
Partitioned Scheduling of Parallel Real-time Tasks on

Multiprocessor Systems

Frédéric Fauberteau, Serge Midonnet, Manar Qamhieh

To cite this version:

Frédéric Fauberteau, Serge Midonnet, Manar Qamhieh. Partitioned Scheduling of Parallel
Real-time Tasks on Multiprocessor Systems. 23rd Euromicro Conference on Real-Time Systems
(ECRTS’11), 2011, United States. pp.1-4, 2011, WIP. <hal-00620398>

HAL Id: hal-00620398

https://hal-upec-upem.archives-ouvertes.fr/hal-00620398

Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48346587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00620398


Partitioned Scheduling of Parallel Real-time Tasks on Multiprocessor Systems

Frédéric Fauberteau† Serge Midonnet† Manar Qamhieh∗†
†Université Paris-Est

LIGM, UMR CNRS 8049
{frederic.fauberteau,serge.midonnet}@univ-paris-est.fr

∗ECE
qamhieh@ece.fr

Abstract

In this paper, we focus on the scheduling of periodic
fork-join real-time tasks on multiprocessor systems.
Parallel real-time tasks of fork-join model have strict
parallel segments with no laxity. We propose a parti-
tioned scheduling algorithm which increases the laxity
of the parallel segments and therefore the schedula-
bility of tasksets of this model. A similar algorithm
has been proposed in the literature but it produces
job migrations. Ours avoid the use of job migrations
in order to create a portable algorithm that can be
implemented on a standard Linux kernel. Results of
extensive simulations are provided in order to analyze
the schedulability of the proposed algorithm compared
to the previous one.

1. Introduction

Chip manufacturers are tending to build multi-
processors and multi-core processors as a solution to
overcome the physical constrains of the manufacturing
process, such as chip’s size and heating. Because
of that, parallel programming has gained a higher
importance although it has been used for many years.

The concept of parallel programming is to write a
code that can be executed simultaneously on different
processors, and usually these programs are harder to
be written than sequential ones, since it is necessary
to keep the parallel partitions independent in order to
execute them correctly on different processors at the
same time. This condition might not be affected by
reasons like shortage in processors, which requires the
use of partitioning. In real-time systems and as we
found in literature [1], [2], a parallel task can be:
• rigid if the number of processors is assigned

externally to the scheduler and can’t be changed
during execution,

• moldable if the number of processors is assigned
by the scheduler and can’t be changed during
execution,

• malleable if the number of processors can be
changed by the scheduler during execution.

From practical implementation’s point of view, there
exist certain libraries, APIs and models created spe-
cially for parallel programming like POSIX threads[3]
and OpenMP [4], except those are not designed for
real-time systems normally, but in this paper we will
work on periodic real-time tasks of fork-join structure,
the same structure OpenMP is based on, and which
can be seen as a rigid type of real-time parallelism.

The remainder of this paper is organized as follows:
in Section 2, we present our task model. Section 3
describes a related work on the same model. Section 4
explains the proposed algorithm followed by the anal-
ysis in section 5. and we finish with perspective and
the conclusion in sections 6 and 7.

2. Fork-Join Model

As shown in Figure 1, the fork-join model defines a
task as a collection of several segments, both sequential
and parallel, and this task always starts by a sequential
segment, then it forks into several parallel independent
threads (parallel segment) to be joined finally in an-
other sequential segment. It is important to note that
all parallel segments in a task shares the same number
of processors, and it should be mentioned that tasks of
this model have implicit deadline (deadline of a task
equals its period ).

Here is an example of the fork-join model: τi =
((C1

i , P
2
i , C

3
i , ..., P

si−1
i , Csii ),mi, Ti) where:

• si is the total number of segments (sequential and
parallel) and it is an odd number according to
definition of the model,



• mi is the number of parallel threads on which
parallel segments will be executed. mi > 1 for
parallel segments, and equals to 1 for sequential
segments.

• Csi is the Worst-Case Execution Time (WCET)
of sequential segment, where s is an odd number
and 1 ≤ s ≤ si,

• P si is the WCET of parallel segment, where s is
an even number and 1 ≤ s ≤ si,

• Ti is the period of the task.
7 8 9 10 11 12 13

S1 S3P11 P12 P21

P’22

14 15 16 171 4

P13

3

S2 P23P’’22

Deadline Di

Ci
1

Pi
2,1

Ci
3 Ci

5 Ci
kPi

2,2

Pi
2,n

Pi
4,1

Pi
4,2

Pi
4,n

Figure 1. Fork-Join structure model.

What we can notice about this model is the fact
that by default all parallel segments have to finish
their execution before the following sequential segment
starts. Therefore these segments have strict laxity and
their execution times equal to their deadlines.

Figure 2 shows a fork-join task, which can be rep-
resented as well according to the previous definition:
(1, 2, 2, 3, 1), 3, 17).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 2. Example of fork-join task.

3. Related work

Due to the strict laxity of the parallel segments
in the fork-join task model, Lakshmanan et al. in
[5] propose an algorithm to increase the laxity of
the parallel segments by reducing the parallelism in
the fork-join model when possible. Their algorithm
stretches the main thread to its deadline, as shown in
Figure 3. It aims to execute as much parallel segments
as possible in the master string thread (the thread
that contains the sequential segments and it is also
considered as the entry and end point of the program),
this master string will be stretched to its deadline so as
to be executed on an exclusive processor with 100%
processor’s utilization. What remains of the parallel
segments will be distributed on the available processors

using partitioning algorithm called FBB-FFD (stands
for Fisher Baruah Baker - First Fit Decreasing) [6].

This algorithm enhances the schedulability of par-
allel tasks of fork-join structure, by increasing the
parallel segments deadline and getting rid of their strict
execution time, as shown in the example of Figure 2
and 3, parallel segment P1,3′ has a deadline of 4 time
units instead of 2 which was exactly the worst case
execution time of that parallel segment, then it has to
migrate to the master string so as to fill the master
thread. This laxity in the deadline will increase the
chances of the parallel segments to be scheduled using
FBB-FFD as it will be clarified later in the analysis.

The number of job migrations in this algorithm
could be either 0, if the algorithm succeeded in
scheduling all the parallel segments into the master
string, creating a sequential task that will be executed
on one processor. The other possibility for the num-
ber of job migrations will be the number of parallel
segments in the task, as shown in Figure 3 , both P1,3

and P2,3 are used to fill the slack time in the master
string, and they both will migrate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 3. Task Stretch Transformation.

Task Stretch Transformation (TST) has a constraint
when it comes to practical implementation, that in
order to achieve a fully stretched master string, then
job migration is inevitable. As shown in the Figure
3, segments P1,3 and P2,3 have to start execution
on a certain processor then they will migrate to the
master string’s processor in order to fill it. According
to the paper, this can be easily implemented on a
specific Linux system called Linux/RK [7] (stands for
Linux Resource Kernel), which is a real-time extension
to the Linux kernel to support the abstractions of a
resource kernel. But our idea is to implement this
algorithm directly on a standard Linux enhanced with
PREEMPT_RT kernel patch.

4. Segment Stretch Transformation

In order to eliminate the use of job migration, some
modifications have to be done on the original pseudo-
code, which we called Segment Stretch Transformation
(SST), the basic idea of TST stayed the same, we will
keep trying to avoid the fork-join model by stretching
the master string, but now it will be filled only with



complete parallel segments with no migration, the fol-
lowing example will better explain the modifications.

We have a task τ1 = ((1, 2, 2, 3, 1), 3, 17) as shown
in Figure 2, which is a typical fork-join task. In Figure
2 we show the result of applying TST on τ1. We can
notice that segment P1,3 and P2,3 have to be executed
on 2 processors. But in SST and as shown in Figure 4,
the master string is only filled by complete parallel
segments. Even though the master string is not fully
stretched (there still a 1 unit of time not used before the
deadline), the parallel segment P2,3 will not be used.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 4. Segment Stretch Transformation.

In TST, the master string has to be filled with all
the parallel segments with equal partitions, which will
increase the laxity of all the segments equally. But
at the same time, it will increase the number of job
migrations as well. However, in SST, the master string
will be filled initially with the pre-calculated number
of parallel strings, then we check if we can add other
single parallel strings to the master string (like P1,3 in
Figure 4). The remaining parallel segments of the task
with the master string will be scheduled using FBB-
FFD partitioning algorithm. The laxity of the master
string will increase since we did not fill it completely
with parallel segments.

So, from a practical implementation point of view,
the SST can be fully implemented on a standard
Linux RT kernel with no special extensions or batches
added, and by only using an ordinary function like
sched_set_affinity(), each segment of the parallel task
can be assigned to a specific processor, according to the
scheduling results of any partitioning algorithm (e.g.
FBB-FFD).

5. Analysis

In order to provide a practical analysis for these al-
gorithms, we are going to use rtmsim (stands for Real-
Time Multiprocessor SIMulator). It is a free simulation
software developed at Université Paris-Est Marne-
la-Vallée, France [8]. This simulation software helps
analyzing the performance of real-time scheduling al-
gorithms by choosing one of the pre-coded approaches
and run in through extensive simulation.

For our extensive simulation analysis, we considered
4 identical processors with taskset utilization varies

from 0.025 to 0.975 times the number of processors in
steps of 0.025, and for each utilization value we run
10,000 tasksets each of 16 parallel tasks with implicit
deadline, which will be scheduled using FBB-FFD
partitioning algorithm.

We started the analysis by creating a dataset of par-
allel tasks of the fork-join model, and by using FBB-
FFD directly to schedule this dataset, we got the results
shown in Figure 5(a) (the curve with the rectangle
points). And as we can see from this result, FBB-
FFD failed to schedule the dataset after processors’
utilization of 0.1. This can be explained by knowing
that FBB-FFD is using the following condition. For
each task τi to be placed on processor k, the following
condition has to be true:

di −
∑

τj∈τ(πk)

RBF ∗(τj , di) ≥ ei

where τi is the task to be scheduled on processor k,
πk is the set of tasks already placed on processor k
and RBF ∗(τj , di) = ej +

ej
Pj

∗ di

(a) Curves of comparison.

Ui TST SST Ui TST SST
0.250 9991 9996 0.450 2477 2460
0.275 9967 9970 0.475 1380 1366
0.300 9887 9895 0.500 739 731
0.325 9614 9623 0.525 316 313
0.350 8889 8898 0.550 144 144
0.375 7596 7592 0.575 44 46
0.400 5872 5872 0.600 33 32
0.425 4110 4102 0.625 14 12

(b) Values of comparison.

According to this condition, if the task to be sched-
uled has both execution time and deadline of the same
value, then it will be executed on an empty processor,
considering the condition will fail if the processor al-
ready executes other tasks. And since parallel segments
in the fork-join model have execution times equal to
their deadlines always (Figure 2), then each parallel
segment will need to be executed on a processor
exclusively.



But by looking at the characteristics of the parallel
segments, we can notice that they have offsets which
means that they will not arrive all at the same time
to be scheduled, and by using a suitable type of
partitioning algorithm that can handle offsets we might
be able to enhance the results of the simulation. FDD-
RTA (First Fit Decreasing-Response Time Analysis)
could be a good choice.

A second analysis is performed to compare TST
and SST algorithms, by using the same model of
extensive simulation described previously, the result of
simulation is shown in Figure 5(a), where TST is the
curve with the round points and SST is the curve with
the square ones. As we can see, both curves are the
same with no noticeable difference. There is a slight
difference between these 2 algorithms as represented
in Figure 5(b). The interesting result we can notice is
the incomparability of these 2 algorithms.

6. Perspective

The temporal constraints of the theoretical real-time
systems such as the worst case execution time, the
deadline and the period, all these values can be esti-
mated and specified. But when it comes to commercial
real-time systems, some interferences and variations
affect those constraints, the causes vary from the
tasks to exceed their WCET, OS overheads to system
interrupts [9], those variations made the constraints
harder to be controlled and studied.

There exist some mechanisms to compute the vari-
ations in the temporal constraints and to analyze the
interferences, among those we can mention as example
the sensitivity analysis, which "provides useful infor-
mation for changing the implementation by giving a
measure of those computation times that must be re-
duced to achieve feasibility"[10]. And task’s allowance
which is defined as the maximum extra duration that
can be granted to a faulty task without compromising
the timeliness constraint of the task [11].

The principal idea of the algorithm TST is to design
a full master string, where the processor’s utilization
is 100%, and there is no laxity which means the
worst execution time of the task equals to its deadline.
However, in our proposed algorithm SST, we stopped
the migration and created a non-full master string by
filling it with complete segments, which increased the
laxity of the master string as well as the parallel
segments, and it is a step forward to build a robust
system.

In the future, we aim to provide an algorithm which
computes a robust partitioning, in which we maximize
the acceptable variations of the temporal constraints,

taking into account the variations of possible WCET
overruns. As well as maximizing the duration of a task
without compromise missing its deadline [12].

7. Conclusion
In this paper, we presented an algorithm that trans-

forms parallel tasks of fork-join structure in order
to increase the laxity of the parallel segments, and
eliminate the use of job migration, which makes it
possible to be implemented on standard Linux ker-
nel. The analysis of this algorithm is performed by
using extensive simulations in order to compare its
performance with the original taskset model and TST
algorithm. Our next step will be to study the possibility
of proposing a robust partitioning algorithm so as to
maximize the laxity of the segments and tolerate the
execution overruns of the parallel task model.

References
[1] J. Goossens and V. Berten, “Gang ftp scheduling of

periodic and parallel rigid real-time tasks,” in Proc. of
RTNS, 2010, pp. 189–196.

[2] S. Kato and Y. Ishikawa, “Gang edf scheduling of
parallel task systems,” in Proc. of RTSS, 2009, pp. 459–
468.

[3] “Posix threads programming.” [Online]. Available:
https://computing.llnl.gov/tutorials/pthreads/

[4] “Openmp.” [Online]. Available: http://www.openmp.
org

[5] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar,
“Scheduling parallel real-time tasks on multi-core pro-
cessors,” in Proc. of RTSS, 2010, pp. 259–268.

[6] N. Fisher, S. Baruah, and T. P. Baker, “The parti-
tioned scheduling of sporadic tasks according to static-
priorities,” in Proc. of ECRTS, 2006, pp. 118–127.

[7] S. Oikawa and R. Rajkumar, “Portable rk: A portable
resource kernel for guaranteed and enforced timing
behavior,” in Proc. of RTAS, 1999, p. 111.

[8] “rtmsim.” [Online]. Available: http://igm.univ-mlv.fr/
AlgoTR/rtmsim

[9] R. I. Davis and A. Burns, “Robust priority assignment
for fixed priority real-time systems,” in Proc. of RTSS,
2007, pp. 3–14.

[10] E. Bini, M. Di Natale, and G. C. Buttazzo, “Sensitivity
analysis for fixed-priority real-time systems,” in Proc.
of ECRTS, 2006, pp. 13–22.

[11] L. Bougueroua, L. George, and S. Midonnet, “Deal-
ing with execution-overruns to improve the temporal
robustness of real-time systems scheduled fp and edf,”
in Proc. of ICONS, 2007, p. 8pp.

[12] F. Fauberteau, S. Midonnet, and L. George, “A robust
partitioned scheduling for real-time multiprocessor sys-
tems,” in Proc. of DIPES, 2010, pp. 193–204.

https://computing.llnl.gov/tutorials/pthreads/
http://www.openmp.org
http://www.openmp.org
http://igm.univ-mlv.fr/AlgoTR/rtmsim
http://igm.univ-mlv.fr/AlgoTR/rtmsim

	Introduction
	Fork-Join Model
	Related work
	Segment Stretch Transformation
	Analysis
	Perspective
	Conclusion
	References

