
Efficient Computation of Throughput Values of

Context-Free Languages

Didier Caucal, Jurek Czyzowicz, Wojciech Fraczak, Wojciech Rytter

To cite this version:

Didier Caucal, Jurek Czyzowicz, Wojciech Fraczak, Wojciech Rytter. Efficient Computation of
Throughput Values of Context-Free Languages. Holub Jan and Zdárek Jan. 12th International
Conference on Implementation and Application of Automata (CIAA’07), Jul 2007, Prague,
Czech Republic. Springer, 4783, pp.203-213, 2007, LNCS. <10.1007/978-3-540-76336-9 20>.
<hal-00620156>

HAL Id: hal-00620156

https://hal-upec-upem.archives-ouvertes.fr/hal-00620156

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48346819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00620156

Efficient Computation of Throughput Values

of Context-Free Languages

Didier Caucal a Jurek Czyzowicz b Wojciech Fraczak b

Wojciech Rytter c

aIGM-CNRS, Marne-la-Vallée, France

bDépt d’informatique, Université du Québec en Outaouais, Gatineau PQ, Canada

cInst. of Informatics, Warsaw University, Warsaw, Poland

Abstract

We give the first deterministic polynomial time algorithm that computes the through-

put value of a given context-free language L. The language is given by a grammar
G of size n, together with a weight function assigning a positive weight to each
symbol. The weight of a word w ∈ L is defined as the sum of weights of its symbols
(with multiplicities), and the mean weight is the weight of w divided by length of
w. The throughput of L, denoted by throughput(L), is the smallest real number t,
such that the mean value of each word of L is not smaller than t. Our approach,
to compute throughput(L), consists of two phases. In the first one we convert the
input grammar G to a grammar G′, generating a finite language L′, such that
throughput(L) = throughput(L′). In the next phase we find a word of the smallest
mean weight in a finite language L′. The size of G′ is polynomially related to the
size of G.

The problem is of practical importance in system-performance analysis, especially
in the domain of network packet processing, where one of the important parameters
is the “guaranteed throughput” of a system for on-line network packet processing.

Key words: context-free grammar, push-down automaton, minimal mean weight,
throughput

1 Introduction

In this paper we propose the first polynomial time algorithm computing the
throughput of context-free languages. An algorithm computing the approxi-
mation of the value of throughput of a context-free grammar was proposed in

Preprint submitted to Elsevier 8 October 2007

[1]. The algorithms are applicable in the context of system-performance anal-
ysis, particularly in the context of network packet processing. As described in
[2], the essential criterion for the evaluation of a system is the measure of its
worst case speed of processing data, i.e., its throughput. More precisely, this
criterion is the lower bound (the infimum) of the greatest ratio of the length
of processed input packet to its processing time, taken over all possible input
packets. In some cases, a simple system allows a representation by a regular
language (a finite automaton) with each alphabet symbol representing a con-
stant time task consuming a constant amount of packet data. As noted in [3],
in such a case any standard algorithm for minimum mean cycle calculation,
e.g., [4], would do. In practice, however, especially when more complex systems
are analyzed and a better accuracy is required, context-free grammars have to
be used to adequately describe the behavior of the systems. As a consequence,
the practical worst case throughput computation of a system is equivalent to
the context-free grammar throughput computation, which is the subject of
this paper.

2 Notation

Let Σ be a finite alphabet with a weight function ρ : Σ 7→ IN, where IN is the
set of positive integers. A word over Σ is any finite sequence of letters. The
set of all words is denoted by Σ∗, and the set of all non-empty words by Σ+.
The length of a word w is denoted by |w| and the empty word is denoted by
ε.

The weight function defined over Σ extends onto non-empty words in the
following way:

ρ(a1a2 . . . an)
def

= ρ(a1) + ρ(a2) + . . . ρ(an).

The mean weight of a non-empty word w is defined as

ρ(w)
def

=
ρ(w)

|w|
.

Given a non-empty language L ⊆ Σ+, we define throughput of L as the infimum
of the mean weight of all words of L:

throughput(L)
def

= inf {ρ(w) | w ∈ L}.

2

In other words, throughput of L is a real value t ∈ IR such that:

(1) ∀w ∈ L, ρ(w) ≥ t, and
(2) ∀ε > 0, ∃w ∈ L, ρ(w) < t + ε.

Note that the mean weight of a word w is independent of the order of sym-
bols used in w. Hence, the alphabet commutativity may be used in our ap-
proach. Parikh [5] showed that the commutative image of every context-free
language is the commutative image of some regular language. Consequently,
for every context-free language L we can find a regular language R such that
throughput(L) = throughput(R). However, a direct transformation of a lan-
guage given by a context-free grammar G to a commutatively equivalent reg-
ular expression (or a finite automaton) may yield the result of an exponential
size with respect to the size of G. Also, it is worth noting that the Hopkins-
Kozen acceleration methods from [6,7], which are built around the Parikh’s
theorem, do not apply in the context of throughput calculation.

A context-free grammar G = (Σ, N, P, S) is composed of a finite set Σ of
terminals, a finite set N of nonterminals disjoint from Σ, a finite set P ⊆
N × (N ∪ Σ)∗ of production rules, and an axiom S ∈ N . The size of the
grammar is defined as the sum of the number of terminals, nonterminals, and
the lengths of right hand sides of production rules.

A context-free grammar G = (Σ, N, P, S) defines the set of syntax trees, i.e.,
ordered rooted trees with inner nodes labeled by nonterminals and leaves
labeled by Σ ∪ {ε}. Assume, until the end of the paper, that the language L

does not contain the empty word and that the grammar does not use empty
rules. For every inner node v labeled by X ∈ N , with k children v1, . . . , vk

there exists a production X → A1, . . . , Ak ∈ P , with Ai ∈ Σ ∪ N , such that
vi is labeled by Ai, for i ∈ [1, k].

Every syntax tree T defines a word w(T) over Σ; it is the concatenation of its
leaf labels (read from left to right).

The set of all words over Σ generated by all syntax trees of a grammar G =
(Σ, N, P, S) with root labeled by A ∈ N ∪ Σ, is denoted by LG(A). E.g., if
A = a ∈ Σ, LG(a) = {a}. The language of G is defined as LG(S) and denoted
by L(G).

Every grammar G of size n may be converted in O(n) time to a 2-reduced
grammar G′ of size O(n), such that L(G) = L(G′). A grammar is 2-reduced if
it is trimmed (there are no useless nonterminals), and each of its production
rules has one or two symbols on the right-hand side. Hence, without loss of
generality, we may suppose that all the context-free grammars under consid-
eration are 2-reduced grammars.

3

3 Throughput of a finite language

In the case of an infinite language it is possible that its throughput is not
equal to the mean weight of any of its words, e.g., as it is the case for the
regular language ab∗, when ρ(a) > ρ(b).

However, in the case of a finite language L there always exists a word in L,
whose mean weight equals the throughput of L.

In this section we give an algorithm which, given a grammar generating a
finite language L, finds a word w such that ρ(w) = throughput(L).

Let L ⊂ Σ+ be a finite non-empty language with weight function ρ : Σ 7→ IN.
Given a positive real value t, we define throughput balance of L with respect
to t, denoted by tb(L, t), as the following real value:

tb(L, t)
def

= min {(ρ(w) − |w|t) | w ∈ L}

Intuitively, tb(L, t) can be seen as a measurement of the “surplus/deficit” of
L with respect to a given throughput t; If tb(L, t) > 0 (resp., tb(L, t) < 0)
then language L has a “surplus” (resp., “deficit”) in achieving througput t.

Note 1 The real value tb(L, t), which may be negative, corresponds to the
minimal weight of a word in L with respect to the modified weight function

ρt : Σ 7→ IR defined as ρt(a)
def

= ρ(a) − t.

Lemma 1 Let L be a finite language over a weighted alphabet and t be a
positive real value. We have:

tb(L, t) ≥ 0 ⇔ throughput(L) ≥ t

PROOF. L is finite, hence throughput(L) = minw∈L ρ(w).

min
w∈L

ρ(w)

|w|
≥ t ⇔ min

w∈L

(

ρ(w)

|w|
− t

)

≥ 0 ⇔ min
w∈L

ρ(w) − |w|t

|w|
≥ 0

consequently we have that for all w ∈ L, |w| > 0:

min
w∈L

ρ(w) − |w|t

|w|
≥ 0 ⇔ tb(L, t) ≥ 0.

2

4

Lemma 2 Let G = (Σ, N, P, S) be a grammar of size n generating a non-
empty finite language L ⊂ Σ+ with weight function ρ : Σ → IN. Given a
positive real value t, we can decide in O(n) time whether throughput(L) ≥ t.

PROOF. By Note 1 and Lemma 1, deciding whether throughput(L) ≥ t can
be done by finding the minimal weight of a word in L with respect to the
modified weight function ρt.

For all a ∈ Σ, we have tb(LG(a), t) = ρt(a) = ρ(a) − t.

L is finite, consequently there exists a partial ordering of the nonterminals of
G, such that for any X, Y ∈ N we have X < Y if there exists a syntax tree
of some word of L in which X is a descendant of Y . We topologically sort, in
O(n) time, the nonterminals of G, which gives such an ordering.

Then, for every X ∈ N , in the increasing order, we compute tb(LG(X), t).

More precisely, tb(LG(X), t) is computed as the minimum, over all rules with
X on the left side, of the sums of the throughput balances of the right-hand
side symbols. The value tb(LG(X), t) is stored in an array requiring O(|N |)
memory space.

Each production rule is taken into consideration once only, consequently the
overall cost is linear in the size of the input grammar. 2

The following lemma shows that we can bound the density of the set of mean
weights of words of a finite language.

Lemma 3 Let L ⊂ Σ+ be a finite language, ρ : Σ 7→ IN a weight function,
and m the maximum length of a word of L, i.e., m = max{|w| | w ∈ L}. The
minimum difference between mean weight of two words of L is not smaller
than 1

m2 . I.e., for every w1, w2 ∈ L:

ρ(w1) > ρ(w2) ⇒ ρ(w1) − ρ(w2) ≥
1

m2
.

PROOF. We have:

∆ =
ρ(w1)

|w1|
−

ρ(w2)

|w2|
> 0, |w1||w2|∆ = |w2|ρ(w1) − |w1|ρ(w2) > 0 .

Since |w2|ρ(w1) − |w1|ρ(w2) is an integer, |w1||w2|∆ ≥ 1. i.e., ∆ ≥ 1

m2 . 2

Theorem 4 Let G be a grammar of size n defining a finite language L with
weight function ρ over alphabet Σ such that maxa∈Σ ρ(a) − mina∈Σ ρ(a) =

5

d. There exists an O(n log md) time algorithm that computes throughput(L),
where m is the maximum length word of L.

PROOF. The throughput of L belongs to the interval [mina∈Σ ρ(a), maxa∈Σ ρ(a)].
Using Lemma 2, we can perform a binary search in this interval to deter-
mine the sub-interval [r − 1

m2 , r], for some real value r, which must contain
the throughput of L, i.e., r − 1

m2 ≤ throughput(L) ≤ r or equivalently, by
Lemma 1,

tb(L, r −
1

m2
) ≥ 0 ≥ tb(L, r).

Let wr be that word from L for which ρr(wr) = tb(L, r). One can show that
ρ(wr) and throughput(L) are both in the interval. Consequently, by Lemma 3,
throughput(L) = ρ(wr).

The binary search reducing an interval of size d to a size not bigger than
1

m2 takes O(log md) iterations and, by Lemma 2, each iteration works in O(n)
time. Finding word wr and then computing its mean weight ρ(wr) can be done
in O(n) time. For that, during the last iteration the procedure described in the
proof of Lemma 2 has to be slightly extended; for every X ∈ N , we need to
store a production rule correponding to the throughput balance tb(LG(X), r),
i.e., for which the sum of the throughput balance of the right-hand side symbols
equals tb(LG(X), r). The set of the stored production rules defines a one-word
grammar corresponding to wr, from which ρ(wr) can be easily calculated in
O(|N |) time.

Thus, the overall time complexity of finding throughput(L) is O(n log md). 2

4 Throughput invariant grammar transformation

In this section we show how to convert any context-free grammar G = (Σ, N, P, S)
into another grammar G′ = (Σ, N ′, P ′, S ′) that generates a finite language,
such that throughput(L(G)) = throughput(L(G′)). The main idea behind the
transformation is the observation that the throughput of L(G) is either equal
to the mean weight of some word w ∈ L(G), whose syntax tree is at most of
depth |N |, or it is equal to the mean weight of some word w1w2 ∈ Σ+, not
necessarily in L(G), such that there exists in G a syntax tree TX of type as
shown in Figure 1, for some X ∈ N .

Let G = (Σ, N, P, S) be a 2-reduced grammar of size n. We define the following

grammar Fin(G)
def

= G′ = (Σ, N ′, P ′, S ′) generating a finite language as

6

v1

w1 w2

v0

Fig. 1. Syntax tree TX : nodes v0 and v1 are labeled by the same nonterminal X.

w1 w2

v0

v1

Fig. 2. Every synatax tree in G′ (solid lines) corresponds to an initial part of many
syntax trees in G (solid and dashed lines). The root v0 is labeled by XX

|N | in G′ and

by X in G. Every inner node on the path from v0 to v1 is labeled by Y X
k in G′, for

some Y ∈ N and k ∈ {1, . . . , |N |}, and by Y in G. All other inner nodes of solid-line
tree are labeled by Yk in G′, for some Y ∈ N and k ∈ {1, . . . , |N |}, and by Y in G.
The subtree rooted in v1 (dashed lines) is any syntax tree in G with v1 labeled by
X.

follows:

• The set of nonterminals N ′ is defined as the union N ′ = N ′
f ∪ N ′

r ∪ {S ′},
where:
· S ′ is the new axiom symbol,
· For every X ∈ N and k ∈ {1, . . . , |N |} there is a nonterminal Xk in N ′

f .
Intuitively, for every nonterminal X ∈ N , we create |N | nonterminals

X1, . . . , X|N | in N ′
f ; LG′(Xk) will correspond to the finite subset of LG(X)

with syntax trees not higher than k. In particular, if LG(X) is finite then
LG(X) = LG′(X|N |).

· For every X,Y ∈ N and k ∈ {1, . . . , |N |}, there is XY
k in N ′

r.
We say that X ∈ N is recursive if there is a syntax tree in G with

two nodes both labeled by X and such that one node is a proper ancestor
of the other. For every recursive nonterminal X ∈ N and a nonterminal
Y ∈ N , we create |N | nonterminals XY

1 , . . . , XY
|N | in N ′

r. For every syntax

tree in G′ with its root labeled by XX
|N | there will exist an infinite number

of syntax trees in G as depicted in Figure 2.
• The set of production rules is the union P ′ = Pf ∪ Pr ∪ Pi.

In order to define those production rules we will introduce the following

7

partial mappings:
ψ : IN × (N ∪ Σ) 7→ (N ′

f ∪ Σ)∗ — is defined as

ψ(k, A)
def

=

A if A ∈ Σ

Ak−1 if A ∈ N, k > 1

undefined otherwise

φ : IN × N × (N ∪ Σ) 7→ (N ′
r ∪ Σ)∗ — is defined as

φ(k,X,A)
def

=

ε if A = X

AX
k−1 if A ∈ N, A 6= X, k > 1

undefined otherwise

· For every X → A1 . . . Aj ∈ P and k ∈ {1, . . . , |N |} such that ψ(k, Ai) is
defined for all i ∈ {1, . . . , j}, there is a rule

Xk → ψ(k, A1) . . . ψ(k, Aj)

in Pf .
· For every X → A1 . . . Aj ∈ P , Y ∈ N , k ∈ {1, . . . , |N |}, and l ∈
{1, . . . , j}, such that φ(k, Y,Al) and ψ(k, Ai) are defined for all i ∈ {1, . . . , l−
1, l + 1, . . . , j}, there is a rule

XY
k → ψ(k,A1) . . . ψ(k, Al−1)φ(k, Y, Ai)ψ(k,Al+1) . . . ψ(k, Aj)

in Pr.
· Pi = {S ′ → XX

|N | | X ∈ N} ∪ {S ′ → S|N |}

The new grammar G′ generates a finite number of syntax trees not higher
than |N | + 1. G′ is of size O(n3), where n is the size of G.

Example 5 Consider the following context-free grammar G = (Σ, N, P, S)
where

• Σ = {a, b, c},
• N = {X,Y },
• P = {X → b, X → aY, Y → Xc},
• S = X.

The corresponding finite language grammar Fin(G) = G′ = (Σ, N ′, P ′, S ′) is:

• N ′ = N ′
f ∪ N ′

r ∪ {S ′}, where:
N ′

f = {X1, X2, Y1, Y2}
N ′

r = {XX
1 , XX

2 , Y X
1 , Y X

2 , XY
1 , XY

2 , Y Y
1 , Y Y

2 }

8

u2 u3 u4 u5u1

S

v1

v2

Fig. 3. A syntax tree T with 〈T 〉 > 0. Nodes v1 and v2 are labeled by the same
nonterminal.

• P ′ = Pf ∪ Pr ∪ Pi where:
Pf = {X2 → b, X1 → b, X2 → aY1, Y2 → X1c}

Pr =
{

XX
2 → aY X

1 , Y X
2 → c, Y X

1 → c, XY
2 → a, XY

1 → a, Y Y
2 → XY

1 c
}

Pi =
{

S ′ → X2, S ′ → XX
2 , S ′ → Y Y

2

}

After trimming, the grammar has the following set of productions:

X2 → b, XX
2 → aY X

1 , Y X
1 → c, XY

1 → a, Y Y
2 → XY

1 c,
S ′ → X2, S ′ → XX

2 , S ′ → Y Y
2 .

with axiom S ′. The language of the grammar is {b, ac}.

In order to prove that throughput(L(G)) = throughput(L(G′)) we need some
auxiliary results (the proof is omitted).

Lemma 6 For all w, u ∈ Σ+ we have:

ρ(w) ≤ ρ(u) ⇒ ρ(w) ≤ ρ(wu) = ρ(uw) ≤ ρ(u).

Let T be a syntax tree of G. By 〈T 〉 we denote the number of different pairs
of nodes (v1, v2) of T such that v1 and v2 both carry the same label, and v1 is
a proper ancestor of v2.

Lemma 7 Let G = (Σ, N, P, S) and G′ = (Σ, N ′, P ′, S ′) be context-free gram-
mars such that G′ = Fin(G). For every syntax tree T of G either:

(1) there exists a word w′ ∈ L(G′) such that ρ(w′) ≤ ρ(w(T)); or
(2) there exists a syntax tree T0 of G such that 〈T0〉 < 〈T 〉 and ρ(w(T0)) ≤

ρ(w(T)).

PROOF. If 〈T 〉 = 0 then by construction of G′, w(T) ∈ LG′(S|N |) ⊆ L(G′)
and the first statement of the lemma holds.

9

Otherwise, consider Figure 3, where w(T) = u1u2u3u4u5. Let (v1, v2) denote
a pair of occurrences of the same nonterminal X ∈ N in the syntax tree T ,
such that the level of v1 is minimal, i.e., there is no pair of nodes (p1, p2) in
the syntax tree T and that p1 is a proper descendant of v1 and p1, p2 have the
same labels. Therefore, in the syntax tree T the distance between v1 and v2,
and between v1 and all the leaves of v1 which are not leaves of v2 (i.e., u2, u4)
is at most |N |.

Thus, u2u4 is a word in LG′(XX
|N |), i.e., in LG′(S ′), and the tree T0 obtained

from T by replacing sub-tree v1 by v2, is the syntax tree of G such that
〈T0〉 < 〈T 〉 and w(T0) = u1u3u5. By Lemma 6, either ρ(u2u4) ≤ ρ(w(T)) or
ρ(u1u3u5) ≤ ρ(w(T)). 2

Lemma 8 For each word w ∈ L(G), there exists a word w′ ∈ L(G′), such
that ρ(w′) ≤ ρ(w).

PROOF. By induction on 〈T 〉 for a syntax tree for w in G using Lemma 7. 2

Lemma 9 For any ε > 0 there exists a word w ∈ L(G), such that

ρ(w) < throughput(L(G′)) + ε .

PROOF. G′ generates a finite language, consequently there exists a non-
empty word w0 ∈ L(G′), such that ρ(w0) = throughput(L(G′)).

If w0 is generated by a syntax tree with its root labeled by a nonterminal
X|N | ∈ N ′

f , by construction of G′, we have w0 ∈ L(G), and the statement of
the lemma is obviously true.

Otherwise, w0 is generated by a syntax tree T ′ of G′ with its root labeled by
XX

|N | ∈ N ′
r, as depicted in Figure 2 (solid lines), with w0 = w1w2.

For every k > 0 there exists a syntax tree Tk of G, as depicted in Figure 4,
which generates u1w

k
1uwk

2u2 for some u1, u2, u ∈ Σ∗.

For any ε > 0 and any y ∈ Σ∗, there exists a sufficiently large k such that

ρ(wk
0y) < ρ(w0) + ε

In particular, for y = u1uu2, we have

ρ(w(Tk)) = ρ(u1w
k
1uwk

2u2) = ρ(wk
0u1uu2) < ρ(w0) + ε,

which proves the statement of the lemma. 2

10

u

w1

w1 w2

w2

u1 u2

vk−1

vk

v2

v1

S

Fig. 4. A syntax tree Tk of G = (Σ, N, P, S) generating word u1w
k
1uwk

2u2. Nodes
v1, . . . , vk are all labeled by the same X ∈ N .

Lemmas 8 and 9 imply directly that our transformation of a context-free gram-
mar does not change the throughput of the language. This can be formulated
formally as follows:

Lemma 10 For every context-free grammar G, we have:

throughput(L(G)) = throughput(L(Fin(G))) .

5 Polynomial-time algorithm for throughput computation of a context-

free language

Results from two previous sections, namely Theorem 4 and Lemma 10 lead
us to the following procedure calculating throughput of a language given by a
context-free grammar G.

Algorithm Throughput-Calculation;

Phase 1: Compute grammar G′ = Fin(G) as
described

in Section 4;

Phase 2: Find the throughput of L(G′) and re-
port

it as the throughput of L(G).

11

Theorem 11 Let G = (Σ, N, P, S) be a context-free grammar of size n, and
ρ : Σ 7→ IN a weigh function such that maxa∈Σ ρ(a) − mina∈Σ ρ(a) = d. There
exists an O(n4 + n3 log d) time algorithm finding throughput(L(G)).

PROOF. We have already proved that the two step procedure for calculating
throughput of L(G) gives the correct result.

By construction, transformation Fin(G) yields a context free grammar G′ of
size O(n3) with all syntactic trees no higher than n. Thus, the maximum
length m of a word from L(G′) is in O(2n).

Finally, by Theorem 4, finding the throughput of L(G′) takes O((n3) log md)
time, i.e., O(n4 + n3 log d) since m is in O(2n). 2

6 Conclusions

We presented the first polynomial-time algorithm computing the throughput
of context-free languages. The only previously known solution to this problem
was an approximate approach presented in [1]. Our solution may be viewed
as a generalization of the technique of Karp [4], working for finite digraphs, to
the case of the class of graphs generated by context-free grammars. However,
the approach presented here is different from that given by Karp.

Unfortunately the complexity of our approach is substantially higher. An open
problem is then to improve the proposed time complexity, possibly by using a
completely different approach. In particular, one can try to exploit explicitly
the commutative property of the given grammar, i.e., the fact that permuting
the symbols of a word or permuting the symbols on the right-hand side of
production rules does not affect the throughput of the generated language.
We implicitly used (to some extent) the commutation property in our paper
while we constructed the transformation Fin of a given grammar to one gen-
erating a finite language. The resulting language, though finite, could be of
doubly exponential size. Fortunately it was possible to overcome the doubly
exponential barrier.

More explicit, direct application of the commutation property may lead to
better algorithmic bounds.

Our interest in this problem was directly fuelled by its application in system-
performance analysis and, more precisely, in the performance measurement
of network packet processing engines. We believe that other applications, in
particular in string processing or some optimization problems are also possible.

12

References

[1] J. Czyzowicz, W. Fraczak, M. Yazdani, Throughput of high-performance
concatenation state machines, in: Proceedings of the sixteenth australasian
workshop on combinatorial algorithms (AWOCA2005), 2005, pp. 85–94.

[2] M. Yazdani, W. Fraczak, F. Welfeld, I. Lambadaris, A criterion for speed
evaluation of content inspection engines, in: Fifth International Conference on
Networking (ICN 2006), IEEE Computer Society, 2006, pp. 19–24.

[3] A. Dasdan, R. Gupta, Faster maximum and minimum mean cycle algorithms for
system-performance analysis, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 17 (10) (1998) 889–899.

[4] R. Karp, A characterization of the minimum cycle mean in a digraph, Discrete
Mathematics 23 (1978) 309–311.

[5] R. J. Parikh, On context-free languages, J. ACM 13 (4) (1966) 570–581.

[6] M. W. Hopkins, D. Kozen, Parikh’s theorem in commutative kleene algebra, in:
Logic in Computer Science, LICS 1999, 1999, pp. 394–401.

[7] J. Esparza, S. Kiefer, M. Luttenberger, On fixed point equations over
commutative semirings, in: 24th International Symposium on Theoretical
Aspects of Computer Science, STACS 2007, Vol. 4393 of LNCS, Springer, 2007,
pp. 296–307.

13

