
A Reflective Implementation of Java Multi-Methods

Rémi Forax, Étienne Duris, Gilles Roussel

To cite this version:

Rémi Forax, Étienne Duris, Gilles Roussel. A Reflective Implementation of Java Multi-
Methods. IEEE Transactions on Software Engineering (TSE), 2004, 30 (12), pp.1055–1071.
<hal-00620605>

HAL Id: hal-00620605

https://hal-upec-upem.archives-ouvertes.fr/hal-00620605

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00620605

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005 1

A Reflective Implementation of Java Multi-Methods
Rémi Forax, Etienne Duris and Gilles Roussel

Abstract— In Java, method implementations are chosen at
runtime by late-binding with respect to the runtime class of just
the receiver argument. However, in order to simplify many pro-
gramming designs, late-binding with respect to the dynamic type
of all arguments is sometimes desirable. This behavior, usually
provided by multi-methods, is known as multi-polymorphism.

This paper presents a new multi-method implementation based
on the standard Java reflection mechanism. Provided as a
package, it does not require any language extension nor any
virtual machine modification. The design issues of this reflective
implementation are presented together with a new and simple
multi-method dispatch algorithm that efficiently supports class
loading at runtime. This implementation provides a practicable
and fully portable multi-method solution.

Index Terms— Java, Polymorphism, Reflection, Dynamic Class
Loading.

I. INTRODUCTION

IN order to ease reusability and maintenance, software
engineering widely uses object-oriented language features.

Among them, late-binding and polymorphism are probably
the most important, because they provide a simple way to
dynamically choose implementations (behavior) according to
the context. However, in most object-oriented languages, a
single object is taken into account by this context. For instance,
in Java, late-binding only concerns the target object (receiver)
of the method call. This is generally sufficient for typical
operations whose semantics depends on the kind of single
object but, when the context dynamically depends on the kind
of several objects, late-binding on all arguments is sometimes
more suitable. This feature, known as multi-polymorphism, is
usually achieved by multi-methods.

Multi-methods have already been largely studied [1]–[9] and
their usefulness has been established in several application
fields, such as binary methods [10]. Among the advantages
of multi-methods, we are more concerned with their ability
to simplify the specification of algorithms outside the classes
they are dealing with [11]–[13]. Moreover, we believe that this
feature is particularly valuable in the context of component-
based applications, for their development, maintenance and
reusability.

Application fields of multi-methods are an important issue
but the question of their implementation in Java is also prob-
lematic. Indeed, whatever the target language, most existing
implementations for multi-methods assume that all possible
argument types are known at compile time. However, this
restriction is not fully compliant with Java’s philosophy, where
any new type could be dynamically discovered (loaded) at

Authors are with Institut Gaspard-Monge, Université de Marne-la-Vallée,
5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, France. E-mail:
forax@univ-mlv.fr, duris@univ-mlv.fr, roussel@univ-mlv.fr. Corresponding
author is Rémi Forax. Phone: 33.1.60.95.75.55, Fax: 33.1.60.95.75.57.

runtime. In this paper, we propose a multi-method implemen-
tation, the Java Multi-Method Framework (JMMF), together
with a new algorithm that fulfills this requirement.

Beyond the adequacy of our approach with dynamic class
loading, we have chosen to provide users with multi-methods
through a pure Java library, using the Core Reflection API.
First, this approach is relatively simple and practical to imple-
ment compared to implementations based on language or JVM
extensions. Next, JMMF allows standard Java environments to
use multi-methods without any customization.

Reflection-based implementations are known to yield per-
formance drawbacks. Nevertheless, we think that such an ap-
proach can be made practicable if implementation algorithms
are carefully tuned to perform as many computations as pos-
sible at creation time to reduce invocation time overhead, but
without inducing impracticable space usage. We claim that this
approach, consisting in finding a good compromise between
space, creation time and invocation time, is a general design
concern related to reflection-based implementations [14], [15].

The rest of the paper is organized as follows. First, section II
explains how multi-methods could be useful in the design and
implementation of algorithms, especially in component-based
applications; it gives multi-method use-case examples using
JMMF. Then, section III discusses design issues in the imple-
mentation of such a feature, arguing the worth of a reflection-
based approach provided that space and time overhead are
finely tuned. Next, section IV dives into the description of
the algorithms developed for JMMF. Its performances are
discussed in section V, before situating it with respect to
related works in section VI and finally concluding.

II. WHY MULTI-METHODS?

After showing how multi-polymorphism could ease the de-
sign and maintenance of algorithms for existing components,
this section outlines the use of our multi-method solution,
JMMF, by giving examples that illustrate its capabilities.

A. Algorithm design with components

Object filtering against their class is an essential feature of
most object-oriented languages. It is usually provided by a
late-binding mechanism that allows method implementations
(behavior) to be chosen dynamically according to the type
of the receiving object. This dispatch greatly simplifies code
reusability since programmers do not have to implement
complex selection mechanism nor to modify the code when
new classes implementing the method are introduced.
void f(I i) { i.m(); }

If a programmer wants to reuse such an implementation
(f), objects (classes) just have to implement the method m

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

(the interface I). However, nowadays, most applications are
built using components provided by off-the-shelf libraries. By
component, we mean any reusable library or package, such
as specific window toolkits or Java standard libraries. Pro-
grammers usually do not have access to their implementation
classes and thus cannot simply add methods to component
objects. Classically, there are two techniques to work around
this difficulty: class inheritance and delegation.

1) Single dispatch limitations: Inheritance is not always
applicable. Indeed, in addition to the obvious case of final
classes, components sometimes do not give access to object
creation and programmers only manipulate objects through
well-defined public interfaces of the component. In these
cases, they could obtain already-constructed objects of these
types (interfaces) through factory methods that hide the con-
crete class of created objects; the programmer never calls the
new instruction.

It is always possible to use delegation by defining new
wrapping classes for each data type. This leads to data
structure duplication and to dedicated type filtering. For large
data structures or intricate sub-typing relations, this approach
may become resource demanding, but also burdensome to
implement and maintain.

Thus, none of these approaches is fully satisfactory to allow
reusability using late-binding on component objects.

2) Double dispatch lack of generality: One way to avoid
this problem is to implement method behaviors outside the
component object, separating the data (o) from the behavior
(b.visit()) as the visitor design pattern [11] does.
void f(Object o, Behavior b) { b.visit(o); }

This design pattern simulates late-binding on the argument
of a visit(o) method using classical late-binding on an
o.accept(Visitor v) method provided by the component
object. However, this design pattern has several limitations.

First, it can only be used with components engineered
to accept visitors, i.e., implementing an accept() method.
Second, the filtering provided by the visitor design pattern
is restricted to one argument and cannot be generalized if
filtering on several arguments is required. Finally, the behavior
is strongly tied to the component type hierarchy: it must im-
plement a special Visitor interface which, for full generality,
must include one visit() method for each accessible type
of the component. This has two drawbacks. The programmer
must implement every visit() method even if some of them
could have been captured by a widening reference conversion
of the argument type. Moreover, any extension of the type
hierarchy requires the Visitor interface to be extended; then,
all existing visitor implementations have to be modified since
they must implement the new visitor interface to be accepted
by components.

3) Multi dispatch: These requirements and limitations show
that a general argument filtering mechanism, independent of
the argument type hierarchy, would greatly simplify soft-
ware engineering and reusability, especially in the context of
component-based applications.

In order to perform such a filtering against dynamic types of
all arguments, an ad-hoc solution consists in using a cascade of

instanceof tests. However, this approach is static, tedious to
implement and difficult to manage, particularly in the presence
of inheritance and dynamic loading which are basic features
of Java.

This can also be achieved by introducing late-binding
on all method arguments. This feature, known as multi-
polymorphism, is usually provided by multi-methods and has
already been largely studied [1]–[9]. Multi-methods preserve
locality since a method can be specified for each specific
tuple of argument types. They also provide some kind of
encapsulation since all these methods could be specified in
the same class (hierarchy). Some implementations of multi-
methods based on cascades of instanceof tests are available
for Java through language extensions and provide strong static
type-checking [4], [7]. It is not possible to fairly compare
these works with our since we do not provide static type-
checking. Nevertheless, language extensions constraint their
portability whereas static type-checking requires all possible
method signatures to be known at compile time.

B. Application domains
Natural domains of application for multi-methods are imple-

mentations that handle large data structures with complex sub-
typing relations such as parsers [12], [13] (i.e. JAXP, J2EE)
and window toolkits (i.e. Swing). However, the application
field of multi-methods is not restricted to these domains.

Only considering J2SE packages, many examples can
be found. For instance, the design of callback filtering
handle(Callback[]) in javax.security.auth.call-
back.CallbackHandler or those of collection copying
copy(Collection, Collection) could be simplified with
multi-methods. This observation, not specific to Java, has
already been noticed for other languages. Studies on binary
methods [10] give many examples of multi-method use-cases
with two arguments. Chambers also pointed out multi-method
use-cases in the design of the Cecil compiler [16].

As a single example, consider the following code part of
the method deepEquals(Object[] a1,Object[] a2) of
class java.lang.Arrays in JDK 1.5 that deeply compares
its two arguments.
public static boolean deepEquals(Object[] a1,Object[] a2){

...
for (int i=0; i<length; i++) {

Object e1=a1[i]; Object e2=a2[i];
...
boolean eq;
if (e1 instanceof Object[] && e2 instanceof Object[])

eq=deepEquals((Object[])e1,(Object[])e2);
else if (e1 instanceof byte[] && e2 instanceof byte[])

eq=equals((byte[])e1,(byte[])e2);
... // similar tests for all primitive type arrays...
else eq=e1.equals(e2);
if (!eq) return false;

...

This is a typical example of implementation that extends
functionalities of an existing component without modifying
it. Indeed, rather than modifying implementation classes for
arrays, the deepEquals() method specifies the algorithm
outside these legacy classes (here of the old J2SDK) and has
to take into account multiple combinations of argument types.
This produces pieces of code that are intricate and difficult to
maintain or modify.

FORAX et al.: A REFLECTIVE IMPLEMENTATION OF JAVA MULTI-METHODS 3

C. JMMF package use-case

We propose a new implementation for multi-method dis-
patch, especially developed for Java and fully portable. It
allows dynamic class loading with a minimum overhead
compared with existing algorithms that were conceived for
languages where all types are known at compile time. Since the
dispatch of multi-method in Java needs dynamic type informa-
tion, and in order to leave the language and the virtual machine
unchanged, our implementation provides multi-methods as
a pure Java package using the reflection mechanism: the
programmer only needs to add a JAR file in its classpath and
to use its functionalities to create and invoke multi-methods.
In this package, called the Java Multi-Method Framework
(JMMF), a multi-method stands as an object representing a
set of methods that have the same name and the same number
of parameters. For a given context, a target object and a tuple
of actual argument types, our method resolution provides the
corresponding most specific method (see section IV-A.5).

To give an intuitive idea of the JMMF package and its use-
cases, we illustrate the processes of constructing, using and
extending a multi-method through an evolving example. This
example comes from a real design concern encountered in the
development of a parser generator, in which multi-methods
simplify the specification of the semantics associated with
grammar rules.

Suppose that you want to define the syntax and the seman-
tics of an operator + that either corresponds to the addition
of numbers or to the concatenation between sequences of
characters, like Java does. In our parser generator, the syntax
of such an expression looks like the following piece of code:
Expr -> Expr "+" Expr {plus($1, $2)}

| Number
| CharSequence

The semantics of the operator + is associated with the multi-
method plus(). It varies with respect to the types of its
operands which, here, are either the abstract class Number
or the interface CharSequence of the package java.lang.

1) Simple semantics: Let us first consider the class Plus
that defines the semantics for the operator + as it was imple-
mented before J2SDK. It adds its operands if they are both
numbers and it concatenates their string representations if the
first operand is a character sequence.
import fr.umlv.jmmf.reflect.*;
public class Plus {

public Number plus(Number l,Number r)
{ return new Double(l.doubleValue()+r.doubleValue()); }
public CharSequence plus(CharSequence l,CharSequence r)
{ return l.toString()+r; }
public CharSequence plus(CharSequence cs,Number n)
{ return cs.toString()+n; }
MultiMethod mm=MultiMethod.create(Plus.class,"plus",2);
public Object plusMM(Object l,Object r) throws Exception
{ return mm.invoke(this,new Object[]{l,r}); }

}

In this class, the programmer has to specify a plus()
method for each pair of types defining the semantics of the
operator, as if multi-polymorphism was available at language
level. Next, to simulate multi-polymorphism, he has to con-
struct a multi-method instance that stands for all the methods
in the class with name plus and with exactly two parameters;
he does it calling the static method MultiMethod.create().

Even if this suffices to call the invoke() method on the multi-
method object, to enhance the readability, the programmer
usually defines a hint method plusMM() with two Object
parameters to perform the polymorphic dispatch between all
plus() methods with respect to the dynamic type (class) of
its arguments. Note that in this case, the method plusMM()
must be provided to allow static type checking (here, Object
is a common super-type for parameters). However, this method
may have been declared abstract and the bytecode of its
implementation could have been generated automatically by
some bytecode generator such as ASM [17] and added by a
specific class loader, for instance using inheritance.

When the invoke() method is called, transmitting the
argument as an Object array, our method resolution mecha-
nism for multi-methods looks for the most specific method
plus() according to the actual type of the arguments and, if
any, invokes it. When no such method exists, an exception is
thrown.

The class Plus could then be used to perform evaluations:
public class Evaluation {

public static void eval(Plus p,Object l,Object r)
throws Exception { System.out.println(p.plusMM(l,r)); }

public static void main(String[] args) throws Exception
{ Evaluation.example(new Plus()); }
public static void example(Plus p) throws Exception {

Object d=new Double(3.14);
Object cs=new StringBuffer("abc");
Object i=new Integer(1); Object b=new Byte((byte)8);
eval(p, d, d); // 6.28
eval(p, cs, cs); // abcabc
eval(p, cs, d); // abc3.14
eval(p, i, i); // 2.0
eval(p, d, i); // 4.140000000000001
eval(p, i, b); // 9.0
eval(p, i, cs); // throws NoSuchMethodException

}
}

The observed behavior complies with the semantics we
chose. Note that the concatenation of a number with a char-
acter sequence, in this order, throws an exception.

2) Simple enhancements: In our framework, it is easy to
extend the operator’s semantics to be able to concatenate
a number with a character sequence (as J2SDK currently
does). We just have to specify a new method CharSequence
plus(Number n, CharSequence cs).

It is also easy to specialize the semantics for particular types
of arguments. For instance, in the previous example, the result
is wrapped in a Double object even if both arguments are
integers. This may be unsatisfactory. To implement this special
behavior, it suffices to define a specific method Integer
plus(Integer l, Integer r).

Even if the class Plus belongs to an unmodifiable com-
ponent, it is possible to achieve these two enhancements
by inheritance, as illustrated by the following BetterPlus
extension class.
public class BetterPlus extends Plus {

public CharSequence plus(Number n,CharSequence cs)
{ return n.toString()+cs; } // For symmetry...
Integer plus(Integer l,Integer r) // For integers...
{ return new Integer(l.intValue()+r.intValue()); }

}

To use this new semantics, the developer just has to provide
a BetterPlus object to reuse the method example(), as
proposed in following example:

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

public class BetterPlusMain {
public static void main(String[] args) throws Exception
{ Evaluation.example(new BetterPlus()); }

}

Note that the code related to multi-methods is inherited
from the class Plus and the class BetterPlus never directly
references the package JMMF. Thus, this extension class may
have been developed without any knowledge of multi-methods,
in order to dynamically extend an existing parser. For instance,
the method main of class BetterPlusMain could contain the
following code, expecting the name of the extension class from
the user.
Evaluation.example((Plus)(Class.forName(args[0])

.newInstance()));

This implementation yields the expected results since our
dispatch technique dynamically considers all methods plus()
with two parameters in the class BetterPlus. This is due to
the first argument of the invoke() method, set to this in
the super class Plus. This provides JMMF with incremental
definition capabilities and leads to a behavior that complies
with the concept of inheritance in object-oriented languages.

The call plusMM(i,b) of the previous example still returns
a double object (9.0). Indeed, since Byte is not a sub-type
of Integer, any call with an argument of type Byte does
not match with the integer’s plus() method. A solution that
takes into account all combinations of integer types (Integer,
Short and Byte) requires the developer to explicitly define
all (nine) methods plus(). Nevertheless, this solution is more
elegant and maintainable than a cascade of instanceof tests.

Note that the “symmetric” semantics of the operator +
could have been achieved by specifying only the two follow-
ing methods, Number plus(Number n1, Number n2) and
CharSequence plus(Object o1, Object o2), the latter
matching all cases but those of the former1.

3) Ambiguous argument type: Imagine that the Expr gram-
mar rule is extended with binary integers represented as a
sequence of characters ’0’ and ’1’. These binary integers
may be implemented by users with a class that both extends
Number and implements CharSequence as follows:
class BinaryInteger extends Number implements CharSequence{}

From the point of view of the + operator’s semantics,
objects of type BinaryInteger are ambiguous. Indeed, since
the types Number and CharSequence are not comparable,
nothing allows us to decide if such objects have to be added or
concatenated. More generally, anywhere a BinaryInteger is
used, there is an ambiguity if several methods could accept one
of its super-types. This behavior is illustrated by the following
piece of code.
Object cs = new StringBuffer("abc");
Object bi = new BinaryInteger("101");
Object p = new BetterPlus();
p.plusMM(bi, bi);

/* throws fr.umlv.jmmf.reflect.MultipleMethodsException:
plus(java.lang.Number,java.lang.CharSequence)
plus(java.lang.Number,java.lang.Number)
plus(java.lang.CharSequence,java.lang.CharSequence)
plus(java.lang.CharSequence,java.lang.Number) */

1These solutions are not equivalent (see section IV-A.5). In the Plus class,
methods are not comparable while there, the first method is more specific
than the second.

p.plusMM(cs, bi);
/* throws fr.umlv.jmmf.reflect.MultipleMethodsException:

plus(java.lang.CharSequence,java.lang.CharSequence)
plus(java.lang.CharSequence,java.lang.Number) */

Again, it is possible to refine the semantics by implementing
a specific method plus() for each particular case. Indeed,
the exact semantics of the operator could be specified for
any combination of argument types, depending on the user’s
choice. Nevertheless, by taking into account type relations, it
suffices to define some generic methods, provided that a single
method could be unambiguously associated with any pair of
argument types. For instance, the following class BinaryPlus
defines methods in order to add its arguments if both are
BinaryInteger or if one is BinaryInteger and the other
is an Integer. In all other cases, it concatenates their string
representations.
import fr.umlv.jmmf.reflect.*;
public class BinaryPlus extends BetterPlus {

public BinaryInteger plus(BinaryInteger l,BinaryInteger r)
{ return new BinaryInteger(l.intValue()+r.intValue()); }
public CharSequence plus(BinaryInteger bi,CharSequence cs)
{ return plus(bi.toString(),cs); }
public CharSequence plus(CharSequence cs,BinaryInteger bi)
{ return plus(cs,bi.toString()); }
public CharSequence plus(BinaryInteger bi,Number n)
{ return plus(bi.toString(),n); }
public CharSequence plus(Number n,BinaryInteger bi)
{ return plus(n,bi.toString()); }
public BinaryInteger plus(BinaryInteger bi,Integer i)
{ return new BinaryInteger(bi.intValue()+i.intValue()); }
public BinaryInteger plus(Integer i,BinaryInteger bi)
{ return new BinaryInteger(i.intValue()+bi.intValue()); }

}

The dispatch algorithm provided by JMMF saves the pro-
grammer the bother of developing and maintaining an ob-
fuscated cascade of instanceof tests that switches between
plus implementations with respect to the dynamic type of the
arguments.

Attempting to incrementally develop the corresponding
instanceof solution will allow anyone to grasp the interest
of the JMMF solution.

III. DESIGN CHOICES

There are multiple ways to implement special language
features like multi-polymorphism in the Java environment.
Among them, approaches based on reflection are certainly the
most flexible but also the least employed. In this section, we
first compare them with other existing approaches and then
we give general guidelines to make them practicable.

The most classical approach to implement Java extensions
consists in modifying its syntax and in providing the cor-
responding translator or compiler [4]. This approach has the
advantage of being static and thus, allows many computations
to be performed before execution. However, it has the cor-
responding drawback: it can only use information available at
compile time. However, in the context of Java’s dynamic class
loading, some essential information may only be available at
runtime.

A second approach, which is sometimes complementary
when runtime information is required, consists in modifying
the Java Virtual Machine or its semantics. It provides precise
runtime information on the executing application with mini-
mum overhead, but it requires tricky knowledge of the internal

FORAX et al.: A REFLECTIVE IMPLEMENTATION OF JAVA MULTI-METHODS 5

of a specific virtual machine. Furthermore, applications imple-
mented using such a modified virtual machine require a special
execution environment. This is more tedious: Java portability
is lost.

An alternative approach, chosen to implement JMMF or
others [14], [15], consists in using reflection to access JVM’s
runtime internal structures. It has the advantage of being
simple and directly accessible to any Java programmer through
the Java Core reflection API. Moreover, its deployment only
consists in adding a single JAR file in the “classpath” of a
standard Java environment. Unfortunately, this attractive pro-
perty is obtained to the detriment of performance. Firstly, the
reification of JVM internal objects induces some performance
overhead compared to a direct access. For instance, a simple
reflective method call is 200 times slower than a classical
method call and still 10 times slower if the JVM is started is
server mode, but this behavior is JRE-dependent (tested with
j2sdk1.4.2 for Linux on Pentium 2.4 Ghz with 512 Mb) pro-
posed to reduce this cost using code generation and we hope
that this technique will be included in future virtual machine
releases. Secondly, since Java does not allow modifications of
its internal structures through reflection, some data structures
have to be duplicated outside JVM, in the application. For
instance, if you want to associate information with classes,
you cannot add a field to java.lang.Class objects but
you have to rely on an external structure such as hashtables.
Thus, using reflection may lead to important performance
penalties in terms of time and space if implementation is
carried out without caution. We believe that a general strategy,
already used by other frameworks [14], allows enhancement
of reflection-based implementations.

First, to reduce time overhead, as many computations as
possible have to be transfered from invocation time (just in
time) to creation time. Indeed, durations of many computations
remain negligible (see section V) compared to class loading
(disk access and verification) and then, are not perceived by
users. Nevertheless, these pre-computations imply that some
states must be stored in order to be available just in time.
Programmers have to find the right balance between invocation
time, creation time and space. For instance, in the context of
multi-methods, it is possible to determine, at creation time,
which method will be called for every “interesting” tuple of
available types. This strategy transfers most computations from
invocation time to creation time but, in the worst case, it
produces large data structures whose size is proportional to
the number of “interesting” types to the power of the number
of parameters. Thus, the choice of the algorithm is essential to
make reflective implementation practicable in time and space.

Second, to reduce space overhead, as many data as pos-
sible must be shared. This can be achieved through specific
algorithm implementations, such as table rows sharing [18].
However, this sharing should also conform to classical object-
oriented design principles. Indeed, it is usually possible to
share data between objects of the same class, e.g. through
static fields, and between classes if they are related by in-
heritance. These data structures should support incremental
modifications to insure that creation time information is still
usable when some new information is discovered at invocation

time. Again, it is primordial to drive algorithmic choices by
space concerns.

Developers must also take into account multi-threading.
Unfortunately, this worry is usually contradictory with time
and space performances. Indeed, to maintain data coherence,
synchronization is usually required and induces extra duration
for method calls. More precisely, a method call is about 10
times slower if synchronized, even without mutual exclusion
delay. One way to avoid synchronization consists in relaxing
coherence and duplicating data but it leads to space overhead.

All these precepts have driven our algorithmic choices
during JMMF implementation, that has been developed for
environments where space concerns are not crucial, e.g. work-
stations. However, the constraints of a specific environment
may induce different weighting between space, creation time
and execution time. For instance, small devices’ lack of
memory may lead to implementations that sacrifice time for
space.

IV. IMPLEMENTATION OF THE JAVA MULTI-METHOD
FRAMEWORK

Basically, the algorithm we propose for multi-method dis-
patch consists of two main steps. The first one is processed at
the multi-method creation time, that is when the static method
MultiMethod.create() is invoked. This step performs
reflection-based analysis and computes several data structures
that will be used each time a dispatch is necessary for this
multi-method. The second step is processed at invocation time,
that is when the method MultiMethod.invoke() is called.
Based on the data structures built at the first step, the set of
applicable and accessible methods for this call site is refined in
order to provide the most specific method, possibly requiring
a disambiguation process. This step is comparable to dynamic
tests performed at runtime with instanceof guards. These
two stages are described in detail in the next two sections.

A. Data structure construction at creation time
1) Syntactically applicable methods: Let us consider the

multi-method constructed by MultiMethod.create(host-
Class,"methodName",p), where hostClass is a concrete
class in which each accessible method of name methodName
with p parameters is public, non-static and does not override
another method in a super-class of hostClass. These restric-
tions are made in order to simplify explanations but they will
be relaxed in sections IV-C and IV-D.

Given these hypotheses, we determine the set of meth-
ods hosted by class hostClass, declared with the name
methodName and with exactly p parameters. Thus, we add to
methods declared in hostClass those inherited from super-
classes and super-interfaces. We call it the set of syntactically
applicable methods since only the name and the number of
parameters are matching with the required method. In the
classical Java method resolution ([19] § 15.12.2.1), the notion
of applicable methods is used. This means, in addition to our
syntactically applicable notion, that the type of each argument
can be converted2 into the type of the corresponding parameter

2These conversions correspond to our sub-typing relation defined in sec-
tion IV-A.2.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

and we will need to take care, further, of this “semantic”
information. As in the classical method dispatch algorithm,
return types and exceptions thrown by methods are not taken
into account.

The set of method signatures associated with the multi-
method is formally represented by a set M, that is sometimes
called the behavior of the multi-method:

M = { m1 : methodName(T1,1, ..., T1,p),
...
mn : methodName(Tn,1, ..., Tn,p) }

where Ti,j identifies the declared type of the j-th parameter
of the method mi.

This set is arbitrarily indexed by integers i from 1 to n.
These indexes uniquely identify each method (signature) since
we have first assumed that no method overrides another. As
a corollary, note that if mi and mk have exactly the same
signature then i equals k. Thus, for the sake of simplicity, we
identify a method by its signature.

From the implementation point of view, this implies that
a table allows us to associate each signature in M (a
given mi) with the corresponding implementation (an object
of class java.lang.reflect.Method). This association is
done when looking for accessible methods in the host class
using the reflexive method getMethods() on hostClass.
This table is used, at invocation time, to actually invoke the
chosen method, and could be compared to vtables used by
classical dispatch techniques [20].

2) Sub-typing relations and parameter type hierarchy: In
this paper, we improperly call sub-typing relation, and denote
T ′ ≤ T , the Liskov’s substitution principle [21] allowing any
value of type T ′ to be used in place of a value of type T .
We consider this sub-typing relation as the reflexive transitive
closure of a non reflexive relation of direct sub-type, denoted
T ′ <1 T .

[Object

Object

D

B

[D

[B

E

JI

C

F

K L

long

float

double

byte

short char

int

boolean

Cloneable

T’T

Interface

Class

primitive

Serializable

direct supertype of

Fig. 1. Classes, interfaces, arrays and primitive types hierarchies

In Java [19], this sub-typing relation is provided by identity
conversion, widening primitive conversion, sometimes called
implicit primitive cast (cf. Fig. 1), and widening reference
conversion provided by several contexts (explicit inheritance,
implicit inheritance of class Object, interface implementation
and some other cases specific to Java – e.g., with arrays as
shown in Fig. 1, where [B is an array of B).

To compare types to each other and deal with sub-
typing relations, the JMMF package provides a method

getSupertypes(T) that returns the set of all direct super-
types of T , i.e., {T ′ | T <1 T ′}.

3) Directed acyclic graph: To represent these relations
between types, we use a graph G where vertices stand for
types and edges for direct sub-typing relations. Thus, G is
oriented and acyclic (from the essence of sub-typing), but it
is not a tree because of the multiple super-typing allowed by
some Java features3.

Definition 1 (DAG as type hierarchy): Given a set of meth-
ods M related to a multi-method definition, let Tparam =
{Ti,j | ∃(i, j) ∈ [1..n]× [1..p]} be the set of all types declared
as a parameter type of these methods. We consider the type
hierarchy associated with M as a Direct Acyclic Graph (DAG)
G whose set of vertices is V(G) =

⋃

T ′∈Tparam
{T |T ′ ≤ T}

and where there is an edge T → T ′ if and only if T ′ <1 T .
We use the classical notation T →∗ T ′ if T ′ ≤ T .

Fig. 1 gives examples of Java type hierarchies, involving
classes, interfaces, and primitive types, which are very close to
our expected DAG G. Note that this figure does not distinguish
between extends, implements or other sub-typing (assignment
conversion) relations.

Given a multi-method, the corresponding DAG is con-
structed by adding each type that appears as a parameter type
of an applicable method (in Tparam), together with all its
super-types, recursively obtained by the getSupertypes()
method, until reaching the fix point4.

4) Annotate the DAG: In order to compare methods from
their p-uples of declared types (signatures), we annotate each
type considered in the DAG by its ability to be an acceptable
argument type for methods of the multi-method. This annota-
tion is done for each method and at each parameter position.
It is represented by a bit matrix AT of n rows and p columns,
where the value AT [i][j] stands for the ability of T to be the
type of the j-th argument of method mi.

Definition 2 (Type annotation): The annotation ATi,j
[r][c]

of type Ti,j at position c of method mr is set to 1 if and only
if one of the following is true (otherwise ATi,j

[r][c] = 0):
• i = r and j = c, i.e., Ti,j = Tr,c is the c-th declared

parameter type of method mr;
• ∃ Tr,c ∈ V(G) (c-th parameter type of method mr) such

that ATr,c
[r][c] = 1 and Tr,c →∗ Ti,j .

Lemma 1 (Acceptable argument types): A type T ∈ V(G)
is acceptable as the c-th argument of method mr if and only
if AT [r][c] = 1.

If a value of type T is acceptable as the j-th argument
of method mi, then any value of any sub-type T ′ is also
acceptable. Thus, the constructive algorithm for annotations
successively considers each parameter type Ti,j in Tparam

and sets to 1 its annotation bit AT [i][j]. Annotations are then
recursively propagated onto AT ′ [i][j] for every sub-type T ′

of T considered in the DAG. This propagation, that follows
the edge of the DAG, could simply perform a bitwise OR with
previously computed annotations. The fact that our graph is
acyclic implies that the propagation terminates.

3For instance, the ability of an interface to extend more than one interface.
4Termination is insured by the types Object, double and boolean that

are the roots of these hierarchies.

FORAX et al.: A REFLECTIVE IMPLEMENTATION OF JAVA MULTI-METHODS 7

As an example, consider the following multi-method that
exploits a part of the (particularly intricate) type hierarchy of
Fig. 1:
MultiMethod mm=MultiMethod

.create(HostClass.class,"myMethod",3);

where accessible and syntactically applicable methods my-
Method() declared in HostClass with exactly three param-
eters are defined with the following signatures:

M = { m1 : myMethod(B,C,K),
m2 : myMethod(D,I,I),
m3 : myMethod(B,I,J) }

The annotated DAG obtained for this multi-method is pre-
sented in Fig. 2 where a bullet points out the fact that the
annotation AT [i][j] is set to 1. Dark bullets stand for set
annotations (types declared as parameter) and gray bullets for
propagated ones.

Object

C

D

B K

I J

T
m3
m2
m1

a
r
g
2

a
r
g
3

a
r
g
1

B D

The fact that T could be the type of
− the 3rd argument of m1 and
− the 2nd argument of m3
is depicted by:

is a supertype of

Fig. 2. An example of annotated DAG

5) Partial order over methods: This annotated DAG al-
lows us to establish relations between methods based on
their respective p-uples of parameter types. Indeed, from the
sub-typing relation between types, we define the relation of
specificity between two methods as follows:

Definition 3 (Specificity relation between methods): A me-
thod mi : (Ti,1, ..., Ti,p) is more specific than a method mk :
(Tk,1, ..., Tk,p), denoted mi ≤ mk, if and only if, for each
parameter position j, Ti,j is a sub-type of Tk,j (or they are
equal):

mi : (Ti,1, ..., Ti,p) ≤ mk : (Tk,1, ..., Tk,p)
⇔ ∀j ∈ [1..p], Ti,j ≤ Tk,j

We also say in this case that mk is less specific than mi.
At this point, it is worthwhile to note three important things.
1) The intuition behind the relation “mi is more specific

than mk” is that mk could always be invoked with any
p-uple of argument types accepted by mi. For instance,
consider the methods m1:(B,C,K) and m3:(B,I,J).
Since B ≤ B, C ≤ I and K ≤ J, m1 is more specific
than m3, i.e., m3 could accept as argument any triple
of types acceptable for m1.

2) Next, it is possible, according to definition 3, that both
mi ≤ mk and mk ≤ mi; this case only arises when, for
all position j, Ti,j = Tk,j . This implies that mi = mk

since we have assumed that two methods with the same
signature are necessarily equal (section IV-A.1).

3) Finally, it is not always possible to order two methods
with respect to the specificity relation, i.e., some mi

could be neither more specific nor less specific than
some mk. These methods are called not comparable and
provide us with a partial order on the set of methods M.
Two main reasons could yield not comparable methods:

• declared parameter types at a given position are not
comparable, e.g. m2 : (D,I,I) and m3 : (B,I,J)
are not comparable because I � J and J � I;

• parameter sub-typing relations are opposite for two
positions, e.g., m1:(B,C,K) and m2:(D,I,I) are
not comparable because D ≤ B and C ≤ I.

Given a multi-method, these relations between methods are
stored in a bit matrix PO of n rows and n columns.

Definition 4 (Partial order over methods): Given two me-
thods mr and mc, PO[r][c] is set to 1 if and only if mc ≤ mr,
and is set to 0 in all other cases.

A bit set to 1 at PO[r][c], meaning that mc ≤ mr, implies
that method mr could accept as argument any p-uple of values
that is acceptable by the method mc. A row PO[r] is then a
bit array whose values at 1 identify the set (the indexes) of
methods that are more specific than mr.

Since sets are represented by bit arrays, we will use both
notations equally, i.e., a method is in a set if the bit at its
index is set to 1. Furthermore, we can equally use the set-
theoretical operations (union/intersection) and bitwise opera-
tions (OR/AND).

The algorithm that allows the structure PO to be computed
is very simple. In order to know if a method mc is more
specific than a method mr, it suffices to verify, for each
parameter position j, that the parameter type Tc,j is an
acceptable argument type for method mr at this position. Since
this information is precisely represented by the annotation
ATc,j

[r][j], we could formally define, and then compute, the
values of the matrix PO:

Theorem 1 (PO as annotation conjunction):

PO[r][c] = 1 ⇔ ANDj∈[1..p]ATc,j
[r][j] = 1

Corollary 1 (Computation of less specific methods):

PO[∗][c] = ANDj∈[1..p]ATc,j
[∗][j]

Considering our multi-method example, the matrix PO is
computed as follows:

PO[∗][1] =AB[∗][1] ANDAC[∗][2] ANDAK[∗][3]

=
[•
◦
•

]

AND
[•
•
•

]

AND
[•
•
•

]

=
[•
◦
•

]

PO[∗][2] =AD[∗][1] ANDAI[∗][2] ANDAI[∗][3]

=
[•
•
•

]

AND
[◦
•
•

]

AND
[◦
•
◦

]

=
[◦
•
◦

]

PO[∗][3] =AB[∗][1] ANDAI[∗][2] ANDAJ[∗][3]

=
[•
◦
•

]

AND
[◦
•
•

]

AND
[◦
◦
•

]

=
[◦
◦
•

]

thus,

PO =
[• ◦ ◦
◦ • ◦
• ◦ •

]

and POt =
[• ◦ •
◦ • ◦
◦ ◦ •

]

The third row of this matrix (third column of POt, the
transposed matrix of PO) provides us with the information
that m1 and m3 are more specific than m3.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

B. Multi-method dispatch at invocation time

The process described in the previous section is completely
done at creation time. We now consider the invocation time
process: given a p-uple of (dynamic) argument types of the
multi-method invocation, our aim is to dispatch the invocation
to the most specific method, if any, corresponding to this
p-uple of types. A first problem can arise if one of these
types does not appear in the DAG we built. This type can
be unknown at compile time since, in Java, classes can be
loaded dynamically at runtime. Thus, even a static analysis of
the type hierarchy at creation time cannot identify such a type.

1) Completing DAG with dynamic types: For instance,
consider the following invocation:
D d = new D(); C c = new C();
J l = createDynamicInstanceAssignableToJ();
mm.invoke(target,new Object[] {d,c,l});

In such a case, the type L of l5 is only known at runtime.
We suppose here that a class L, implementing interface J,
is dynamically loaded (for instance from the network) by
the method createDynamicInstanceAssignableToJ().
Thus, we need to complete our DAG G in order to establish
relations between L and the other types and also to compute
its annotations.

DAG completion at invocation time is performed with the
same algorithm as at creation time. A newly discovered type
T is first added as a vertex of the DAG, together with all
its super-types that do not yet appear in G. Annotations of
all newly added types are recursively deduced (by bitwise OR
propagation) from those of their direct super-types. Actually,
both DAG completion and annotation initialization could be
performed at the same time.

Note that the data structure of partial order, PO, is not
concerned by these modifications since newly discovered types
are necessarily different from parameter types.

2) Semantically applicable methods: Type annotations,
computed either at creation or invocation time, tell us if a
single given type is acceptable as argument at a given position
of a given method. For a p-uple u = (T1, ..., Tp) of argument
types of a given invocation site, we are looking for the set
(represented by a bit array), denoted SAu, of semantically
applicable methods that could accept u as argument types.

Definition 5 (Semantically applicable methods): Let u =
(T1, ..., Tp) be a p-uple of types in V(G), SAu[i] is set to
1 if and only if u is a p-uple of argument types acceptable for
mi.

Theorem 2 (SAu as annotation conjunction):

SAu = ANDj∈[1..p]ATj
[j]

The number of bit set to 1 in SAu gives us important
information, summarized below in three cases and further
illustrated by examples u1, u2 and u3:

1) if no bit is set to 1, then there is no semantically appli-
cable method. In this case, our implementation throws
an exception of class NoSuchMethodException;

2) if only one bit at index i is set to 1, then mi is the
single semantically applicable method. In this case, the

5By convention, we denote by a lowercase character such as t a variable
that contains an object of type T.

method invoke() of the object Method corresponding
to mi is called;

3) if more than one bit is set to 1, then multiple methods
are semantically applicable and we do not yet have
enough information to decide what will happen. Some
disambiguation processing is needed.

Let u1 = (B,C,D) be the p-uple of argument types of
a multi-method mm invocation. Then, theorem 2 leads to
SAu1

= AB[∗][1] AND AC[∗][2] AND AD[∗][3] and then
[•
◦
•

]

AND
[•
•
•

]

AND
[◦
◦
◦

]

=
[◦
◦
◦

]

provides that there is no seman-
tically applicable method for u1.

If u2 = (D,C,L), the same principle gives SAu2
=

[◦
◦
•

]

.
The only semantically applicable method for u2 is then m3 :
(B,I,J).

Now, let u3 be (D,C,C). Since SAu3
=

[◦
•
•

]

, there are
two semantically applicable methods for u3, m2 : (D,I,I)
and m3 : (B,I,J), but we cannot decide which one must be
invoked.

3) Disambiguation process from method’s partial order:
For a given p-uple u of argument types, the disambiguation
process presented in this section is only performed when the
number of semantically applicable methods is greater than one.
In this case, we want to determine if one of these methods
is more specific than all the others. In order to get this
information, we first compute a bit array MSAu.

Definition 6 (Most specific semantically applicable):

MSAu = SAu AND (AND{l | SAu[l]=1} POt[∗][l])
Theorem 3 (Set of methods associated with MSA): The

set of methods {mi|MSAu[i] = 1} is either empty or a
singleton.

Theorem 4 (Most specific method): A method mi is the
most specific semantically applicable method for u if and only
if MSAu[i] = 1.

Corollary 2 (Existence of a most specific method): Given
a p-uple u, a most specific method does not exist if and only
if ∀i ∈ [1..n], MSAu[i] = 0.

In order to illustrate these situations, consider the p-uple
u3 = (D,C,C) for which we deduced, in section IV-B.2 and
from SAu3

=
[◦
•
•

]

, that there was an ambiguity. Now, from

definition 6 and from the matrix POt computed in section IV-
A.5, we could compute MSAu3

:

MSAu3
= SAu3

AND (AND{l | SAu3
[l]=1} POt[∗][l])

=
[◦
•
•

]

AND (POt[∗][2] AND POt[∗][3])

=
[◦
•
•

]

AND (
[◦
•
◦

]

AND
[•
◦
•

]

) =
[◦
•
•

]

AND
[◦
◦
◦

]

=
[◦
◦
◦

]

Then, from corollary 2, there is no most specific method
for u3. This is not surprising since the only semantically
applicable methods for u are m2 and m3, and they are
not comparable. In this case, our implementation throws an
exception of class MultipleMethodsException.

Let us consider another example of invocation with the
p-uple of types u4 = (B,C,F) where F is a class that
implements K. The DAG is then completed (annotations on
F are exactly those of K) and, from theorem 2, SAu4

=
[•
◦
•

]

.

FORAX et al.: A REFLECTIVE IMPLEMENTATION OF JAVA MULTI-METHODS 9

Since there is an ambiguity, we compute MSAu4
:

MSAu4
= SAu4

AND (AND{l | SAu4
[l]=1} POt[∗][l])

=
[•
◦
•

]

AND (POt[∗][1] AND POt[∗][3])

=
[•
◦
•

]

AND (
[•
◦
◦

]

AND
[•
◦
•

]

) =
[•
◦
•

]

AND
[•
◦
◦

]

=
[•
◦
◦

]

Thanks to this disambiguation technique, we are now able
to determine that the most specific semantically applicable
method is m1.

C. Inheritance and multi-methods

As for other classes, inheritance between multi-methods
allows simple code genericity and provides reusability. For
instance, remember our introductory example that defines the
semantics of the operator +. From the basic multi-method def-
inition in class Plus, the semantics could be refined by adding
specifications through inheritance, like the class BetterPlus
does. This could even be done if this class is tardily loaded,
after the basic multi-method was created and even invoked. In
this case, both semantics could separately coexist, the basic
one and the refined one, and they rely on the same multi-
method base class. From the implementation point of view,
this feature is expected to be provided incrementally without
requiring all data structures used by the refined multi-method
to be computed from scratch.

The JMMF implementation accepts a multi-method call
with a target object instance of a sub-type SubHostClass
of the class HostClass specified at creation time (if the
argument type is not a sub-type of HostClass, an excep-
tion is thrown). Since the class SubHostClass may con-
tain additional syntactically applicable methods to those of
HostClass, data structures computed for HostClass are
not valid. Then, at first sight, we would have to compute at
invocation time all data structures related to the multi-method.
Fortunately, an interesting property of our algorithm is that it
enables a total data structure sharing between HostClass and
SubHostClass.

To establish this property, we are going to show that given a
set of syntactically applicable method signatures M, all com-
putations can be performed on a larger set M′. Thus, method
signatures coming from HostClass and from SubHostClass
could coexist in a single data structure.

Definition 7 (Multiple sets notations): Let M and M′ be
two sets of method signatures. We define AT and A′

T the
corresponding annotations of type T for, respectively, M and
M′. In the same way we define PO′, SA′

u and MSA′
u.

Moreover, if M ⊆ M′, for each signature index i such that
mi ∈ M, we denote iM′ the index of the same signature in
M′ such that miM′ ∈ M′ and mi = miM′ .

Definition 8 (Included set mask): Given two sets of me-
thod signatures M and M′ such that M ⊆ M′, we define
the bit array MaskM such that,

∀mi ∈ M′, MaskM[i] = 1
⇔ ∃ mk ∈ M such that i = kM′ .

Intuitively, the mask MaskM is able to hide (by a bit set
at 0) in M′ all method signatures that are not considered
in M, and to leave visible in M′ the method signatures

that are already considered in M, even if they are registered
with a different index. This mask will allow us to prove
the equivalence between structures computed from M and
structures computed from the part of M′ that corresponds to
M, modulo an index permutation.

Theorem 5 (Included set data structures): Given a type T

and two sets of method signatures M and M′ such that M ⊆
M′:

1) AT [i][j] = 1 ⇔ A′
T [iM′][j] = MaskM[iM′] = 1;

2) PO[i][k] = 1 ⇔ PO′[iM′][kM′] = MaskM[iM′] =
MaskM[kM′] = 1.

3) SAu[i] = 1 ⇔ SA′
u[iM′] = MaskM[iM′] = 1.

Definition 9 (Semantically applicable, included set): Let
M and M′ be two sets of method signatures such that
M ⊆ M′. Given a p-uple u of argument types, we define
the semantically applicable methods of M for u (denoted
SA′

u,M) from the semantically applicable methods of M′ for
u as follows:

SA′
u,M = SA′

u AND MaskM

The bit array SA′
u,M provides us with a set of methods

(indexes) from M′ that are not only semantically applicable
for the p-uple u but also considered in M. As we did in
section IV-B.3, we now want to know how to refine this
set if several such semantically applicable methods exist
(ambiguity). In order to disambiguate, we have to take care
that, in the set PO′t, only method indexes of SA′

u,M have to
be considered (and not all SA′

u).
Theorem 6 (Most specific method for included set): Given

two sets of method signatures M ⊆ M′:
MSAu[i] = 1 ⇔

SA′
u,M[iM′] AND (AND{l | SA′

u,M
[l]} PO′t[iM′][l]) = 1

I

Object

LK

F

J

C

ED

B

 myMethod(D d,I i1, I i2){ }
 myMethod(B b,C c,K k){ }

 myMethod(B b,I i,J j){ }
}

class HostClass {

 myMethod(D d,I i1,I i2){ }
 myMethod(D d,I i,J j){ }
 myMethod(C c,K k,E e){ }
}

class SubHostClass extends HostClass {

MMask

PO

PO t

Dispatch tables

Fig. 3. Example of data structure involved in inheritance

If the set containing both syntactically applicable method
signatures from HostClass and from SubHostClass is con-
structed without modifying indexes of HostClass signatures,
then the whole part of the computation (annotations and
partial order) that relies on HostClass can be reused. More
generally, if a new SubHostClass is discovered dynamically,

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

all previous computations can be reused provided that pre-
viously assigned indexes are not modified. Fig. 3 illustrates
such a case where the parameter type E is found in the
SubHostClass multi-method definition. The values related
to the multi-method SubHostClass are shown in gray. This
figure also represents the mask used for each class and the
table of Method instances.

D. Method restrictions

In section IV-A.1 we have supposed that all methods were
public, concrete and non-static. In this section, we will explore
which restrictions could be loosened.

For our algorithms, abstract methods behave like concrete
ones, thus there is no restriction on using abstract methods in
multi-methods.

Concerning static methods, there is no reason not to con-
sider them in the set of syntactically applicable methods. The
only special behavior they induce is when multi-method is
called with a null target reference. Then, only static methods
of the class used at creation time should be selected in
the computations. As for hiding some methods in presence
of inheritance, a mask allows all non-static methods to be
hidden. Then, static methods dispatch is processed exactly as
inheritance.

Concerning accessibility modifiers, if the method is not
public, then our implementation must check that the class
containing the invocation site of the multi-method has the
correct access rights and must throw an exception if not.
For private and default methods, extra verification should be
performed in case of inheritance. By now, our implementation
only deals with public methods.

E. The case of null

Until now, we did not consider the possibility of invok-
ing a multi-method with a null argument. However, in
mm.invoke(target, new Object[]{d,c,l}), any argu-
ment (except if a primitive type is expected) could be null.

A null argument cannot be considered as simply as a null
target (static method). Contrarily to the target case where the
null is typed by the multi-method host class, no information
allows us to type a null argument. However, it is sufficient to
consider null as a value of a special type which is a sub-type
of all types.

F. Toward Java 1.5

Version 1.5 of Java introduces new language features such
as generics, methods with variable arity parameters (varargs)
and automatic boxing/unboxing of primitive types. This will
require JMMF to be modified. Generics should not impact
our multi-method resolution approach, since method resolution
considers them as their raw type. Varargs methods require a
special treatement. It does not suffice to fix the number of
parameters according to the multi-method and to treat it as a
regular method. Indeed, to preserve backward compatibility, a
varargs method must be less specific than a classical method to
be added to the behavior. Automatic boxing and unboxing of

primitive types seems more problematic and will surely require
more time and space to be spent to find the most specific
method.

V. PERFORMANCE ISSUES

In this section, we present a performance evaluation of the
JMMF package version 0.9 which is freely available on the
Web at http://www-igm.univ-mlv.fr/˜forax/jmmf/.
First, method invocation performances of the JMMF package
are discussed. Then, multi-method creation time is measured
and a comparison between several single argument filtering
methods is given. Finally, we provide an analysis of the
memory space used by multi-methods.

To evaluate these results, one must take into account the fact
that our algorithms have been implemented outside the JVM
as stated in section III. We must also detail several points
about the type hierarchy implementation. Firstly, to allow fast
type access, annotations are not retrieved through a hierarchy
traversal, but using an auxiliary hashtable. This implementa-
tion allows us to consider that annotations are obtained with
complexity O(1). Secondly, in order to minimize space usage,
we only keep useful types in the hashtable, other types are
discarded.

Moreover, most of the time, our implementation stores bit
vectors in integer values. In these cases, bitwise operations on
such vectors and their size are in O(1).

All the tests of this section have been performed on
a 2.4GHz Pentium 4 with 512Gb of RAM using SUN
j2sdk1.4.2 03 under Linux6.

A. Invocation performances

To evaluate invocation performance, we compare invocation
times of JMMF with an implementation based on typecase
guards using instanceof which is the usual translation used
to introduce multi-polymorphism at language level [4], [7].
We did not compare directly JMMF with the jdk-SRP imple-
mentation [8] which customizes an old version7 of the JVM
since its performances are 1.2 times faster but comparable with
instanceof implementation. We also measure the evolution
of dispatch time when the number of methods increases. For
each test, we evaluate the invocation time for the JVM in
“client” and in “server” mode for ten thousand multi-method
calls with randomly chosen arguments. Finally, we compare
performance of JMMF with other techniques that only allow
late-binding on one argument.

1) Impact of argument types: For the invocation time
evaluation, we perform four tests in which the multi-method
is composed of four methods with two parameters of two
possible types. In the first test, these two types are unrelated
interfaces. In the second, they are interfaces with a direct sub-
typing relation. In the third one, they are unrelated concrete
classes and in the last one they are concrete classes with a
direct sub-typing relation. Table I summarizes the results of
these tests.

6Other versions of the SDK and other systems give comparable results.
7It is based on jdk1.2. This proves that evolution of such an implementation

is not easy.

FORAX et al.: A REFLECTIVE IMPLEMENTATION OF JAVA MULTI-METHODS 11

TABLE I
INVOCATION TIME COMPARISON: INSTANCEOF TESTS VS. JMMF

clientVM (µs) serverVM (µs)
Tests JMMF Tests JMMF

unrelated interfaces 0.197 0.293 0.232 0.159

inheritance of interfaces 0.162 0.329 0.196 0.191

unrelated classes 0.128 0.314 0.103 0.163

inheritance of classes 0.125 0.333 0.104 0.201

This table shows that the instanceof dispatch is always
faster than JMMF, except for two cases. However, perfor-
mances are always comparable (1.7 times slower) even in
the worst cases where JMMF is 2.7 times slower. The same
performance ratio is observed with a different number of
parameters and with a different number of types.

One can also notice that the invocation times of the tests
using instanceof vary substantially. First, the number of
instanceof statements varies with respect to the kind of
argument types: some instanceof statements can be omitted
if types have an inheritance relation or if they are classes rather
than interfaces (due to single inheritance). Next, variations
of the invocation times are also due to the fact that the
instanceof test is around 30% faster on classes than on
interfaces.

2) Impact of the number of methods: To evaluate the
evolution of invocation time with respect to the number
of methods, we generate methods with three parameters by
increasing the number of parameter types. The results of this
test, summarized in Fig. 4(a), show that JMMF invocation
time remains usable even in the presence of many methods.
The use of three implementations with respect to the number
of methods explains the change of slope between 64 and 125
methods.

normal
server

 0

 0.001

 0.002

 0 50 100 150 200 250 300

ms
 0.003 normal

server

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300

ms

(a) Invocation time / number of methods (b) Création time / number of methods

Fig. 4. Multi-method invocation time and creation time with respect to the
number of methods

3) Impact of primitive types: All previous tests did not use
primitive types. This is favorable to the JMMF package. In-
deed, since JMMF implementation is based on Java reflection
mechanism, primitive types need to be wrapped when used
as argument or return types. Wrapping time is comparable to
JMMF invocation time and this could significantly penalize
performance if many wrappings are required. However, prim-
itive types are typically not used for multi-dispatch but used
as return types. In these cases, wrapping does not impact too
much on performance.

B. Creation time performance

To evaluate multi-method creation time, we have measured
multi-method class loading and creation time and we have
compared it with the loading time of the corresponding class
based on instanceof. These tests have been performed on
the examples used to evaluate invocation time and they provide
the following results: the loading time of the instanceof
class is 1.24 ms8, those of the JMMF class is 1.98 ms and the
creation of the multi-method takes 0.11 ms. This benchmark
shows that multi-method creation time is very small compared
to class loading time, whereas instanceof class loading time
is comparable with the JMMF one, although better. However,
since multi-methods share the same implementation classes,
this loading is only performed once, when the first multi-
method is created.

The last benchmark, illustrated in Fig. 4(b), evaluates the
evolution of multi-method creation time when the number
of methods increases. For this test, we generate the same
classes used to evaluate invocation time. It shows again that
the JMMF approach is usable even in the presence of a large
number of methods. Multi-method creation time remains of
the millisecond order, as does class loading time.

C. Comparison with single argument late-binding methods

In previous tests, we have always used multi-methods with
multiple arguments. In this section, we now compare JMMF
with techniques restricted to a single argument late-binding
and which only accept concrete classes as parameter types.
This is clearly the worst use-case for JMMF.

We compare six techniques: Dedicated corresponds to an
implementation where a dedicated method has been added
inside the host class, Visitors corresponds to the visitor de-
sign pattern, Instanceof corresponds to the filtering using
instanceof, Runabout is a reflexive implementation9 of late-
binding on a single argument [22], Slowrunabout is a modified
version of Runabout that uses classical reflection instead of
code generation and, finally, JMMF. Fig. 5 presents invocation
times for one million method calls with an increasing number
of methods. Two cases are considered for parameter type
classes: unrelated or belonging to a deep hierarchy.

Instanceof
Visitors

Dedicated
Runabout

Slowrunabout
JMMF

Instanceof
Visitors

Dedicated
Runabout

Slowrunabout
JMMF

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25

ms

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

ms

(a) Flat hierarchy (b) Deep hierarchy

Fig. 5. Single dispatch time, with respect to the number of methods

In this figure, one first notices that Dedicated and Visitors
implementations are always faster than reflection-based ones,

8Note that these measured values strongly depend on hard disk character-
istics.

9Dispatch is performed using a hashtable containing the method to apply
for each argument type and code generation is used to improve reflective
method calls.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

but their performances are of the same order (twice as fast than
Runabout and four times faster than JMMF). This confirms that
the reflection-based approach is usable.

Secondly, the Instanceof implementation is better than all
the others with flat hierarchies but its performance dramati-
cally decreases in the presence of a deep inheritance hierarchy,
as observed in [22]. However, note that the Instanceof perfor-
mance decreases as the number of typecases increases. This
is observed both in Fig. 5(b) and in Table I. This probably
comes from cache-based optimization.

Finally, JMMF is about 2.5 times slower than Runabout.
Since Runabout is 1.5 times faster than SlowRunabout, one
third of this gap could be filled by generating code for method
calls as Runabout does. However, we consider that this feature
is not the matter of the library but of the virtual machine.
Thus, this would be of benefit to any reflective method call.
Moreover, the JVM could perform efficient method sharing,
which is not the case for the library.

JMMF penalty also comes from its generality. In JMMF,
there are no constraints on the method name nor on the class
containing the multi-method implementation. Indeed, there are
always at least two arguments in the multi-method, one for
the target object (null for static methods) and one for the
parameter. On the contrary, in Runabout, the name of the visit
method is imposed and classes must inherit the Runabout
class, thus dispatch is simplified. Moreover, we precisely deal
with interfaces as parameter types, with static methods and
with null arguments, whereas Runabout does not treat these
cases with full generality.

However, for static methods with one argument JMMF
should always be less efficient than Runabout since Runabout
only requires one hashtable access where the JMMF version
also requires at least one index search in a bit array, a potential
disambiguation process and an access to a dispatch table.
The forthcoming version of JMMF will modify the treatment
of this special case, caching the results of our complete
disambiguation process.

Other enhancements could improve special multi-method
use cases. However, measures presented in Fig. 5 already
show that our general implementation (multiple parameters
and interface types support) is practicable.

D. Time analysis

In this section, we provide an informal time complexity
analysis of our algorithms.

When all annotations are computed and when bit vectors
are represented by integer values, the worst case of dispatch
complexity is O(p + n) where p is the number of parameters
and n the number of methods in the multi-method. Indeed,
computing SAu requires a bitwise AND between p annotations
of argument types O(p) and n additional bitwise AND’s for
ambiguous cases O(n). However, we do not consider the time
to look up annotations.

When annotations have to be computed for a new type,
a bitwise OR between annotations of all its super-types is
required. In the worst case, this process has complexity O(c)
where c is the number of its super-types. However, in practice,

all super-types are not visited since the traversal is pruned as
soon as an annotated type is found.

Creation time includes computations of annotations for each
parameter type and of the matrix PO. In the worst case, for
each of the p parameter positions, n different type annotations
have to be computed: O(p×n). Then, these annotations have
to be propagated over all sub-types, leading to the complexity
O(p2 × n2) in the worst case (in practice, the form of the
DAG saves many propagations). To compute the n rows of
the matrix PO, p bitwise AND’s have to be performed. Thus
the complexity of this second step is O(p × n).

E. Space analysis

In this section we provide a description of the data structures
used by our algorithm and we give some measures of JMMF
memory usage.

First, all multi-methods share a subset of the type hierarchy
which is only used to find super-types. This data structure
contains all multi-method parameter types and all argument
types of multi-method invocations. It is completed incremen-
tally each time a multi-method is created and when a multi-
method is called with a new argument type.

Secondly, as explained in section IV-C, some data structures
are common to a “hierarchy” of multi-methods: the matrix PO
and, for each parameter position, a hashtable that associates
parameter types and argument class10 with their annotations
AT .

Finally, for each multi-method receiver class, there is one
method dispatch table with possibly several masks, as pre-
sented in Fig. 3.

An important part of JMMF memory footprint is due to
the systematic loading of parameter types at multi-method
creation time, whereas instanceof-based implementations
only load these types when the test is performed at invocation
time. However, for applications like parsers, which potentially
use every object class or interface, these two approaches are
comparable.

Another important part of the memory usage corresponds
to method objects that are stored in the dispatch table. Fig. 6
presents the evolution of the JMMF memory usage (for the
multi-method used in section V-A.2) according to the number
of methods (and then to the number of parameter types). It
also gives the size taken by the dispatch table. It appears that
memory usage increases linearly with the number of methods
and the number of types that have to be stored. From this
linearity and the values obtained for 350 methods, we could
estimate the size required by a method as 350 bytes, among
which 200 bytes are used for the dispatch table.

More formally, given a multi-method, the number of param-
eter types present in the type hierarchy is at worst n× p. For
each of them, several pieces of information have to be stored:
a bit matrix for annotations A and a bulk of data of constant
size. When bit vectors are represented by integer values their
size is in O(1). Then, AT is implemented in O(p) and, for the
same reason, PO is usually in O(n). Moreover, the size of the
dispatch table is in O(n). Finally, the hierarchy requires a size

10The hashtable does not contain intermediate types.

FORAX et al.: A REFLECTIVE IMPLEMENTATION OF JAVA MULTI-METHODS 13

JMMF

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350

Dispatch table

Si
ze

 in
 b

yt
es

Number of methods

Fig. 6. Memory usage when the number of methods increases

that depends on its depth and on its “degree of super-typing”
(average number of super-type for a given type). In Fig. 6, as
p is constant, we obtain a complexity of O(n).

VI. RELATED WORKS

Many research works have been performed on multi-
methods since they were introduced in CLOS [1]. Some of
them concern their type checking [3], [6], [23], [24] but others,
like ours, focus on implementation. These techniques, like the
simple dispatch ones, are divided into different categories:
table-based [18], [25]–[27], graph-based [28]–[30] or cache-
based [31]. In this section we will focus on works concerning
the introduction of multi-methods in Java. We will present
these works in chronological order.

Boyland and Castagna [4] first proposed to extend Java with
parasitic methods which provide some special form of late-
binding on all parameters. This extension is not as general
as multi-method but is very attractive since it is comparable
to multi-methods in most practical cases. Moreover, it allows
strong type checking and multi-method inheritance, preserves
modularity and separate compilation, and is conservative (it
has no effect on existing Java programs). Parasitic methods
are introduced by adding the keyword parasitic to the Java
syntax. Classes using this extension are translated into standard
Java code. Contrarily to the present work, method selection
according to the dynamic type of object is not related to
the type order but to the textual/inheritance order of parasitic
method. This allows a simple and very efficient translation
into instanceof statements.

Clifton, Leavens, Chambers and Millstein [7] proposed a
conservative extension of Java to support multi-method dis-
patch, called MultiJava. MultiJava introduces syntactic modifi-
cations to offer multi-methods. The MultiJava compiler is then
in charge of type-checking and of producing the corresponding
Java code based on cascaded instanceof statements. The
main feature of this extension is its ability to perform modular
safe type-checking of multi-methods. To do this, they impose
strong restrictions on parameter types and method implemen-
tations. This approach is completely opposed to ours, since
we do not perform any static type-checking but we allow
maximum flexibility in implementation.

Dutchyn et al. [8] proposed a very efficient implementation
of multi-methods for Java, modifying the virtual machine.
This extension is conservative, since multi-dispatch is solely
applied to methods of classes implementing the interface
MultiDispatchable. Contrarily to previous works and simi-
larly to ours, this implementation proposes loose type checking

(with warnings) for multi-methods; exceptions are thrown at
runtime in case of type-checking error. One of the proposed
implementations is based on the SRP technique [32] to provide
the most specific method. This work was unknown at the
moment of the JMMF development, but the technique is
comparable to the one presented in this paper. Nevertheless,
method disambiguation requires “virtual” methods to be added
and methods to be sorted in order to ensure that in case
of ambiguity the most specific method always exists and is
the one with smallest index. Our implementation does not
have these requirements but imposes extra bitwise AND on
PO rows to perform disambiguation. Moreover, as shown in
section IV-C, since no extra methods nor order are needed on
methods, annotations and matrix PO can be shared in case of
inheritance. In order to quantify their respective advantages,
implementation of these two techniques in a common frame-
work is still required.

All these works mainly differ from ours since they do not
address the implementation problem of dynamic class loading
nor the data structure sharing in presence of multi-method
inheritance.

A last work from Grothoff [22] has an approach very
similar to ours to introduce argument filtering. However, it
only provides late-binding on a single argument and does
not fully treat parameters with interface types. This work is
based on a previous work of Palsberg [33] which proposes
a reflective implementation of the visitor design pattern. It
is completed with an efficient implementation of reflective
method calls using code generation.

VII. CONCLUSION

This paper presents a Java framework that provides the
programmer with multi-methods. Our implementation is a
customizable pure Java optional package. It does not involve
any JVM patch nor extra keywords to the original language
definition. Thus, it is fully portable and easy to use: it
suffices to add the package in the classpath. Compared to
other research works on multi-methods that address typing
issues [4], [7], [8], [23], [24], ours focuses on the simplicity
of design, use and implementation rather than on static type
checking.

Our new simple multi-method dispatch algorithm, presented
in this paper together with its implementation, appears to be
practicable. Furthermore, it addresses general design concerns
that are common to any reflection-based application: it incre-
mentally shares data structures according to object-oriented
principles and finds a good balance between space, creation
time and invocation time.

This work provides the programmer with an easy way to
design and maintain component-based software applications.
In particular, multi-methods simply allow algorithms on re-
cursive data structures [13], such as trees, to be specified
outside the class defining the data structure. For instance,
JMMF is intensively used in the project SmartTools [34] that
aims at providing generic tools for compiler constructions and
programming environments.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MMMM 2005

REFERENCES

[1] L. G. DeMichiel and R. P. Gabriel, “The Common Lisp Object System:
An overview,” in ECOOP’87 Proceedings, ser. LNCS. Paris, France:
Springer, June 1987, pp. 151–170.

[2] G. Kiczales, J. D. Rivieres, and D. Bobrow, The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

[3] C. Chambers, “Object-oriented multi-methods in Cecil,” in ECOOP’92
proceedings, ser. LNCS. Utrecht, The Netherlands: Springer, July 1992.

[4] J. Boyland and G. Castagna, “Parasitic methods: An implementation of
multi-methods for Java,” in OOPSLA’97, ser. SIGPLAN Notices, no.
32–10. Atlanta, Georgia: ACM Press, Oct. 1997, pp. 66–76.

[5] M. Kizub, “Kiev language specification,” July 1998, an extension of
Java language that inherits Pizza features and provides multi-methods
(http://forestro.com/kiev/).

[6] T. Millstein and C. Chambers, “Modular statically typed multimethods,”
in ECOOP’99 proceedings, ser. LNCS, no. 1628, Lisbon, Portugal, June
1999, pp. 279–303.

[7] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein, “MultiJava:
Modular open classes and symmetric multiple dispatch,” in OOPSLA’00
proceedings, ser. ACM SIGPLAN Notices, Minneapolis, USA, Oct.
2000.

[8] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst, “Multi-
dispatch in the Java Virtual Machine design and implementation,” in
COOTS’01 proceedings, San Antonio, USA, Jan. 2001.

[9] G. Baumgartner, M. Jansche, and K. Lufer, “Half & half: Multiple
dispatch and retroactive abstraction for Java,” Dept. of Computer and
Information Science, Ohio State University, Tech. Rep. OSU-CISRC-
5/01-TR08, Mar. 2002.

[10] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. T.
Leavens, and B. Pierce, “On binary methods,” Theory and Practice of
Object Systems, vol. 1, no. 3, pp. 221–242, 1996.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[12] K. J. Lieberherr, Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, Boston,
1996.

[13] R. Forax and G. Roussel, “Recursive types and pattern-matching in
Java,” in GCSE’99 proceedings, ser. LNCS, no. 1799, Erfurt, Germany,
Sept. 1999.

[14] M. Viroli and A. Natali, “Parametric polymorphism in java: an ap-
proach to translation based on reflective features,” in Proceedings of
OOPSLA’00, Minneapolis, Minnesota, United States, 2000, pp. 146 –
165.

[15] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin, “JAC: A flexible
solution for aspect-oriented programming in java,” in Proceedings of
Reflection’01, ser. LNCS, no. 2192. Kyoto, Japan: Springer-Verlag,
Sept. 2001.

[16] C. Chambers, “Object-oriented multi-methods in cecil,” in ECOOP’92
proceedings, vol. 615. Springer-Verlag, 1992, pp. 33–56.

[17] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code manipulation
tool to implement adaptable systems,” in Adaptable and extensible
component systems, Grenoble, France, Nov. 2002.

[18] C. Pang, W. Holst, Y. Leontiev, and D. Szafron, “Multi-method dispatch
using multiple row displacement,” in ECOOP’99 proceedings, ser.
LNCS. Lisbon, Portugal: Springer, June 1999, pp. 304–328.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha, The JavaTM Language
Specification – Second Edition. Addison-Wesley, 2000.

[20] O.-J. Dahl and B. Myrhaug, “Simula implementation guide,” NCC, Tech.
Rep. S 47, Mar. 1973.

[21] B. Liskov, “Data abstraction and hierarchy,” SIGPLAN Notices, vol. 23,
no. 5, May 1988.

[22] C. Grothoff, “Walkabout revisited: The runabout,” in ECOOP’03 pro-
ceedings, ser. LNCS. Springer, 2003, pp. 103–125.

[23] R. Agrawal, L. DeMichiel, and B. Lindsay, “Static type-checking of
multi-methods,” in OOPSLA’91 proceedings, ser. ACM SIGPLAN,
Phoenix Arizona, Oct. 1991, pp. 113–128.

[24] F. Bourdoncle and S. Merz, “Type-checking higher-order polymor-
phic multi-methods,” in POPL’97 proceedings, ser. ACM SIGPLAN-
SIGACT, Paris, France, Jan. 1997, pp. 302–315.

[25] E. Amiel, O. Gruber, and E. Simon, “Optimizing multi-method dispatch
using compressed dispatch tables,” in OOPSLA’94 proceedings, ser.
ACM SIGPLAN Notices, Portland, Oregon, Oct. 1994, pp. 244–258.

[26] E. A. Eric Dujardin and E. Simon, “Fast algorithms for compressed
multi-method dispatch table generation,” TOPLAS, vol. 20, no. 1, pp.
116–165, Jan. 1998.

[27] Y. Zibin and J. Y. Gil, “Fast algorithm for creating space efficient
dispatching tables with application to multi-dispatching,” in Proceedings
of OOPSLA’02. ACM Press, 2002, pp. 142–160.

[28] W. Chen, V. Turau, and W. Klas, “Efficient dynamic look-up strategy
for multi-methods,” in ECOOP’94 Proceedings, ser. LNCS. Springer,
1994.

[29] E. Dujardin, “Efficient dispatch of multimethods in constant time using
dispatch trees,” INRIA, Rapport de recherche 2892, 1996.

[30] R. Forax, E. Duris, and G. Roussel, “Java multi-method framework,”
in TOOLS Pacific’00 Proceedings. Sidney, Australia: IEEE Computer,
Nov. 2000.

[31] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers, “Vortex
an optimizing compiler for object-oriented languages,” in OOPSLA’96
Proceedings, 1996, pp. 83–110.

[32] W. Holst, D. Szafron, Y. Leontiev, and C. Pang, “Multi-method dispatch
using single-receiver projections,” Departement of Computer Science,
University of Alberta, Edmonton, Alberta, Canada, Tech. Rep. 98-03,
1998.

[33] J. Palsberg and C. B. Jay, “The essence of the visitor pattern,” in
COMPSAC’98 proceedings. IEEE Computer Society, 1998, pp. 9–15.

[34] I. Attali, F. Chalaux, C. Courbis, P. Degenne, A. Fau, and D. Parigot,
“SmartTools,” June 2000, cooperative project for Interactive Generic
Tools (http://www-sop.inria.fr/oasis/SmartTools/).

Rémi Forax is Maı̂tre de Conférences at University
of Marne-la-Vallée since 2003, where he obtained
his PhD in 2001 on multi-method implementations
in Java. His main research areas concern the use
of reflection and of bytecode generation to enhance
the Java programming and executing environment.
He gives Master’s courses at University of Marne-
la-Vallée, on object-oriented programming, software
engineering and graphical user interfaces. He is co-
author of the book Java et Internet.

Etienne Duris is Maı̂tre de Conférences at Univer-
sity of Marne-la-Vallée since 2000. He obtained his
PhD in 1998 at INRIA and University of Orléans.
His research focuses on program transformations
and on the use of reflection to extend the expressive
power of programming languages. He gives Master’s
courses at University of Marne-la-Vallée, on object
oriented programming and on networks; he also
teaches Java at École Polytechnique. He is co-author
of the book Java et Internet.

Gilles Roussel is Professor at University of Marne-
la-Vallée since 2004. He obtained his PhD in 1994
at INRIA and University of Paris VI, on modu-
larity, genericity and program transformations. His
research works cover program transformations, lan-
guage processing enhancements, genericity and rout-
ing. He gives Master and Graduate’s courses at
University of Marne-la-Vallée, on operating systems
and networks; he is also Maı̂tre de Conférences
à temps partiel at École Polytechnique where he
teaches object oriented programming and operating

systems. He is co-author of the book Java et Internet.

