [15, 11] or O(n logm) [12]. The �rst two algorithms consistin a preprocessing step and a searching step. Grossi and Luccio algorithm [12]

uses the su�x tree. Other algorithms have used the BM approach in approximatestring matching [4, 18]. Running times are O(kn) for Baeza-Yates and Gonnet [4]and O(kn(1m�k + kc)) for Tarhio and Ukkonen [18]. The problem of approximatematching of a class of patterns was also studied [2, 1, 5], especially in the caseof patterns with don't care symbols [10, 17, 16, 3, 8, 14]. Fisher et Paterson[10] developed an O(n log c log2m log logm) time algorithm based on the linearproduct. Abrahamson [1] extended this method for generalized string pattern.Pinter [17] has used the Aho and Corasick automaton [2] for searching a setof patterns. Other algorithms have considered the problem of exact matchingof patterns with variable length don't cares [16, 8, 14]. As for Akutsu [3], hedeveloped an O(pkm n log c log2 mk log log mk) time algorithm for searching apattern with don't cares in a text with don't cares.In 1992, several new algorithms for approximate string matching were pub-lished [6, 19, 7]. They combine both speed and programming practicality, incontrast with older results, most of which being mainly of theoretical interest.Moreover, they are exible enough to allow searching for a class of patterns.These algorithms consist in a pattern preprocessing step and a searching step.They are all based on the same approach, consisting in �nding, at a given posi-tion in the text, all approximate pattern pre�xes ending at this position. Speedis increased by representing the state of the search as a bit number [6, 19] oran array [7], and by using the ability of programming languages to handle bitwords.Nevertheless, these algorithms are based on a naive approach and processeach character of the text. Our goal is to speed up searching by using a BMstrategy and including notions of shift and character skip.We have chosen to consider such an improvement in the case of the Shift-Add algorithm of Baeza-Yates and Gonnet [6]. The main idea of Shift-Add isto represent the state of the search as a bit number, and perform a few simplearithmetic and logical operations. Provided that representations don't exceedthe word size !, that is m(dlog2(k +1)e+1) � !, each search step does exactlya shift, a test and an addition. Therefore, this algorithm runs in O(n) time andthe searching step does 3n operations. We developed an algorithm combining thepracticality of the Shift-Add method and the speed of the BM approach. Providedthat the considered alphabet is large enough compared to m, our new algorithmperforms on average n�2 + k+4m�k� operations during the searching step.The paper is organized as follows. Section 2 summarises the algorithm Shift-Add , in the case of exact or approximate matching of a pattern or a class ofpatterns. Section 3 develops the adaptation of the BM approach to the Shift-Add method. An improvement of this last algorithm is given in Section 4. Finally,section 5 gives experimental results obtained with both algorithms.2 Shift-Add AlgorithmLet P = p1 � � � pm be a pattern and t = t1 � � � tn be a text over a �nite alphabet �.The problem is to �nd in t all occurrences of P with at most k mismatches (0 �

k � m). In other words, the distance between two patterns of the same lengthwill be de�ned as the number of their mismatching characters (the Hammingdistance). An equivalent problem is then to �nd in t all substrings of length msuch that the Hamming distance between these substrings and P is at most k,that is to �nd all j positions in the text such that, for 1 � i � m, pi = tj�m+i,except for at most k indices.The main idea is to represent the state of the search as a vector of sizem. Thus, Sj denotes the state vector given a current position j in the text.Sj contains individual states of the search between each pre�x of P and thecorresponding substring of t. Namely, for 1 � i � m, Sj [i] is the number ofmismatches between p1 � � � pi and tj�i+1 � � � tj .P matches at j if and only if Sj [m] < k + 1.When tj+1 is read, the number of mismatches for each pre�x of P needs tobe completed. Values of boolean expressions tj+1 = pi, for 1 � i � m, can becomputed during a preprocessing step. For each character a in �, a vector Ta ofsize m is constructed such that :For i, 1 � i � m, Ta[i] = �0 if a = pi1 otherwise (1)(it is su�cient to construct the T arrays only for characters appearing in thepattern).Finally, Sj+1[i] = Sj [i� 1] + Ttj+1 [i].In order to obtain Sj+1 from Sj by simple arithmetic and logical operations,vectors are considered as numbers and represented in base 2b, where b is the bitnumber needed to represent each vector component.Thus, Sj = mXi=1 Sj [i]2(i�1)b and Ta = mXi=1 Ta[i]2(i�1)b.Representations should not exceed the word size !, namely, mb � !.It is easy now to verify that the transition from Sj to Sj+1 amounts to nomore than a left shift (denoted by <<) of b bits and an addition :Sj+1 = (Sj << b) + Ttj+1 (2)Initial state is S0 = 0. P matches at j if and only if Sj < (k + 1)2(m�1)b.Possible values of the vector state components are 1; � � � ;m. Thus, to rep-resent each component, b = dlog2(m + 1)e bits are required. However, since weneed only to compare the number of mismatches with k, it is enough to representvalues from 1 to k. In this case, one more bit is needed for carrying over addi-tions. The improved algorithm uses b = dlog2(k + 1)e+ 1 bits. At each positionj in the text, the overow bits are recorded in an overow state Rj and theoverow bits of Sj are reset.The Shift-Add algorithm works in O(n) time, and the searching step (disre-garding the overow state) performs 3n operations. In fact, at each step, that isfor each position j, three operations are performed: one shift, one addition andone test to determine whether P matches at position j.

2.1 Exact string matchingIn the case of exact string matching, it is only necessary to know whether agiven pre�x of P matches exactly the considered substring of t. We de�ne Sj asfollows:For 1 � i � m, Sj [i] = �0 if p1 � � � pi = tj�i+1 � � � tj1 otherwiseWhen tj+1 is read, we need to determine whether tj+1 can extend any of thepartial matches. Thus, in order to have a match of p1 � � � pi at position j + 1,both Sj [i� 1] = 0 and tj+1 = pi should be satis�ed. Here, b = 1, and in formula(2) the + symbol should be replaced by an OR operation. The algorithm basedon this new formula is called Shift-Or.2.2 ExtensionsFlexibility is one of the principal advantages of the Shift-Add method. It canbe easily adapted to a class of patterns. A class of patterns is a set of patterns,de�ned by a string in which each position is a set of characters. A set of charactersis for example a subset of � or the complementary of a subset of �. A patternclass de�ned by a string in which each position is either a single character or thewhole alphabet is called pattern with don't care symbols.To take into account such classes, only the de�nition of the T array needschanging: for a position i in P and a character a in �, Ta[i] will contain 0if a belongs to the set of characters corresponding to that position in P , and 1otherwise. Thus, the T array computed during the preprocessing step contains allneeded information about the pattern. Then, the searching step is not modi�ed.3 Boyer-Moore Approach to Shift-Add methodHere, we consider the problem of searching all occurrences of a pattern stringP = p1 � � � pm in a text string t = t1 � � � tn with at most k mismatches, 1 � k � m.The problem of exact string matching can be solved by substituting the ORoperation to the add operation. In the case of string matching with classes, theT array is modi�ed as in section (2.2).For some position j, the state Sj is a bit number (represented in base 2b)de�ned as previously: each individual state Sj [i], for 1 � i � m, contains thenumber of mismatches between p1 � � � pi and tj�m+1 � � � tj . Here, the introductionof the overow state is ignored.3.1 ShiftOur goal is to avoid processing each character of the text, in other words, avoidcomputing Sj for every position j. It is easy to see that if for some pre�x oflength i of P , Sj [i] > k, then since Sj+(m�i)[m] � Sj [i], P will not occur atposition j + (m� i). The following proposition can be deduced:

Proposition 1. For some position j in t, let l be the largest index i, 1 � i �m�1, such that Sj [i] � k, if such an index exists and 0 otherwise. Let d = m� l.Then, the next position after j where P is likely to occur is jnext = j + d. Inother words, Sj0 [m] > k, for every j0 such that j < j0 < jnext.d is the next shift and 1 � d � m� k.Consider now the transition between Sj and Sj+d.The number of mismatches between the pre�x p1 � � � pi of P , for d+1 � i � m,and the substring tj+d�i+1 � � � tj+d of t, i.e. Sj+d[i], is the sum of the number ofmismatches between p1 � � � pi�d and tj+d�i+1 � � � tj , i.e. Sj [i�d], and the numberof mismatches between pi�d+1 � � � pi and tj+1 � � � tj+d.The T array de�ned in (1) contains the information about the occurrence ofa given character a at a given position in the pattern.Consequently:Sj+d[i] = 8>>>><>>>>:Sj [i� d] + d�1Xr=0 Ttj+d�r [i� r] if d < i � mi�1Xr=0 Ttj+d�r [i� r] otherwise (3)In order to obtain Sj+d as a sum of numbers in base 2b, the next de�nitionis needed:De�nition 2. D denotes the j�j �m matrix such that, element D[a][m� r] foreach a 2 � and 0 � r � m� 1, is denoted by Da;m�r and de�ned as follows:Da;m�r = mXi=r+1Ta[i� r]2(i�1)b :Intuitively, Da;m�r denotes positions in p1 � � � pm�r containing character a.For a �xed r, Da;m�r is obtained by a left shift of Ta of rb positions.Sj+d can then be represented as follows:Sj+d = (Sj << bd) + d�1Xr=0Dtj+d�r;m�r :Initial values are S0 = 0 and d = m.Practically, in order to determine the shift d, Sj is shifted b bits at a time,until the obtained number is below k2(m�1)b. Sj will have �nally been shifted dtimes to obtain Sj << bd. Therefore, shifts are not grouped.Example 1 : Let � = fa; b; c; dg, P = abbac and k = 1.The D matrix is :

a b c d1 00000 10000 10000 100002 10000 01000 11000 110003 11000 00100 11100 111004 01100 10010 11110 111105 10110 11001 01111 11111Successive states and shifts when searching P in t with at most k mismatches:Positions 0 1 2 3 4 5 6 7 8 9 10 11t a b d a b b a b b a cSj 00000 24201 13201 03311d 5 3 3 3Remark: Introduction of shifts does not improve the complexity of theShift-Add algorithm . It only has the e�ect of grouping additions andtests. However, shifts are essential to introduce the notion of charactersskip which will �nally speed up the algorithm.3.2 Character skipThe Boyer-Moore (BM) algorithm is an e�cient exact string matching algorithm.It is fast since it is possible, in certain conditions, to skip substrings of the text,that is not process them, without loss of information. At each step, charactersof the text are processed from right to left.In this section, we try to �nd conditions in which parts of the text can beavoided without missing occurrences of the pattern.Assume j is the last position scanned in the text and d is the next shift.The substring of the text still to be scanned at this step of the search is thentj+1 � � � tj+d. This substring is processed from right to left, that is beginning withtj+d, and the processing stops when tj+1 is reached, or when the information forall pre�xes of P ending at position j + d is obtained.Practically, in order to compute state Sj+d, Sj should �rst be shifted on theleft of bd bits. Let Sj+d;0 = Sj << bd be the obtained number. Then, each of thed characters tj+d�r+1, with 1 � r � d, should be processed. Let Sj+d;r be thepartial state obtained after processing characters tj+d; � � � ; tj+d�r+1 of t. Then,Sj+d;r = Sj+d;r�1 +Dtj+d�r+1;m�r+1 and we have Sj+d = Sj+d;d.For given indexes r, 1 � r � d, and i, 1 � i � m:(a) If Sj+d;r[i] > k, then without processing the remaining characters tj+d�r; � � � ; tj+1,we know that the pre�x of length i of P does not occur at position j + d.(b) If Sj+d;r[i] � k and no more comparisons have to be performed for the pre�xof length i of P , then this pre�x matches at position j + d.

Therefore, instead of computing the number of mismatches with the corre-sponding substring of t, for each pre�x of P , i.e. the terminal state, the com-putation stops at the �rst partial state giving enough information for furtherprocessing. Let S0j be this partial state. Di�erences between Sj and S0j are lo-cated only in individual states exceeding k + 1.Algorithm We suppose that the D matrix has been computed during a pre-processing step. For a given position j in the text, an index r and a pre-�x of length i of P , State denotes the bit number consisting in individualstates of partial state Sj;r for pre�xes with length from 1 to i. More precisely,State = Sj;r[i] � � �Sj;r[1]0 � � �0.Algorithm1: BM approach to approximate string matching0. j := m; d := m; State := 0;1. lim := (k + 1) << (m� 1);2. While j � n do3. (0) i := m; r := 0;4. (1) If State � lim then5. State := State << b;6. i := i� 1; Go to (1);7. (2) Else :8. (2.1) If MIN(d; i) > r then9. r := r + 1 ;10. State := State +Dtj�r ;m�r; Go to (1).11. (2.2) Else :12. (2.2.1) If i = m then13. \Occurrence of P at position j";14. State := State << b;15. i := i� 1; Go to (1);16. (2.2.2) Else :17. d := m� i;18. j := j + d;19. End of While.Proposition 3. Algorithm1 �nds all occurrences of the pattern P in the text twith at most k mismatches.PROOF :Step (1) of the algorithm corresponds to situation (a), that is when thepartial number Sj;r[i] of mismatches found at this step of the search for thepre�x i of P , exceeds k+1. In this case, this pre�x is ignored and the next pre�xi� 1 of P is considered.Step (2.1) corresponds to the situation where there is not enough informationto stop comparing. In fact, for the pre�x i of P , the number Sj;r[i] of mismatches

obtained at this step of the search is less than k+1, but a number of comparisonsremain to be done for this pre�x.Step (2.2) corresponds to situation (b), that is when Sj;r[i] < k + 1 for thepre�x i, no more comparisons have to be performed for this pre�x. In this case,if i = m, then position j matches and the search for the next shift goes on. Ifi < m, then the next shift is equal to m� i. In fact, i corresponds to the lengthof the longest pre�x of P matching the corresponding substring of t �Example 2 : Let �, P , t and k be those de�ned in example 1.Shifts are the same as for example1 and only state S5 is not the terminal state.Positions 0 1 2 3 4 5 6 7 8 9 10 11t a b d a b b a b b a cSj 00000 23201 13201 03311d 5 3 3 3Complexity Our goal is to evaluate the average number of operations per-formed by Algorithm1 . Operations are of three kinds: shifts, additions and tests.Recall that the scanning of t by the Shift-Add algorithm needs 3n operations,since each search step does exactly a shift, an addition and a test. It is not di�cultto see that our algorithm does the same number of shifts (n) and less additions.In fact, one addition is performed for each character processed in the text, andnot all characters are examined. However, the number of tests increases, sincein addition to those considered by the Shift-Add algorithm, those which maketransitions between partial states should be considered.Let t be a random text and j�j = c. The probability of a given character tooccur at a given position in the text is then 1c .Let X be a random variable denoting the length of the shift in Algorithm1when searching pattern P in the random text t with at most k mismatches. Thefollowing lemma gives the average shift dm, that is the expected value < X >of the random variable X .Lemma 1 Provided c is large enough compared to m, the average shift dm ob-tained by Algorithm1 exceeds d0m, with:d0m � m� k � 1 +�1� 1c�k+1! �1� 1c�Now, we analyze the average number Mk of characters processed at a givenposition j + dm of the text, where j is the last position scanned in the text.This number of characters is the length of the smallest substring of t ending atposition j+ dm and mismatching all substrings of P which are not pre�xes. Themaximum number of characters to be processed at this step is dm.From the last remarks, we can deduce the following lemma:

Lemma 2 Provided c is large enough compared to m, Mk � k + 2.We are able now to evaluate the complexity of Algorithm1 .Proposition 4. The average number OPk of operations performed by Algorithm1is n�2 + 3Mk+2dm �. When the considered alphabet is large enough, this number be-comes OPk � n�2 + 3k+8m�k�.PROOF :Let OPdm;k be the average number of operations performed by Algorithm1at each step of the search. Thus, OPk = ndmOPdm;k.At each step of the search, operations performed by Algorithm1 are: Mk ad-ditions (one addition per character), dm shifts (lines 5. and 14. of the algorithm)and at most dm+2+2Mk tests. In fact, note �rst that condition 4 (State � lim,step (1)) is true at most dm times and in that case we do not proceed to step (2).Thus exactly dm tests are performed in these cases. Moreover, in order to knowthe next shift, we should go once through step (2.2.2) and then do tests 4. and8. (test 12. could be avoided by changing the algorithm such that case i = m isexamined at a previous step). Finally, since there are exactly Mk additions, weshould go through line 10. exactly Mk times and at each time do tests 4. and 8.The average number of tests is therefore Tdm;k = dm + 2 + 2Mk.So, OPdm;k = 2dm + 2 + 3Mk and OPk = n�2 + 3Mk+2dm �.The case of a large alphabet is deduced from lemmas 1 and 2 �4 ImprovementIn order to speed up the algorithm, it is obvious that a way should be found toperform less tests. Our idea is to process a certain number of characters at eachstep of the search, that is, do a certain number of additions before beginningtests.Algorithm2Let j be the current position in the text and d be the last shift obtained. Wedenote by Cd the following number: Cd = min (d; k + 2).Cd is the average number Mk (lemma 2) of characters processed at each stepby Algorithm1 , provided this number does not exceed the maximum number ofcharacters to be processed at this step, that is d.Thus, before going through steps (1)-(2), our improved algorithm (Algo-rithm2) will process �rst the Cd characters tj�Cd+1 � � � tj and compute the partialstate Sj;Cd , that is do Cd additions.Algorithm2 is hence obtained by adding a preliminary step (0') before step(0) in Algorithm1 .

(0') State := State + Cd�1Xl=0 Dtj�l;m�l ;r := r + Cd;Obviously, Algorithm2 �nds the same results, the same shifts and so the sameaverage shift dm that Algorithm1 .Proposition5. Provided the alphabet is large enough, the average number ofoperations performed by Algorithm2 is OPk � n�2 + k+4m�k�.PROOF :Our goal is to evaluate the average number OPdm;k of operations performedby Algorithm2 at any search step.First, Mk characters are processed and Mk additions are performed. Twocases are then encountered:1. The partial state holds enough information, so no more characters are pro-cessed at this step. In this case, dm + 2 tests and dm shifts are performed.2. The partial state does not hold enough information. In this case, the max-imum number of characters still to be performed is dm �Mk. The numberof shifts is the same as that of the previous state and there are 2(dm �Mk)more tests.Let Pk be the probability of the second case. Then, OPdm;k = Mk + 2dm +2 + Pk (3 (dm �Mk))and OPk = n�2 + Mk + 2 + 3Pk (dm �Mk)dm �When the considered alphabet is large enough, dm � m�k (Lemma1),Mk �k + 2 (Lemma2) and we can prove that Pk � 0. Thus, OPk � n�2 + k+4m�k� �5 ExperimentsOur goal is to �nd out under which conditions Algorithm2 is fastest than algo-rithm Shift-Add .

Algorithm3: Exact string matching0. j := m; d := m; State := 0;1. lim:= (k + 1) << (m� 1); initial:=1mb1mb�1 � � � 1;2. While j � n do3. i := m; r := 0 ;4. While State 6= initial and r < d do5. State := State OR Dtj�r ;m�r;6. r:=r+1;7. End of While.8. If State = initial then9. State := 0;10. d := m;11. Else12. If State < lim then13. \Occurrence of P at position j";14. State := State << b;15. While State � lim16. State := State << b;17. i := i� 1;18. End of While.19. d := m� i;20. j := j + d;21. End of While.5.1 Exact string matchingIn this case, the considered algorithm is Shift-Or (2.1). Baeza-Yates and Gonnethave introduced the following improvement: if at a given position j in t, Sj =1mb1mb�1 � � � 1, that is all pre�xes of P mismatch at position j, then the nextcharacter processed in the text is p1 (if such a character exists). In fact, the stateremains the same for all other characters.We improve Algorithm2 as well: at a given step of the search, characters areprocessed until the partial state is equal to 1mb1mb�1 � � � 1 (Algorithm3).We have experimented algorithms Shift-Or and Algorithm3 on a 4,000,000character text (the french version of the Bible). Figure1 shows the executiontime while searching 100 random patterns from the Bible. The �rst column ofthe table shows the lengths of the considered patterns.We can see that the longest the pattern, the fastest Algorithm3 works. More-over, for patterns of lengths up to 3, Algorithm3 is faster than Shift-Or .

m Shift-Or Algorithm33 76.97 79.324 77.95 71.856 79.27 63.078 78.15 56.9810 78.72 50.3012 78.85 44.4814 77.52 39.3216 78.35 37.0220 77.43 31.4230 77.84 25.44Figure 1: Experimental results (in seconds)for exact searching 100 random patterns inthe Bible. First column gives the lengths ofthe considered patterns.5.2 Approximate string matchingFigure2 shows experimental results for Algorithm2 and Shift-Add , while search-ing 100 random patterns in the Bible (5MO) with at most 1 or 2 mismatches.When m is large enough compared to k, Algorithm2 is faster than Shift-Add : fork = 1, m should be larger than 7 and for k = 2 larger than 9. Since mb shouldnot exceed the word size !, large values of m cannot be considered. For ! = 32,the e�ciency of Algorithm2 is then limited to k � 2.For longer patterns, we need to use more than a word per number. It isnot di�cult to extend the algorithm for this case. Baeza-Yates and Gonnet havenoticed that Shift-Add is still a good practical algorithm for string matching withmismatches and classes, provided the number of words per number is small.Figure3 shows results in the case of two bit words per number. Notice thatthey extend the results in Figure2.6 ConclusionWe have developed an algorithm combining both the programming practicality ofthe Shift-Add method and the speed of the BM approach. Flexibility is anotheradvantage of this algorithm . In fact, it can be easily adapted to classes ofpatterns.Nevertheless, as for the BM algorithm, the larger the alphabet and the longerthe pattern, the faster our algorithm works. For a large alphabet (ASCII code),the searching step does on average n(2 + k+4m�k) operations.In some cases, it is necessary to consider small alphabets. In particular,in molecular biology when detecting potential gene-coding sequences in ge-nomic DNA sequences. The considered alphabet consists in the four nucleotides

k = 1 k = 2m Shift-Add Algorithm2 Shift-Add Algorithm26 157.56 178.05 157.24 215.777 155.83 161.88 156.25 195.688 156.01 154.05 155.64 175.679 155.57 148.13 156.33 161.0210 155.10 145.85 155.63 150.7211 155.76 141.6712 154.66 135.8013 155.02 129.4014 155.45 125.2815 154.94 121.0816 155.73 117.21Figure 2: Experimental results (in seconds) for searching100 random patterns in the Bible with at most 1 or 2mismatches. For k = 2 and m > 10, more than one wordper number is needed.k = 1 k = 2 k = 3m Shift-Add Algorithme2 Shift-Add Algorithme2 Shift-Add Algorithme212 281.56 275.96 282.38 308.5314 281.27 266.48 281.75 278.7516 281.17 250.82 281.25 265.4618 280.54 219.24 280.78 238.18 281.12 256.9820 282.25 211.78 281.85 227.57 281.65 246.6022 280.48 205.7026 281.38 198.1328 280.85 194.2032 280.93 188.52Figure 3: Complementary results when mb > 32. Two bit words per number are used.fA;C;G; Tg. For such alphabets, our algorithm does n(2 + �) operations, with� < 1, provided that the length m of the pattern is very large compared to k.In order to consider large patterns, one solution is to use more than a bitword per number. Moreover, Baeza-Yates and Perleberg (BYP) [7] have devel-oped an algorithm for approximate string matching, based on the same naivemethod than for the Shift-Add algorithm, but using arrays instead of numbers.In this case, there is no condition on the length of the searched pattern, howeverthe algorithm is slower. The main di�erence is that BYP considers the numberof matches instead of the number of mismatches. The BYP algorithm can beadapted from BM in the same way the Shift-Add was and it is then possible toconsider long patterns.

References1. K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039{1051, December 1987.2. A. Aho and M. Corasick. E�cient string matching: an aid to bibliographic search.Commun. ACM, 18:333{340, 1975.3. T. Akutsu. Approximate string matching with don't care characters. InM. Crochemore and D. Gus�eld, editors, Lecture Notes in Computer Science, vol-ume 807 of Combinatorial Pattern Matching (5th Annual Symposium, CPM94),pages 229{242. Springer-Verlag, 1994.4. R. Baeza-Yates and G.H.Gonnet. Fast string matching with k mismatches. Tech-nical Report CS-88-36, Data Structuring Group, September 1988.5. R. Baeza-Yates and G. Gonnet. E�cient text searching of regular expressions.16th International colloquium on Automata, Languages and Programming. Stresa,Italy, July 1989.6. R. Baeza-Yates and G. Gonnet. A new approach to text searching. Commun.ACM, 35(10):74{82, October 1992.7. R. Baeza-Yates and C. Perleberg. Fast and practical approximate string match-ing. In Lecture Notes in Computer Science, volume 644 of Combinatorial PatternMatching (3th Annual Symposium, CPM92), pages 185{191. Springer-Verlag, 1992.8. A. Bertossiand and F. Logi. Parallel string matching with variable length don'tcares. Journal of parallel and distributed computing, 22:229{234, 1994.9. R. Boyer and J. Moore. A fast string searching algorithm. Commun. ACM,20(10):762{772, October 1977.10. M. Fischer and M. Paterson. String-matching and other products. In R. Karp,editor, Complexity of Computation (SIAM-AMS Proceedings 7), volume 7, pages113{125. American Mathematical Society, Providence, R.I., 1974.11. Z. Galil and R. Giancarlo. Improved string matching with k mismatches. SIGACTNews, 17:52{54, 1986.12. R. Grossi and F. Luccio. Simple and e�cient string matching with k mismatches.Inf. Proc. Letters, 3(33):113{120, November 1989.13. D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J.Comput., 6:323{350, June 1977.14. G. Kucherov and M. Rusinowitch. Matching a set of strings with variable lengthdon't cares. In Z. Galil and E. Ukkonen, editors, Lecture Notes in Computer Sci-ence, volume 937 of 6th annual symposium,CPM95, pages 230{247. Espoo,Finland,Springer-Verlag, July 1995.15. G. Landau and U. Vishkin. E�cient string matching with k mismatches. Theoret.Comput. Sci., (43):239{249, 1986.16. U. Manber and R. Baeza-Yates. An algorithm for string matching with a sequenceof don't cares. Information Proceeding Letters, 37:133{136, 1991.17. R. Pinter. E�cient string matching whith don't-care patterns. In A. Apostolicoand Z. Galil, editors, Combinatorial Algorithms on Words, volume F12, pages 11{29. Springer-Verlag, 1985.18. J. Tarhio and E. Ukkonen. Boyer-moore approach to approximate string matching.In J. R. Gilbert and R. G. Karlsson, editors, Lecture Notes in Computer Science,volume 447 of 2nd Scandinavian Workshop in Algorithmic Theory, SWAT'90, pages348{359. Bergen, Norway, Springer-Verlag, July 1990.19. S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM,35(10):83{91, October 1992.

This article was processed using the LATEX macro package with LLNCS style

