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Summary

;

This study investigates the treatment of insignificant parameters in an identified
autoregressive moving average model when the underlying process is generated by a

first order autoregressive process. The findings indicated that insignificant
parameters should be dropped, and that the parameters in the reduced model should
be reestimated. Such a procedure, as compared to using insignificant parameters
in the forecast model, produces a marked increase in forecast accuracy.





INTRODUCTION

In recent years there has been an increased focus on the use of

Box-Jenkins modeling procedures for purposes of forecasting univariate

time series. One problem that users of this methodology must face is

the proper treatment of insignificant parameters in the identified auto-

regressive integrated moving average (ARIMA) model. In particular the

decision maker is faced with at least three alternatives including:

(A) retain and use the model with insignificant parameters for fore-

casting, (B) drop insignificant parameters and use the resulting reduced

model for forecasting, (C) drop insignificant parameters, reestlmate the

parameters in the reduced model and then forecast. The present study

investigates the use of these alternatives in the case where the gener-

ating process is first order autoregressive. It is demonstrated that

the highest degree of accuracy is achieved by alternative (C) and the

least degree of accuracy is achieved by alternative (A) . Furthermore

it is shown that there is little difference between alternatives (B) and

(C). The following section discusses the problem in detail. Subsequent

sections develop the methodology, findings and conclusions.

THE PROBLEM OF DEALING WITH INSIGNIFICANT PARAMETERS IN ARIMA MODELS

When an ARIMA model is identified containing insignificant parame-

ters, it is not clear which of the above mentioned three alternatives is

best for the decision maker. If alternative (A) is selected there is a

reasonable possibility that a parameter will be used in the forecast

model which is actually zero in the population model. On the other hand

if (B) is selected, and insignificant parameters are dropped before
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forecasting, then the resulting model will not in general be one that

minimizes the sum of squares for the residuals. In addition the resid-

uals for the reduced model are likely to be autocorrelated, since any

insignificant parameters were probably included in the model for purposes

of removing autocorrelation in the residuals. Finally if alternative

(C) is selected, the problem of obtaining a minimum sum of squares is

resolved. However it is very probable that the resultant residual series

will be autocorrelated, and possibly more so than in case B.

METHODOLOGY

Simulation of the Time Series

Simulation was used to obtain time series for study. The procedure

was to generate series from a first order autoregressive (AR1) population

and select those for analysis which contained at least one insignificant

parameter after modeling. The AR1 process was selected because it often

2
occurs in business decision making contexts.

3
Several types of AR1 processes were generated via simulation. In

particular, series of length 50 and 300 were generated. For each of

these two lengths, first order parameter values of .2 and .7 were used.

Both series length and p-3ra.meter size were considered as factors because

they have an effect on the identifiability of the model. "Long" series

are easier to identify than "short" series. Similarly series with "large"

parameters are easier to identify than series with "small" parameters.

The latter is true because the expectation of the first autocorrelation

coefficient is equal to the first order autoregressive parameter in

the population process. If the parameter is small, then the first
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autocorrelation is likely to be buried in noise (i.e., found to be

insignificant). The former has been empirically demonstrated to be

true in the cases studied [5].

Modeling of the Time Series and Computation of the Forecast Errors

The simulated series were modeled until 100 models for each of the

4 series types were obtained such that each model contained at least 1

insignificant parameter (with a = .05). These models were then used

to forecast from 1 to 30 steps ahead.

The next step was to generate the theoretical forecast for each

model. This was done by applying the theoretical generating model to

the individual time series and then forecasting 1 to 30 steps ahead.

Note that another alternative for obtaining the theoretical forecasts

would be to extend the original simulated series an additional 30 steps

via simulation. However the use of the former method is preferred

because it produces conditional expectation forecasts given the known

model and observed series.

Finally absolute and quadratic forecast errors were computed for

all forecasts. Since the empirical findings were essentially the same

for both metrics, only the absolute error findings are presented.

EMPIRICAL FINDINGS

Notationally, let the 4 series types be represented by,S., S
2

> S-

and S, such that the following definitions hold:
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Parameter Size in

Notation Popula tion Model Series Length

S
l

.2 50

S
2 •

.2 300

S
3

.7 50

S
4

.7 300

Mean error profiles were plotted for S- , S„, S, and S, (Tables 1,

2, 3 and 4 respectively). These contain the mean forecast error, for a

given series type, plotted for each of the thirty steps on the forecast

horizon.

Tables 1, 2, 3 and 4

About Here

Note that in all cases alternative (A) consistently produces the

largest forecast errors. In addition, for all cases except S_, alterna-

tive (C) produces the smallest forecast errors. In the case of S„

alternatives (B) and (C) are virtually identical. Note also that in all

cases the difference between alternatives decreases as the number of

steps increases.

Since the graphical profile analysis does not provide formal hypoth-

esis testing, multivariate analysis of variance (MANOVA) was used to

4
assess differences in mean vectors. The design involved the use of ortho-

gonal polynomial one sample tests for S- , S„, S_ and S, . Since the tests

were one sample, no homogeneity assumptions for pooling of covarlance

matrices were needed. This left the assumption of multivariate normality

which has been proven to hold for large samples via the multivariate

central limit theorem [3].



-5-

Letting E. . equal the mean absolute forecast error for step 1

(1 = 1, 15) under modeling alternative j (j = A,B,C) the following null

hypothesis was tested for S- , S-, S_ and S,:

Hr 1,A

E
2,A

J

15,A

1,B

J
2,B

15, B

= i E,

1,C

2,C

15, C

Also, in the event that H. was rejected, the following tests were made:

H
2

:

V

1,A

J
2,A

J
15,A

•i. B

J
2,B

J
15,C

1,B

S
2,B

15,B_J

-i,c

*2,C

*L3*<

H
3

:

*2,A

15,A

The results of the tests are presented in Table 5,

Table 5 About Here

S
2,C

*u.«

Rote that in general the MANOVA test statistics confirm the graphical

profile analysis. This is demonstrated by the significant difference the
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overall tests for S-, S„ and S„. Also note that for these 3 series

types that alternative (A) is significantly different from alternatives

(B) and (C). The nonsignificance of the S, overall test and of the

individual (B)-(C) difference tests must be viewed in light of the fact

that, for all 4 series types, the profiles demonstrated a consistent (C),

(B), (A) ranking. However where the null is not rejected, the between

alternative differences are at a minimum. This tends to Imply that the

nonrejection is a result of the population differences being too small

for the. multivariate test to measure.

CONCLUSION

The results indicate that insignificant parameters in identified

ARIMA models should be dropped, and that the remaining parameters in

the reduced model should be reestimated. Such a procedure produces a

marked increase in forecast accuracy over the procedure of retaining

insignificant parameters. Furthermore most of this increased accuracy

can be achieved by simply dropping the insignificant parameter before

forecasting. The question of which of these two procedures should be

used in practice must be addressed in terms of the required accuracy of

the decision maker. However it seems that in no case would it be desir-

able to retain nonsignificant parameters in the forecast model.

The results are limited to the case where the underlying population

process is first order autoregressive. However since in practice the

true generating process is typically unknown, the findings should be of

interest to the decision maker who suspects that the population process

is first order autoregressive.

M/B/138
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Table 5

Summary of the Manova Tests for the

Effect of Different Treatments of Insignificant Parameters

s
i

1

S
2

S
3

S
4

H
l F

Significance
d.f.

2.26
.0028

30,70

2.64
.0005
30,70

3.08
.0001

30,70

1.1898
.2717

30,70

5l F
Significance

d.f.

2.029
.0231

15,85

3.4671
.0002

15,85

3.40
.0002

15,85

Not
Tested

H
t

H
3

1

1

F

Significance
d.f.

2.838
.0014

15,85

2.74
.0018

15,85

3.067
.0006

15,85

Not
Tested

i |

S

H
4 ; f

Significance
d.f.

|

1.02
.44

15,85

1.1989
.2887

15,85

1.4337
.1506

15,85

Not
Tested



FOOTNOTES

The Box-Jenkins methodology refers to a method (summarized by Box and
Jenkins [2]) of model identification (selection), estimation, diagnosis,
and forecasting for univariate time series. Recently this methodology
has been used extensively in applications for a wide range of decision
making contexts [2], [5], [6], [7], [9], [10]. The results of the above
studies have consistently demonstrated the powerful nature of Box-Jenkins
models

.

2
For examples of the use of AR1 processes in business decision making
contexts see [3].

3
The simulation involved superimposing the AR1 model on a normally

distributed white noise (not autocorrelated) series with a mean of zero

and variance of one. Since the models were of the form zt = <j>z , + u ,

the random numbers were generated for the residual series u . In order
to insure that the generated residuals were normal and not autocorrelated,
the following procedure was used:

(A) 10,000 normal (with mean zero and unity variance) random numbers
were generated to constitute a normal "population". Let x. denote
the individual element number in this population (i = 1,10000).

(B) The "population" was tested for normality. The null hypothesis of

normality was not rejected.

(C) The individual series (of length 50 or 300) were sampled from the

population. This was done, for a given series, by letting u.

equal x where {&} is a sequence of uniformly distributed random
numbers. The latter procedure effectively shuffles x. to insure
independence.

(D) The simulated series were generated to contain an extra 30 unneeded
observations. Then the first 50 observations were discarded. This

was done, in order to produce series that were reasonably indepen-
dent of the starting value for z (a starting value of was used
since it is the unconditional expectation value for a given obser-
vation) .

4
For purposes of hypothesis testing, only the first 15 steps ahead were

used. This was necessary because inclusion of steps 16 to 30 resulted in

severe numerical problems due to a high degree of multicollinearity.
In addition examination of the profiles revealed that often 15 steps
ahead the three alternatives tended to converge together, indicating
that the excluded data contained little, if any, Information on dif-
ferences between alternatives.

The use of orthogonal polynomials for multivariate analysis is dis-
cussed in Bock [1] and McCall and Applebaum [7].
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